From: AAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Sacre : a Constraint Satisfaction Problem Based Theorem Prover

Jean-Michel Richer

Jean-Jacques Chabrier

LIRSIA, Université de Bourgogne
9 Avenue Alain Savary, BP 47870, 21078 Dijon cedex, France
{richer,chabrier }@crid.u-bourgogne.fr

Abstract

The purpose of this paper is to present a new ap-
proach for solving first-order predicate logic prob-
lems stated in conjunctive normal form. We pro-
pose to combine resolution with the Constraint
Satisfaction Problem (CSP) paradigm to prove
the inconsistency and find a model of a problem.
The resulting method benefits from resolution and
constraint satisfaction techniques and seems very
efficient when confronted to some problems of the
CADE-13 competition.

Introduction

From a general point of view we can classify meth-
ods for solving first-order predicate calculus problems
stated in conjunctive normal form, into two categories.
The first one is consistency searching or proof searching
and is syntax-oriented. It consists of raising a contra-
diction from a set of clauses by applying inference rules.
For example, the theorem prover Otter (McCune 1994)
uses resolution, unit-resolution, hyperresolution, while
Setheo (Bayerl & Letz 1987) is based on model elimi-
nation (Loveland 1978).

The second one, satisfiability checking, also called
model finding, is related to semantics and tries to find
a model or a counterexample of a problem. In this last
category we can draw a distinction between saturation
and exztension approaches. In the former case, we it-
eratively generate ground instantiations of the problem
and test ground clause sets for unsatisfiability with a
propositional calculus prover (Chu & Plaisted 1997).
In the latter case, we try to build a model of the prob-
lem by assuming new ground facts. One of the first
satisfiability approaches was the saturation approach
of Gilmore (Gilmore 1960) which proved to be very in-
efficient. We believe it is because this kind of approach
has to tackle with the whole Herbrand base while only
a part of it is necessary.

Another kind of approach is the combined approach
implemented in the theorem prover Satchmo (Manthey
& Bry 1988) which uses syntactic and semantic features

Copyright ©1999, American Association for Artificial
Intelligence (www.aaal.org). All rights reserved.

to solve problems. It can be qualified as an extension
approach. However Satchmo is based on the model
generation reasoning paradigm (Bry & Yahya 1996).
Satchmo suffers from certain drawbacks. The first one
is range restriction requiring that each head variable
must occur in the body of a clause. The second draw-
back is the fact that Satchmo can sometimes choose a
clause irrelevant to the current goal to be solved and
thus causes unnecessary model candidate extensions.
This may result in a potential explosion of the search
space. Nevertheless, some improvements can be made,
such as relevancy testing (Loveland, Reed, & Wilson
1995) to avoid unnecessary case splittings.

Apart from those semantic approaches, Finder
(Slaney 1995) searches for finite models of first or-
der theories presented as sets of clauses. Falcon
(Zhang 1996), for which model generation is viewed
as constraint satisfaction, constructs finite algebras
from given equational axioms. Finite models are
able to provide some kind of semantic guidance that
helps refutation-based theorem provers find proofs more
quickly (Slaney, Lusk, & McCune 1994).

It is also possible to combine resolution with rewrite
techniques so as to guide the search and design more
efficient inference rules, such as the problem reduction
format (Loveland 1978) or the simplified problem reduc-
tion format (Plaisted 1982), that permits the deletion
of unachievable subgoals, or its extension the modified
problem reduction format (Plaisted 1988).

The key novelty introduced in this paper is the com-
bination of resolution with the Constraint Satisfaction
Problem (CSP) paradigm, so as to solve first-order pred-
icate calculus problems, stated in conjunctive normal
form. This combination is not fortuitous. First, con-
sistency searching and model finding are both common
problems related to logic and CSPs. Second, the CSP
techniques have proved to be very powerful to solve
large combinatorial problems by applying strategies
and heuristics that help guide the search and improve
the resolution process by efficiently pruning the search
space. The resulting method, called Sacre! is based

Yfor SAtisfaction de Contraintes et REsolution - Con-
straint satisfaction and resolution

on a unique forward chaining rule and combines con-
straint satisfaction heuristics and techniques together
with theorem-proving techniques and is able to prove
the inconsistency or find a model of a problem. It is, to
our knowledge, the first attempt of this kind ever tried
in this direction.

