
A Semantic Decomposition of Defeasible Logics

M.J. Maher and G. Governatori
School of Computing and Information Technology, Griffith University

Nathan, QLD 4111, Australia
{mjm,guido }@cit.gu.edu.au

Abstract

We investigate defeasible logics using a technique which de-
composes the semantics of such logics into two parts: a spec-
ification of the structure of defeasible reasoning and a seman-
tics for the meta-language in which the specification is writ-
ten. We show that Nute’s Defeasible Logic corresponds to
Kunen’s semantics, and develop a defeasible logic from the
well-founded semantics of Van Gelder, Ross and Schlipf. We
also obtain a new defeasible logic which extends an existing
language by modifying the specification of Defeasible Logic.
Thus our approach is productive in analysing, comparing and
designing defeasible logics.

Introduction
In this paper we start from Nute’s Defeasible Logic (Nute,
1987; Nute 1994). This logic has an expressive syntax, a
strongly skeptical semantics and a tractable computational
behavior. Our interest, in this paper, is to decompose De-
feasible Logic into parts, for the analysis of the logic, and
also to reassemble it with different parts to create new and
different logics.

We show that one component of Defeasible Logic is
Kunen’s semantics for logic programs (Kunen, 1987). As
a consequence of this link, inference in predicate Defeasi-
ble Logic (where arbitrary function symbols are allowed) is
computable, and inference in propositional Defeasible Logic
is polynomial.

The technique that we use – meta-programming – allows
us to provide several different semantics to the syntactic ele-
ments of Defeasible Logic without violating the underlying
intuitive meaning of the syntax. Thus we can create sev-
eral different defeasible logics, all adhering to the defeasible
structure underlying Defeasible Logic. (Of course, the com-
putational complexity of such logics varies with the seman-
tics.) In particular, we show that a defeasible logic devel-
oped using unfounded sets corresponds exactly to the use of
the well-founded semantics of logic programs (Van Gelder
et al., 1991).

The paper is organized as follows. The next section intro-
duces Defeasible Logic and its proof theory. We establish
a bottom-up characterization of the consequences of a de-
feasible theory that serves as our semantics for Defeasible
Logic. We also define Well-Founded Defeasible Logic and
show that it is coherent and consistent.

In the third section we present the metaprogram that en-
codes the basic behavior of the Defeasible Logic syntactic
constructs. We outline Kunen’s semantics and the well-
founded semantics of logic programs, and show that the
composition of these semantics with the metaprogram pro-
duces, respectively, Defeasible Logic and Well-Founded De-
feasible Logic. We also show, using the metaprogram, that
explicit failure operators can be added to defeasible logics
in a conservative way. Finally, we present some future work
and conclusions.

Defeasible Logic
Outline of Defeasible Logic
A rule r consists of itsantecedentA(r) (written on the left;
A(r) may be omitted if it is the empty set) which is a finite
set of literals, an arrow, and itsconsequentC(r) which is a
literal. In writing rules we omit set notation for antecedents.

There are three kinds of rules:Strict rulesare denoted by
A → p, and are interpreted in the classical sense: when-
ever the premises are indisputable (e.g. facts) then so is the
conclusion. An example of a strict rule is “Emus are birds”.
Written formally: emu(X) → bird(X). Inference from
facts and strict rules only is calleddefinite inference.

Defeasible rulesare denoted byA ⇒ p, and can be de-
feated by contrary evidence. An example of such a rule is
bird(X) ⇒ flies(X), which reads as follows: “Birds typi-
cally fly”.

Defeatersare denoted byA ; p and are used to prevent
some conclusions. In other words, they are used to defeat
some defeasible rules by producing evidence to the contrary.
An example is the ruleheavy(X) ; ¬flies(X), which
reads as follows: “If an animal is heavy then it may not be
able to fly”. The main point is that the information that an
animal is heavy is not sufficient evidence to conclude that it
doesn’t fly. It is only evidence that the animalmaynot be
able to fly.

A superiority relation onR is a relation> on R (that is,
the transitive closure of> is irreflexive). Whenr1 > r2,
thenr1 is calledsuperiorto r2, andr2 inferior to r1. This
expresses thatr1 may overrider2. For example, given the
defeasible rules

r : bird(X) ⇒ flies(X)
r′ : brokenWing(X) ⇒ ¬flies(X)

From: AAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved. 



which contradict one another, no conclusive decision can be
made about whether a bird with a broken wing can fly. But
if we introduce a superiority relation> with r′ > r, then we
can indeed conclude that it cannot fly.

A defeasible theory consists of a set of facts, a set of rules,
and a superiority relation. Aconclusionof a defeasible the-
ory D is a tagged literal and can have one of the following
four forms:

• +∆q, which is intended to mean thatq is definitely prov-
able inD.

• −∆q, which is intended to mean that we have proved that
q is not definitely provable inD.

• +∂q, which is intended to mean thatq is defeasibly prov-
able inD.

• −∂q which is intended to mean that we have proved that
q is not defeasibly provable inD.

Definite provability involves only strict rules and facts.

Proof Theory
In this presentation we use the formulation of Defeasible
Logic given in (Billington 1993). Adefeasible theoryD
is a triple(F, R, >) whereF is a set of literals (calledfacts),
R a finite set of rules, and> a superiority relation onR. In
expressing the proof theory we consider only propositional
rules. Rules such as the previous examples are interpreted
as the set of their variable-free instances.

Given a setR of rules, we denote the set of all strict rules
in R by Rs, the set of strict and defeasible rules inR by
Rsd, the set of defeasible rules inR by Rd, and the set of
defeaters inR by Rdft. R[q] denotes the set of rules inR
with consequentq. In the following∼p denotes the comple-
ment ofp, that is,∼p is¬p if p is an atom, and∼p is q if p
is¬q.

Provability is defined below. It is based on the concept of
a derivation(or proof) in D = (F, R, >). A derivation is a
finite sequenceP = (P (1), . . . P (n)) of tagged literals sat-
isfying the following conditions (P (1..i) denotes the initial
part of the sequenceP of lengthi):

+∆: If P (i + 1) = +∆q then either
q ∈ F or
∃r ∈ Rs[q] ∀a ∈ A(r) : +∆a ∈ P (1..i)

That means, to prove+∆q we need to establish a proof
for q using facts and strict rules only. This is a deduction
in the classical sense – no proofs for the negation ofq need
to be considered (in contrast to defeasible provability below,
where opposing chains of reasoning must be taken into ac-
count, too).

−∆: If P (i + 1) = −∆q then
q 6∈ F and
∀r ∈ Rs[q] ∃a ∈ A(r) : −∆a ∈ P (1..i)

To prove−∆q, i.e. thatq is not definitely provable,q must
not be a fact. In addition, we need to establish that every
strict rule with headq is known to beinapplicable. Thus for
every such ruler there must be at least one antecedenta for
which we have established thata is not definitely provable
(−∆a).

+∂: If P (i + 1) = +∂q then either
(1) +∆q ∈ P (1..i) or
(2) (2.1)∃r ∈ Rsd[q]∀a ∈ A(r) : +∂a ∈ P (1..i) and

(2.2)−∆ ∼q ∈ P (1..i) and
(2.3)∀s ∈ R[∼q] either

(2.3.1)∃a ∈ A(s) : −∂a ∈ P (1..i) or
(2.3.2)∃t ∈ Rsd[q] such that

∀a ∈ A(t) : +∂a ∈ P (1..i) andt > s

Let us illustrate this definition. To show thatq is provable
defeasibly we have two choices: (1) We show thatq is al-
ready definitely provable; or (2) we need to argue using the
defeasible part ofD as well. In particular, we require that
there must be a strict or defeasible rule with headq which
can be applied (2.1). But now we need to consider possi-
ble “counterattacks”, that is, reasoning chains in support of
∼ q. To be more specific: to proveq defeasibly we must
show that∼ q is not definitely provable (2.2). Also (2.3)
we must consider the set of all rules which are not known to
be inapplicable and which have head∼ q (note that here we
consider defeaters, too, whereas they could not be used to
support the conclusionq; this is in line with the motivation
of defeaters given above). Essentially each such rules at-
tacks the conclusionq. Forq to be provable, each such rule
s must be counterattacked by a rulet with headq with the
following properties: (i)t must be applicable at this point,
and (ii) t must be stronger than (i.e. superior to)s. Thus
each attack on the conclusionq must be counterattacked by
a stronger rule.