The paper is organized as follows : in section 2, we
will set forth some basic definitions of constraint satis-
faction problems. The next section is devoted to the use
of CSPs in propositional calculus. Section 4 presents
the Sacre approach. The last section exhibits some re-
sults for some of the problems of the CADE-13 compe-
tition.

Constraint satisfaction problems

The past 10 years have witnessed the development of
efficient algorithms for solving Constraint Satisfaction
Problems (CSPs). Examples of CSPs include propo-
sitional theorem proving, map coloring, planning and
scheduling problems.

Definition 1 - CSP - : A CSP (Montanari 1974)
is traditionally defined by a set of variables X =

{z1,...,2Zn} ranging over a finite set of domains D =
{d1,...,dn} that need to satisfy a set of constraints
C ={c1,...,cm} between variables.

A constraint is satisfied if there exists an assignment
of its variables such that the relationship between the
variables holds. A CSP is consistent if there exists an
assignment of X such that all the constraints of C are
satisfied. Given a CSP we can check if there exists a
solution (consistency checking), find a solution or all the
solutions (model finding) or find an optimal solution for
a given criterion (optimization problem).

Example 1- Consider the following CSP :

X = {mlixZ)z3}7
D= {dl,dz,dg}, with
di =dy =d3 ={0,1,2}
C= {$1+:L‘2 =.’I:3},
This CSP is consistent and its solutions are :

Sl = {(0; 01 0)) (0: 17 1)) (17 0’ 1))
(1,1,2),(0,2,2),(2,0,2)}

(CSh)

Propositional calculus and CSPs

The satisfiability problem (SAT) in propositional cal-
culus consists in determining whether there exists an
assignment of the propositional variables of a set of
clauses that renders the set satisfiable. The transla-
tion of a set of propositional clauses into a CSP is quite
obvious. Propositional variables become the variables
of the CSP and range over the boolean domain. Clauses
of the form p; V...V pi (where the p;s are literals) are
translated into cardinality constraints (Van-Hentenryck
& Deville 1991) #a, 8,p1,...,Pr) Which state that at
least o and at most S propositional variables must be

instantiated to. true. Not only does the cardinality con-
straint model more concisely problems but it also im-
prove the efficiency of the resolution process (Chabrier,
Juliard, & Chabrier 1995). For example, the following
set of clauses :
{pVqVr,—~pV—q,pV-r,~gV-r} can be represented by
#1,1,p,q,7). Among the algorithms developed to solve
the satisfiability problem, the methods relying on CSP
techniques have proved to be far more efficient than
the basic Davis and Putnam procedure (Davis & Put-
nam 1960). We can draw a distinction (Chabrier, Ju-
liard, & Chabrier 1995) between systematic approaches
like C-SAT (Dubois et al. 1993), non-systematic ap-
proaches such as GSAT (Selman, Levesque, & Mitchell
1991) and hybrid approaches like Score (Chabrier, Ju-
liard, & Chabrier 1995).

Systematic approaches are complete. They rely on
a backtrack algorithm that tries to find a solution by
successively instantiating variables while constraints are
satisfied. Non-systematic approaches start from an ini-
tial instantiation (also called a configuration) of the
variables and try to make local changes to the configu-
ration until a solution is found following heuristic crite-
ria. This kind of approach is incomplete, for heuristics
may cause the algorithm to be stuck in a local opti-
mum, but tends to be more efficient than systematic
approaches because they correspond to a more focused
search. Finally, hybrid approaches start from an initial
configuration of the variables generated for example by
a Min-Conflict algorithm (Minton et al. 1992) and try
to repair it using a backtrack algorithm to avoid testing
the same configuration twice.

The Sacre approach

Score, that has proved to be fairly efficient for ran-
dom SAT problems (3-SAT) and structured problems
(Ramsey, Pigeon-hole) (Chabrier 1997), led us nat-
urally therefore to venture out beyond the limits of
propositional calculus. To some extent, Sacre can be
considered as an attempt at extending Score to first-
order logic.

A new original approach to theorem proving for first-
order logic based on a constraint representation of
predicate calculus problems was defined in (Richer &
Chabrier 1997).