The definition of the proof theory of defeasible logic is
completed by the condition−∂. It is nothing more than a
strong negation of the condition+∂.

−∂: If P (i + 1) = −∂q then
(1)−∆q ∈ P (1..i) and
(2) (2.1)∀r ∈ Rsd[q] ∃a ∈ A(r) : −∂a ∈ P (1..i) or

(2.2)+∆ ∼q ∈ P (1..i) or
(2.3)∃s ∈ R[∼q] such that

(2.3.1)∀a ∈ A(s) : +∂a ∈ P (1..i) and
(2.3.2)∀t ∈ Rsd[q] either

∃a ∈ A(t) : −∂a ∈ P (1..i) or t 6> s

To prove thatq is not defeasibly provable, we must first
establish that it is not definitely provable. Then we must
establish that it cannot be proven using the defeasible part
of the theory. There are three possibilities to achieve this:
either we have established that none of the (strict and de-
feasible) rules with headq can be applied (2.1); or∼ q is
definitely provable (2.2); or there must be an applicable rule
s with head∼q such that no applicable rulet with headq is
superior tos.

The elements of a derivation are calledlinesof the deriva-
tion. We say that a tagged literalL is provable in D =
(F, R, >), denotedD ` L, iff there is a derivation inD
such thatL is a line ofP .

Under some assumptions, the logic and conditions con-
cerning defeasible provability can be simplified (Antoniou
et al., 1998) but we do not need those assumptions here.



A Bottom-Up Characterization of Defeasible Logic
The proof theory provides the basis for a top-down
(backward-chaining) implementation of the logic. However,
there are advantages to a bottom-up (forward-chaining) im-
plementation. Furthermore, a bottom-up definition of the
logic provides a bridge to the logics we will define later. For
these reasons we now provide a bottom-up definition of De-
feasible Logic.

We associate withD an operatorTD which works on 4-
tuples of sets of literals. We call such 4-tuples anextension.

TD(+∆,−∆, +∂,−∂) = (+∆′,−∆′, +∂′,−∂′) where

+∆′ = F ∪ {q | ∃r ∈ Rs[q] A(r) ⊆ +∆}

−∆′ = −∆ ∪ ({q | ∀r ∈ Rs[q] A(r) ∩−∆ 6= ∅} − F )

+∂′ = +∆ ∪ {q | ∃r ∈ Rsd[q] A(r) ⊆ +∂,
∼q ∈ −∆, and
∀s ∈ R[∼q] either

A(s) ∩ −∂ 6= ∅, or
∃t ∈ R[q] such that

A(t) ⊆ +∂ andt > s}

−∂′ = {q ∈ −∆ | ∀r ∈ Rsd[q] A(r) ∩ −∂ 6= ∅, or
∼q ∈ +∆, or
∃s ∈ R[∼q] such thatA(s) ⊆ +∂ and
∀t ∈ R[q] either

A(t) ∩ −∂ 6= ∅, or
t 6> s}

The set of extensions forms a complete lattice under the
pointwise containment ordering1, with ⊥ = (∅, ∅, ∅, ∅) as
its least element. The least upper bound operation is the
pointwise union, which is represented by∪. It can be shown
that TD is monotonic and the Kleene sequence from⊥ is
increasing. Thus the limitF = (+∆F ,−∆F , +∂F ,−∂F )
of all finite elements in the sequence exists, andTD has a
least fixpointL = (+∆L,−∆L, +∂L,−∂L). WhenD is a
finite propositional defeasible theoryF = L.

The extensionF captures exactly the inferences described
in the proof theory.

Theorem 1 Let D be a finite propositional defeasible the-
ory andq a literal.

• D ` +∆q iff q ∈ +∆F

• D ` −∆q iff q ∈ −∆F

• D ` +∂q iff q ∈ +∂F

• D ` −∂q iff q ∈ −∂F

The restriction of Theorem 1 to finite propositional theo-
ries derives from the formulation of the proof theory; proofs
are guaranteed to be finite under this restriction. How-
ever, the bottom-up semantics and the following work do
not need this restriction, and so apply to predicate defeasi-
ble logic rules that represent infinitely many propositional
rules. Indeed, for the remainder of this paper we will take
the bottom-up semanticsF as representative of Defeasible

1(a1, a2, a3, a4) ≤ (b1, b2, b3, b4) iff ai ⊆ bi for i = 1, 2, 3, 4.

Logic in this wider sense. We will writeD ` +∆q to ex-
pressq ∈ +∆F , and similarly with other conclusions.

The analysis of the proof theory of Defeasible Logic in
(Maher et al., 1998) was based on a 4-tuple defined purely
in terms of the (top-down) proof theory. By Theorem 1, that
4-tuple is preciselyF .

An extension(+∆,−∆, +∂,−∂) is coherentif +∆ ∩
−∆ = ∅ and+∂ ∩ −∂ = ∅. An extension isconsistent
if wheneverp ∈ +∂ and∼ p ∈ +∂, for somep, then also
p ∈ +∆ and∼ p ∈ +∆. Intuitively, coherence says that
no literal is simultaneously provable and unprovable. Con-
sistency says that a literal and its negation can both be de-
feasibly provable only when it and its negation are definitely
provable; hence defeasible inference does not introduce in-
consistency. A logic is coherent (consistent) if the meaning
of each theory of the logic, when expressed as an extension,
is coherent (consistent).

The following result was shown in (Billington, 1993).

Proposition 2 Defeasible Logic is coherent and consistent.

Well-Founded Defeasible Logic
It follows from the above definitions that defeasible theories
such as

r : p ⇒ p

conclude neither+∂p nor−∂p. In some contexts it is desir-
able for a logic to recognize such “loops” and to conclude
−∂p. Building on the bottom-up definition of the previ-
ous subsection, and inspired by the work of (Van Gelder et
al., 1991), we define a well-founded defeasible logic which
draws such conclusions.

The central definition required is that of an unfounded set.
Since defeasible logic involves both definite and defeasible
inference, we need two definitions. A setS of literals is
unfounded with respect to an extensionE and definite infer-
ence (or∆-unfounded) if: For every literals in S, and for
every strict ruleB → s either

• B ∩ −∆E 6= ∅, or

• B ∩ S 6= ∅
This definition is very similar to the definition of un-

founded set in (Van Gelder et al., 1991). The main differ-
ences are that the basic elements ofS are literals (and nega-
tion is classical negation) and “negation as failure” is not
present in the bodies of rules.

The corresponding definition for defeasible inference is
more complex, since there are more factors that influence
defeasible inference. Nevertheless, the basic idea is the
same.

We use↪→ to denote that the arrow of a rule is not spec-
ified. That is,B ↪→ s refers to a rule that might be strict,
defeasible, or a defeater.

A setS of literals is unfounded with respect to an exten-
sion E and defeasible inference (or∂-unfounded) if: For
every literals in S, and for every strict or defeasible rule
r1 : A(r1) ↪→ s in D either

• A(r1) ∩−∂E 6= ∅, or

• A(r1) ∩ S 6= ∅, or



• there is a ruler2 : A(r2) ↪→∼ s in D such thatA(r2) ⊆
+∂E and for every ruler3 : A(r3) ↪→ s in D either

– A(r3) ∩ −∂E 6= ∅, or
– r3 6> r2.

Clearly the classes of∆-unfounded and∂-unfounded sets
are both closed under unions. Hence there is a greatest∆-
unfounded set wrtE (denoted byU∆

D (E)), and a greatest
∂-unfounded set wrtE (denoted byU∂

D(E)). LetUD(E) =
(∅, U∆

D (E), ∅, U∂
D(E)).

We defineWD(E) = TD(E) ∪ UD(E).
Let Iα be the elements of the (possibly transfinite) Kleene

sequence starting from⊥ = (∅, ∅, ∅, ∅). {Iα | α ≥ 0} is an
increasing sequence and thus has a limit.