This approach originates from the observation that a
logic problem in conjunctive normal form is able to be
expressed as a special case of a CSP, that we call CspPT,

Definition 2 - CSPT - A CSPT is a kind of CSP
defined to represent the set of terms T of a problem in
logic expressed in conjunctive normal form.

The main idea of our work was to transform a pred-
icate calculus problem into a CSPT and solve it using
heuristic techniques related to the resolution of Con-
straint Satisfaction Problems and thus take advantage
of the efficiency of CSP techniques.

The major stumbling block in trying to translate a set
of clauses of the predicate calculus into a CSP concerns

the representation of literals as variables ranging over
sets of terms. To take into account the characteristic of
CSPT, we introduce the notations of ¥-domain and ¥-
variable to help represent respectively the domains and
variables of CSPT. These notations rely on a member-
ship interpretation of literals. For example, when we
write man(socrate) we mean that socrate is a mem-
ber of the set of men. In the same way, ~man(tweety)
means that tweety does not belong to the set of men
but that the concept of man applies to tweety. We can
then think of the concept of man in terms of two sep-
arate and complementary subsets (or ¥-subdomains)
that capture the notion of a boolean interpretation. A
¥-domain is then the set composed of these two subsets
(see fig. 1).

positive facts | negative facts
. man(socrate) | —
logic l man(tweety)
|
® socrate tweety @
t of
/ concept o man\
1
set socrate € I tweety €
|
dom(¥,,) , dom(‘Il—lman)

Figure 1: Notion of ¥-domain

Furthermore, any element of a ¥-domain can not be-
long to both subsets without raising an inconsistency.
More precisely, if p is a predicate symbol we will note
dom(¥,) and dom(¥-,) the subsets (or ¥-subdomains)
respectively related to literals p and —p. The ¥-domain
of p is noted dom (¥, —p) and is such that

dom(¥pp) = < dom(¥,),dom(¥-;,) >
with dom(¥,) N dom(¥-p) =0
where the notation E =< A, B > expresses the fact
that the set E is composed of two disjoint subsets A
and B.

The notion and notation of ¥-variable is then
straightforward. A U-variable represents the transla-
tion of a literal into a variable. Each literal p (resp.
—p) is associated to a ¥-variable, noted ¥, (resp. ¥_,)
ranging over dom(¥p-p). Any literal p(t) where ¢ is
a list of terms represents an occurrence of the variable
¥, for which the values that ¥, can be assigned to
are restricted to values of dom(¥,, ~p) that unify with ¢

and is noted 'Ilgf]. Provided with this formalism we can
describe a linear time transformation of a predicate cal-
culus problem stated in conjunctive normal form into a
CSPT for which unit clauses will form the ¥-domains
of the CSP and non-unit clauses will be transformed
into cardinality constraints so as to turn clauses into
constraints.

Definition 3 - Transformation into a CSP7T - 4
first-order predicate calculus problem P stated in con-
junctive normal form can be transformed into a CSP
over the set of terms T of P (noted CSPT), by applying
the following rules :

e for each predicate p of P :

- X is made up of the variables ¥, and ¥, that take
their values in dom(¥,) and related to literals of
the form p(t) and —p(t).

- D is made up of the domains dom(¥, -p) defined
over T'; each dom(%, -p) is separated into two sub-
domains dom(¥p ~p) = dom(¥p)Udom(¥-p) such
that dom(¥,) Ndom(¥-,) =0,

- dom(%,) = {t, such thatp(t)}, represents the set
of terms that are true under a partial interpreta-
tion of P,

- dom(¥_p) = {t, such that—p(t)}, represents the
set of terms that are false under a partial inter-
pretation of P,

- C initially contains the consistency constraints of
the form %1,1, ¥, ¥_.), that maintain consistency
at the logical level;

o unit clauses of P initially define the domains :

- dom(9,) = {to}, for each unit clause p(to) of P,

- dom(¥_,) = {to}, for each unit clause —p(to) of
o non-unit clauses are transformed into cardinality

constraints. A clause pi1(t1) V --- V pp(ts) is trans-

formed into ®1,n, U WY thus following the

W-variable notation.