Let WF = (+∆WF ,−∆WF , +∂WF ,−∂WF ) be the
limit of this sequence. ThenWF defines the conclusions
of Well-Founded Defeasible Logic. If a literalq ∈ +∆WF

we writeD `WF +∆q, and similarly with the three other
sets inWF .

We can verify that the resulting logic is sensible in the
following sense.

Proposition 3 Well-Founded Defeasible Logic is coherent
and consistent.

To illustrate the definitions, consider the following Well-
Founded Defeasible Logic theory.

r1 : b ⇒ a
r2 : ¬c ⇒ a
r3 : d ⇒ a
r4 : a ⇒ ¬c
r5 : true ⇒ d
r6 : true ⇒ ¬d

With respect to the extensionE where−∂¬a,−∂b and
−∂c hold, an unfounded set isU = {a,¬c, d,¬d}. Well-
Founded Defeasible Logic will conclude−∂a,−∂¬c,−∂d
and−∂¬d, whereas conventional Defeasible Logic will con-
clude only−∂d and−∂¬d.

Decomposition of Defeasible Logics
In this section we show how a defeasible logic can be de-
composed into a metaprogram specifying the structure of
defeasible reasoning, and a semantics for the meta-language
(logic programming). We first introduce the metaprogram,
then the two semantics that, when composed with the
metaprogram, produce the two logics defined previously. Fi-
nally we discuss an example where the metaprogram is mod-
ified.

The Defeasible Logic Metaprogram
In this section we introduce a metaprogramM in a logic
programming form that expresses the essence of the defea-
sible reasoning embedded in the proof theory. The metapro-
gram assumes that the following predicates, which are used
to represent a defeasible theory, are defined.

• fact(Head),
• strict(Name, Head, Body),
• defeasible(Name, Head, Body),

• defeater(Name, Head, Body), and

• sup(Rule1, Rule2),
M consists of the following clauses. We first introduce the
predicates defining classes of rules, namely

supportive rule(Name, Head, Body):-
strict(Name, Head, Body).

supportive rule(Name, Head, Body):-
defeasible(Name, Head, Body).

rule(Name, Head, Body):-
supportive rule(Name, Head, Body).

rule(Name, Head, Body):-
defeater(Name, Head, Body).

We introduce now the clauses defining the predicates cor-
responding to+∆, −∆, +∂, and−∂. These clauses spec-
ify the structure of defeasible reasoning in Defeasible Logic.
Arguably they convey the conceptual simplicity of Defeasi-
ble Logic more clearly than does the proof theory.

c1 definitely(X):-
fact(X).

c2 definitely(X):-
strict(R, X, [Y1, . . . , Yn]),
definitely(Y1),. . . ,definitely(Yn).

c3 not definitely(X):-
not definitely(X).

c4 defeasibly(X):-
definitely(X).

c5 defeasibly(X):-
not definitely(∼ X),
supportive rule(R, X, [Y1, . . . , Yn]),
defeasibly(Y1),. . . ,defeasibly(Yn),
not overruled(S, R, X).

c6 overruled(S, R, X):-
sup(S, R),
rule(S,∼ X, [U1, . . . , Un]),
defeasibly(U1),. . . ,defeasibly(Un),
not defeated(T, S,∼ X).

c7 defeated(T, S,∼ X):-
sup(T, S),
supportive rule(T, X, [V1, . . . , Vn]),
defeasibly(V1),. . . ,defeasibly(Vn).

c8 not defeasibly(X):-
not defeasibly(X).

The first three clauses address definite provability, while
the remainder address defeasible provability. The clauses
specify if and how a rule in Defeasible Logic can be over-
ridden by another, and which rules can be used to defeat
an over-riding rule, among other aspects of the structure of
defeasible reasoning.

We have permitted ourselves some syntactic flexibility in
presenting the metaprogram. However, there is no technical
difficulty in using conventional logic programming syntax
to represent this program.



This metaprogram is similar to – though briefer and more
intelligible than – the meta-interpreter d-Prolog for Defeasi-
ble Logic defined in (Covington et al., 1997). The d-Prolog
meta-interpreter was designed for execution by Prolog, with
the Prolog implementation of negation-as-failure. It con-
tains many complications due to this intended use.

Given a defeasible theoryD = (F, R, >), the correspond-
ing programD is obtained fromM by adding facts accord-
ing to the following guidelines:

1. fact(p). for eachp ∈ F ;

2. strict(ri, p, [q1, . . . , qn]).
for each ruleri : q1, . . . , qn → p ∈ R;

3. defeasible(ri, p, [q1, . . . , qn]).
for each ruleri : q1, . . . , qn ⇒ p ∈ R;

4. defeater(ri, p, [q1, . . . , qn]).
for each ruleri : q1, . . . , qn ; p ∈ R;

5. sup(ri, rj).
for each pair of rules such thatri > rj .

Kunen Semantics
Kunen’s semantics (Kunen, 1987) is a 3-valued semantics
for logic programs. Apartial interpretationis a mapping
from ground atoms to one of three truth values:t (true), f
(false), andu (unknown). This mapping can be extended to
all formulas using Kleene’s 3-valued logic.

Kleene’s truth tables can be summarized as follows. Ifφ
is a boolean combination of the atomst, f , andu, its truth
value ist iff all the possible ways of putting int or f for the
various occurrences ofu lead to a valuet being computed
in ordinary 2-valued logic:φ gets the valuef iff ¬φ gets the
valuef , andφ gets the valueu otherwise. These truth values
can be extended in the obvious way to predicate logic, think-
ing of the quantifiers as infinite disjunction or conjunction.

The Kunen semantics of a programP is obtained from a
sequence{In} of partial interpretations, defined as follows.

1. I0(α) = u for every atomα

2. In+1(α) = t iff for some clause

β:-φ

in the program,α = βσ for some ground substitutionσ
such that

In(φσ) = t .

3. In+1(α) = f iff for all the clauses

β:-φ

in the program, and all ground substitutionσ, if α = βσ,
then

In(φσ) = f .

4. In+1(α) = u otherwise.

We shall say that the Kunen semantics ofP supportsα iff
there is an interpretationIn, for some finiten, such that
In(α) = t. This semantics has an equivalent characteri-
zation in terms of 3-valued logical consequence. We refer
the reader to (Kunen, 1987) for more details.

We useP |=K α to denote that the Kunen semantics for
the programP supportsα.

We can now relate the bottom-up characterization of a de-
feasible theoryD with the Kunen semantics for the corre-
sponding programD.

Theorem 4 Let D be a defeasible theory andD denote its
metaprogram counterpart.

For each literalp,

1. D ` +∆p iff D |=K definitely(p);
2. D ` −∆p iff D |=K not definitely(p);
3. D ` +∂p iff D |=K defeasibly(p);
4. D ` −∂p iff D |=K not defeasibly(p);

Thus Kunen’s semantics ofD characterizes the conse-
quences of Defeasible Logic. Defeasible Logic can be de-
composed intoM and Kunen’s semantics.

This has a further interesting implication: The conse-
quences of predicate Defeasible Logic are computable. That
is, if we permit predicates and uninterpreted function sym-
bols of arbitrary arity, then the four sets of consequences
are recursively enumerable. This follows from the fact
that Kunen’s semantics is recursively enumerable (Kunen,
1989). It contrasts with most nonmonotonic logics, in which
the consequence relation is not computable.

For propositional Defeasible Logic, we can use the rela-
tionship with Kunen’s semantics to establish a polynomial
bound on the cost of computing consequences. In unpub-
lished work we have a more precise bound.

Well-Founded Semantics
The presentation of the well-founded semantics in this sec-
tion is based on (Van Gelder et al., 1991).

The notion ofunfounded setsis the cornerstone of well-
founded semantics. These sets provide the basis to derive
negative conclusions in the well-founded semantics.

Definition 5 Given a programP , its Herbrand baseH , and
a partial interpretationI, a setA ⊆ H is anunfounded set
with respect toI iff each atomα ∈ A satisfies the following
condition: For each instantiated ruleR of P whose head is
α, (at least) one of the following holds:

1. Some subgoal of the body is false inI.

2. Some positive subgoal of the body occurs inA

Thegreatest unfounded setof P with respect toI (UP(I))
is the union of all the unfounded sets with respect toI.