We give here a simple example of the representation
of a logic problem P as a CSP7 :
(P)

p(a)
{ —p(X) V q(f(X))
~q(f(f(X)))

(cspPT)
X ={ Uy, ¥y ¥, Uryg };
D= { do'm(‘I'p,ﬁp) = {a}ju{}
T dom(¥y-0) = {FU{f(F(X)}
¢ = {#1,2,95), o/}

Resolution

In (Richer 1999) it was clearly underlined that the res-
olution of CSPT was not compatible with the standard
resolution approach of CSPs which considers that do-
mains are finite and not extendable. The resolution of
CSPT relies on a domain extension that compels the
introduction of the notion of an extended CSP.

Definition 4 - Extended CSP - An ezxtended CSP,
noted CSP.q:, has the ability to extend its domains
through constraint setisfaction.

For example, the assignment (z; = 1,22 = 2,23 = 3)
for (CSP) is not valid for a standard approach because

3 does not belong to ds but is acceptable for an eztended
approach and the value 3 is added to domain d3. In the
remainder of this paper we will only consider CSPL,.

The principle of the general algorithm designed to
solve the CSPT, is to build a partial interpretation by
iteratively satisfying constraints. The partial interpre-
tation may be viewed as an attempt at constructing a
counterexample for refuting the given hypothesis. Con-
straint satisfaction leads to the production of new val-
ues that do not appear in their related ¥-domains. Fol-
lowing an extended approach, new values are added to
their related domains to perform further deductions and
increase the partial interpretation. The unsatisfiability
of a CSP arises from the discovery of a value i belonging
to both ¥-subdomains (u € dom(¥p) A € dom(¥-yp))
of a ¥-domain dom(¥p-p). From a logic view point
this is equivalent to generating two resolvents p(¢;) and
—p(t2) such that there exists a most general unifier o of

21 and 23 (O'(tl) = O'(tz)).

function Solve(P : CSPL,) : boolean
input a CSPL, = {¥,D,C}
output 7P with extended domains
return true if the problem P is consistent,
false otherwise.
begin
V ={¥, €V, dom(¥,) # 0}
consistency = true
while V # 0 and consistency do
choose ¥, €V
vV =v/{¥,}
C(zy) = (K17, 98, ... wloo), wi))
while C(¥,) # 0 and consistency do
choose ¢ € C(¥y)
C(¥y) = C(Ty)/{c}
consistency = propagate(V,c, ¥,)
end
end
return consistency
end

Figure 2: Resolution of a CSPL,

The interesting point is that we do not confine our-
selves to ground atoms. For example, we can add the
term X to the ¥-subdomain of a unary predicate p.
This prevents us from enumerating the whole Herbrand
universe by using subsumption.

The resolution procedure underlying the implementa-
tion of Sacre, based on constraint satisfaction, has been
identified as a forward chaining rule applied to a set of
contrapositives. To give the reader a yet clearer view
of the resolution procedure, we shall refer to figures 2
and 3. The role of the propagate function is to deter-
mine the domains that are extended by the satisfaction
of constraint ¢ that contains the ¥-variable ¥,,.

function propagate(V,c, ¥,) : boolean
input/output V a set of U-variables

input c a constraint 1, n, \I!Ltl‘], ceey \Ilgf:_‘f], \Ilgf"])

input ¥, a U-variable
return true if the satisfaction of constraint ¢ did
not lead to an inconsitency.
begin
foreach p € dom(¥-,) do
if the satisfaction of ¢ where ¥l = "
leads to the extension of dom(¥,) then
if p already € dom(¥_4) then
return false // inconsistency

else
extend dom(¥,)
V=vu{¥,.}
end
end
end
return true
end

Figure 3: Satisfaction of a constraint with domain ex-
tension

Heuristic and strategy tuning

The major point in Sacre is that it is possible to com-
bine several heuristics and restriction techniques issuing
from theorem proving (such as weighting) or constraint
satisfaction (like forward-checking). These heuristics
help improve the efficiency of the resolution of the
CSPZ,. For example, when choosing a variable it is
possible to select a min-domain (choose the variable
with the minimum number of values in its domain),
max-domain, min-constraint or max-constraint heuris-
tic. New values can be rejected if their weight ex-
ceeds an upper bound or, the satisfaction of a con-
straint can be ended if a maximum number of values
has been reached. The major difficulty is to combine
these heuristics together so as to sufficiently decrease
the search space without restricting it to a space hid-
ing the solution. It is also worth mentioning that it is
possible to choose between a depth-first, breadth-first
or depth-first iterative deepening search (Korf 1985).