Definition 6 The transformationsTP(I), UP(I), and
WP(I) are defined as follows:

• α ∈ TP iff there is some instantiated ruleR of P such
thatα is the head ofR, and each subgoal ofR is true in
I.

• UP(I) is the greatest unfounded set with respect toI.

• WP = TP ∪ ¬UP(I), where¬UP (I) denotes the set ob-
tained fromUP(I) by taking the complement of each atom
in UP(I).



We are now able to introduce the notion ofwell-founded
semantics. The well-founded semantics of a programP is
represented by the least fixpoint ofWP .

We writeP |=WF α to mean thatα receives the valuet
in the well-founded semantics ofP .

The following theorem establishes a correspondence be-
tween Well-Founded Defeasible Logic and the well-founded
semantics ofD.

Theorem 7 Let D be a defeasible theory andD denote its
metaprogram counterpart.

For each ground literalp

1. D `WF +∆p iff D |=WF definitely(p);
2. D `WF −∆p iff D |=WF not definitely(p);
3. D `WF +∂p iff D |=WF defeasibly(p);
4. D `WF −∂p iff D |=WF not defeasibly(p);

Thus Well-Founded Defeasible Logic can be decomposed
intoM and the well-founded semantics.

As a result, the consequences of a propositional Well-
Founded Defeasible Logic theory can be computed in time
polynomial in the size of the theory, using the fact that the
well-founded semantics of propositional logic programs can
be computed in polynomial time (Van Gelder et al., 1991).
However, predicate Well-Founded Defeasible Logic is not
computable, in contrast with predicate Defeasible Logic,
which is computable.

Through the relationship between Kunen’s semantics and
the well-founded semantics of logic programs we can es-
tablish the relationship between Defeasible Logic and Well-
Founded Defeasible Logic. The latter is an extension of De-
feasible Logic in the sense that it respects the conclusions
that are drawn by Defeasible Logic but generally draws more
conclusions from the same syntactic theory.

Theorem 8 LetD be a defeasible theory. For every conclu-
sionC,

if D ` C thenD `WF C

Defeasible Logic with Explicit Failure

Although the meaning of conclusions−∂p and−∆p is ex-
pressed in terms of failure-to-prove, there is not a way to
express directly within the above defeasible logics that a
literal should fail to be proved; tagged literals are not per-
mitted in rules. In contrast, most logic programming-based
formalisms employ “negation as failure” to express directly
that a literal should fail.

The characterization of defeasible logics by a metapro-
gram and a semantics for logic programs provides a way
for these logics to be extended with explicit failure without
modifying their underlying semantics (i.e. a conservative
extension). We introduce two operators on literals:fail∆ q
which expresses that it should be proved that the literalq
cannot be proven definitely, andfail∂ q which expresses
that it should be proved thatq cannot be proven defeasibly.
(Some syntactic restrictions must apply: classical negation
(¬) and the operators must not be applied to an operator ex-
pression, andfail∂ is not permitted in strict rules.)

The meaning of such expressions can be given by appro-
priately modifying clausesc2, c5, c6 andc7 of the metapro-
gram. If an elementYi of the body of a rule has the
form fail∂ Zi then the body ofc5 (say) should contain
not defeasibly(Zi) in place ofdefeasibly(Yi). The re-
sulting metaprogram is more general in that it defines a more
expressive language but it has no different effect on theories
that do not use the failure operators. Defeasible logic rules
that do not involve explicit failure retain the same interpre-
tation that they had before.

The resulting language, when we use the Kunen seman-
tics, generalizes both Defeasible Logic and Courteous Logic
Programs (Grosof, 1997). Indeed, it was already shown in
(Antoniou et al., 1998) that Courteous Logic Programs can
be expressed by Defeasible Logic theories, by encoding uses
of thefail operator with defeasible rules. With the explicit
failure operators we can expressfail directly. Thus Cour-
teous Logic Programs are essentially a syntactic subset of
(with the same semantics as) the extended Defeasible Logic.

Future Work
This work opens up several variations of Defeasible Logic,
in addition to the ones we have presented. The many dif-
ferent semantics for negation in logic programs have cor-
responding different semantics for the defeasible logic syn-
tax. For example, the composition of stable model semantics
(Gelfond and Lifschitz, 1988) with the metaprogram might
produce a credulous version of defeasible logic.

Equally, we can vary the fundamental defeasible structure
by modifying the metaprogram. Such changes will generally
not alter the computational complexity, since it is the seman-
tics of the meta-language which has the dominant effect on
complexity.

The results also open up alternative implementations of
defeasible logics. One possibility is to execute the metapro-
gram and data in a logic programming system with the ap-
propriate semantics. The connection between Defeasible
Logic and Kunen’s semantics suggests an implementation
incorporating constructive negation (Stuckey, 1995).

Conclusion
We have provided a semantic decomposition of defeasible
logics into two parts: a metaprogram which specifies the
fundamental defeasible structure of the logic (e.g. when a
rule can be defeated by another), and a semantics which de-
termines how the meta-language is interpreted.

We showed that Nute’s Defeasible Logic is character-
ized by Kunen’s semantics and that Well-Founded Defea-
sible Logic is characterized by the well-founded semantics.
We also briefly developed a variant of Defeasible Logic with
explicit failure by modifying the metaprogram. Thus differ-
ent defeasible logics can be obtained by varying either the
metaprogram or the semantics of the meta-language.

Decomposition is a useful tool for the analysis and com-
parison of logics. It provided a straightforward way to com-
pare Defeasible Logic and Well-Founded Defeasible Logic.
Equally, the reverse process of composition can be useful to
design a logic with specific characteristics.



Acknowledgements
We thank Grigoris Antoniou and David Billington for dis-
cussions and comments on defeasible logic. This research
was supported by the Australia Research Council under
Large Grant No. A49803544.

References
G. Antoniou, D. Billington and M.J. Maher. Normal Forms
for Defeasible Logic. InProc. Joint International Con-
ference and Symposium on Logic Programming, J. Jaffar
(Ed.), 160–174. MIT Press, 1998.
D. Billington, K. de Coster and D. Nute. A Modular Trans-
lation from Defeasible Nets to Defeasible Logic.Journal
of Experimental and Theoretical Artificial Intelligence2
(1990): 151–177.
D. Billington. Defeasible Logic is Stable.Journal of Logic
and Computation3 (1993): 370–400.
M.A. Covington, D. Nute and A. Vellino.Prolog Program-
ming in Depth. Prentice Hall 1997.
M. Gelfond and V. Lifschitz. The Stable Model Seman-
tics for Logic Programming. InProc. Joint International
Conference and Symposium on Logic Programming, 1070–
1080, MIT Press, 1988.
B.N. Grosof. Prioritized Conflict Handling for Logic Pro-
grams. InProc. Int. Logic Programming Symposium, J.
Maluszynski (Ed.), 197–211. MIT Press, 1997.
J.F. Horty, R.H. Thomason and D. Touretzky. A Skepti-
cal Theory of Inheritance in Nonmonotonic Semantic Net-
works. InProc. AAAI-87, 358–363.
K. Kunen. Negation in Logic Programming.Journal of
Logic Programming4 (1987): 289–308.
M. Maher, G. Antoniou and D. Billington. A Study
of Provability in Defeasible Logic. InProc. Australian
Joint Conference on Artificial Intelligence, 215–226, LNAI
1502, Springer, 1998.
D. Nute. Defeasible Reasoning. InProc. 20th Hawaii Inter-
national Conference on Systems Science, IEEE Press 1987,
470–477.
D. Nute. Defeasible Logic. In D.M. Gabbay, C.J. Hogger
and J.A. Robinson (eds.):Handbook of Logic in Artificial
Intelligence and Logic Programming Vol. 3, Oxford Uni-
versity Press 1994, 353–395.
P.J. Stuckey. Negation and Constraint Logic Programming.
Information and Computation118 (1995): 12–33.
A. Van Gelder, K. Ross and J.S. Schlipf. Unfounded Sets
and Well-Founded Semantics for General Logic Programs.
Journal of the ACM38 (1991): 620–650.