Other features

Sacre also applies to problems written in first-order
logic with equality. Demodulation with Lex Recur-
sive Path Ordering (Dershowitz 1987) has been im-
plemented. Further versions will probably integrate
paramodulation. One main feature of Sacre is the pos-
sibility to direct the search by orientating cardinality
constraints. This ability, as in Prolog, is intended to
compute a solution with very little searching and has
the potential of being quite efficient compared to a non-
directed approach. For example, problem NUM084.010
(evaluation of 10!) could not be solved in less than one

second without taking this feature into account (see ta-
ble 1).

Soundness and completeness

Unfortunately Sacre is incomplete, but a lack of com-
pleteness can generally lead to more efficiency. This
seems to be the case considering the results obtained
table 1.

Incompleteness is due to cardinality constraints that
act as the unit-resulting resolution inference rule (or
a forward chaining algorithm) which is sound but in-
complete. Efficiency also stems from the lack of a case
splitting rule. It is possible to design a case splitting
rule that ensures completeness but causes a loss of effi-
ciency (Richer 1999). This rule is not yet implemented
in the current version of our solver.

Results

The Sacre method was implemented in C under Unix.
In order to point out the real interest of our approach
and the efficiency of our solver, we decided to tackle to
some problems of the CADE-13 Automated Theorem
Proving System competition (Suttner & Sutcliffe 1997).

Problem | Otter [Setheo | Sacre
BOO006-1 3 0 0
BOO012-1 8 0 0
BOOO016-1 2 11 1
LCL196-1 7 6 23
LCL210-1 4 7 3
NUMO003-1 0 0 0
NUMO009-1 8 152 0
NUM284-1 0 0
PLAO11-2 0

PLAO14-1 0

RNGO005-1 1 199 0
RNGO038-2 0 94 8
RNG040-1 0 0 0
SET008-1 0 0 0
SET061-6 16 1
SET063-6 6 1
SET075-6 42 2
SET080-6 0 3 0
SET083-6 76 1
SET101-6 0 0 6
SET232-6 21 1
SYN200-1 0 0 0
SYN202-1 1 0 0
SYN271-1 0 0 1
Group 0 0 0
coloring 0 0 0

Table 1: Comparison between Otter, Sacre and Setheo.

We present in this section some comparatives results
between Sacre and two other theorem provers Otter
and Setheo. Otter (McCune 1994) is one of the most

complete and efficient theorem prover using inference
rules based on resolution (unit resolution, binary reso-
lution, hyperresolution). Setheo (Bayerl & Letz 1987)
uses model elimination. Otter and Setheo were chosen
for comparison because they took part in the CADE-13
competition and obtained the best results.

Table 1 shows the results for some problems. Times
are given in seconds. A resolution time of 0 second
means that it took less than one second to prove in-
consistency. Blanks mean that the problem could not
be solved within 300 seconds. The tests were run on a
Sun Sparc Ultra 1 workstation. The columns Otter and
Setho respectively provide the results of Otter 3.0.4. in
auto mode, and the best results of Setheo 3.3. with the
?_dr” or ”-wdr” option.

Sacre performs well on some kind of problems but
there remains some problems out of Sacre’s scope. The
problems PLA004-1 and PLAO11-2 can not be solved
by Sacre and Otter.

Conclusion and future work

In this paper we have shown that there exists a certain
correspondence between first-order calculus problems
in conjunctive normal form and constraint satisfaction
problems. A new species of solvers can be built on this
paradigm. Not only did we prove the validity of our ap-
proach but also its effectiveness with the Sacre prover.
Improvements are still possible, and much work is un-
der completion. We think it is possible to implement
an oracle, like the autonomous mode of Otter(McCune
1994), able to determine the best strategies and heuris-
tics for solving a given problem. The introduction of
a case splitting rule that ensures completeness would
probably be more efficient than the Satchmo case split-
ting rule because we are not forced to work with ground
terms. In the case of predicate calculus problems with
non-recursive clauses and non-extended domains (as it
is the case for the Map Coloring problem), we are con-
fronted to standard CSP. Moreover, the specification of
the domains of predicates, instead of their computation,
combined with a non-domain extension, can greatly re-
duce the search space. Further experimentation and
improvements will determine how worthwhile are app-
rocah is.

References

Bayer], S., and Letz, R. 1987. Setheo : A sequen-
tial theorem prover for first-order logic. In Esprit’87
- Achievements and Impacts, part 1, 721-735. North-
Holland.

Bry, F., and Yahya, A. 1996. Minimal model gener-
ation with positive unit hyper-resolution tableaux. In
Proceedings of the 5th Workshop on Theorem Proving
with Tableauz and Related Methods, Lectures Notes
in Artificial Intelligence 1071, 143-159. New York:
Springer-Verlag. .

Chabrier, J.; Juliard, V.; and Chabrier, J.-J. 1995.
Score(FD/B) : an efficient complete local-based

search method for satisfiability problems. In CP’95
Workshop - Studying and solving hard problems.
Chabrier, J. 1997. Programmation par contraintes
: langages méthodes et applications sur les domaines
booléens et entiers. In HDR. Ph.D. Dissertation, LIR-
SIA, Université de Bourgogne.

Chu, H., and Plaisted, D. A. 1997. Clin-s. Journal of
Automated Reasoning 18(2):183-188.

Davis, M., and Putnam, H. 1960. A computing pro-
cedure for quantification theory. Journal of the ACM
7:201-215.

Dershowitz, N. 1987. Termination of rewriting. Jour-
nal of Symbolic Computation 3:69-116.

Dubois, O.; André, P.; Boufkhad, Y.; and Carlier, J.
1993. Sat versus unsat. In Second DIMACS Challenge.
Gilmore, P. C. 1960. A proof method for quantification
theory : its justification and realization. IBM JRD 28—
35.

Korf, K. E. 1985. Depth-first iterative deepening : an
optimal admissible tree search. Artificial Intelligence
27:97-109.

Loveland, D. W.; Reed, D. W.; and Wilson, D. S.
1995. Satchmore : Satchmo with relevancy. Journal
of Automated Reasoning 14:325-351.

Loveland, D. W. 1978. Automated Theorem Proving :
A Logical Basis. New York: North-Holland.
Manthey, R., and Bry, F. 1988. Satchmo : A theo-
rem prover implemented in prolog. In Proceedings of
the 9th International Conference on Automated De-
duction, LNCS 310, 415-434. New York: Springer-
Verlag.

McCune, W. W. 1994. Otter 3.0 Reference Manual
and Guide.

Minton, S.; Johnston, M.; Philips, A.; and Laird, P.
1992. Minimizing conflicts : a heuristic repair method
for constraint satisfaction and scheduling problems.
Artificial Intelligence 58:161-205.

Montanari, U. 1974. Networks of constraints : Funda-
mental properties and applications to picture process-
ing. Information Science 7:95-132.

Plaisted, D. A. 1982. A simplified problem reduction
format. Artificial Intelligence 18:227-261.

Plaisted, D. A. 1988. Non-horn clause logic program-
ming without contrapositives. JAR 4:287-325.
Richer, J.-M., and Chabrier, J.-J. 1997. Une ap-
proche de résolution de problémes en logique basée
sur des techniques de satisfaction de contraintes. In
JFPLC’97.

Richer, J.-M. 1999. Sacre : une approche de résolution
en logique fondée sur des techniques de satisfaction de
contraintes. Ph.D, Dissertation, LIRSIA - Université
de Bourgogne.

Selman, B.; Levesque, H.; and Mitchell, D. 1991. A
new method for solving hard satisfiability problems.
In 10th NCAT 440-446.

Slaney, J.; Lusk, E.; and McCune, W. 1994. Scott
: Semantically constrained otter - system description.
Technical Report TR-ARP-3-94, Centre for Informa-
tion Science Research, Australian National University.
Slaney, J. 1995. FINDER - Finite Domain Enumera-
tor, Version 3.0 - Notes and Guide.

Suttner, C., and Sutcliffe, G. 1997. The design of the
CADE-13 atp system competition. Journal of Auto-
mated Reasoning 18(2):139-162.

Van-Hentenryck, P., and Deville, Y. 1991. The car-
dinality operator : A new logical connective for con-
straint logic programming. In Furukawa, K., ed., Pro-
ceedings of the 8th ICLP, Paris, France 24-28 June -
1991, 745-759.

Zhang, J. 1996. Constructing finite algebras with fal-
con. Journal of Automated Readoning 17:1-22.

