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Abstract

Consider the problem of monitoring the state of a complex
dynamic system, and predicting its future evolution. Ex-
act algorithms for this task typically maintain abelief state,
or distribution over the states at some point in time. Un-
fortunately, these algorithms fail when applied to complex
processes such as those represented as dynamic Bayesian
networks (DBNs), as the representation of the belief state
grows exponentially with the size of the process. In (Boyen
& Koller 1998), we recently proposed an efficient approxi-
mate tracking algorithm that maintains anapproximatebelief
state that has a compact representation as a set of independent
factors. Its performance depends on the error introduced by
approximating a belief state of this process by a factored one.
We informally argued that this error is low if the interaction
between variables in the processes is “weak”. In this paper,
we give formal information-theoretic definitions for notions
such as weak interaction and sparse interaction of processes.
We use these notions to analyze the conditions under which
the error induced by this type of approximation is small. We
demonstrate several cases where our results formally support
intuitions about strength of interaction.

Introduction
Consider an intelligent agent whose task is to monitor a
complex dynamic system such as a freeway system with
multiple vehicles (Forbeset al. 1995). Tracking the state
of such systems is a difficult task: their dynamics are noisy
and unpredictable, and their state is only partially observ-
able. Stochastic processes provide a coherent framework
for modeling such systems. In many cases, the state of the
system is represented using a set ofstate variables, where
individual state are assignments of values to these variables.
Dynamic Bayesian networks (DBNs)(Dean & Kanazawa
1989) allow complex systems to be represented compactly
by exploiting the fact that each variable typically interacts
only with few others.

Unfortunately, although this type of limited interaction
helps us achieve a compact representation, it does not sup-
port effective inference. Consider the task of maintain-
ing abelief state— a distribution over the current process
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state (Astr̈om 1965). A naive representation of such a dis-
tribution is exponential in the number of state variables.
Unfortunately, it can be shown that, unless the system is
completely decoupled (i.e., composed of non-interacting
subprocesses), any two variables will have some common
influence in the past and will thus be correlated. The belief
state therefore has no structure, and can only be represented
as an explicit joint distribution over the system variables.
This limitation renders algorithms that try to track the sys-
tem exactly (Kjærulff 1992) impractical for complex prob-
lems.

However, one has a strong intuition that keeping track of
these correlations is often unnecessary. While the variables
might be correlated, this correlation is often very weak.
In Herbert Simon’s words, these are “nearly decomposable
systems, in which the interactions among the subsystems
are weak but not negligible” (Simon 1962). Simon argues
that these “nearly decomposable systems are far from rare.
On the contrary, systems in which each variable is linked
with almost equal strength with almost all other parts of the
system are far rarer and less typical.”

In (Boyen & Koller 1998) — hereafter, BK — we pro-
pose an algorithm that exploits this idea of weak interaction
by momentarily ignoring the weak correlations between the
states of different system components. More precisely, the
BK algorithm represents the belief state over the entire sys-
tem as a set of localized beliefs about its parts. For example,
it might represent the beliefs about the freeway as a set of
independent beliefs about the state of the individual vehi-
cles; or, more appropriately, the states of the vehicles might
be represented as conditionally independent given the over-
all traffic load. The algorithm chooses a restricted class of
factored belief states. Given a timet belief state in this
class, it propagates it to timet + 1; this step typically has
the effect of inducing correlations between the subsystems.
The algorithm projects the resulting distribution back into
the restricted space. Note that the correlations between sub-
systems are not eliminated; they are merely “summarized”
at every point in time by the projection step.

The analysis in BK shows that the stochasticity of the pro-
cess prevents the repeated errors resulting from the projec-
tion steps at every timet from accumulating unboundedly.
However, the amount of error resulting from the approxima-
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tion is not quantified. Rather, the justification is based on
the intuition that, if the processes interact only weakly, the
error cannot be too large. In order to make this intuition pre-
cise, we must formally define what it means for processes to
interact weakly, and show that weak interaction does allow
us to bound the error introduced by this approximation.

We provide a formal information-theoretic notion of in-
teraction, that corresponds to the amount of correlation be-
tween subsystems that is generated in a single step of the
process. We then use this idea to provide a quantitative mea-
sure for the strength of interaction between systems. We
also analyze the case of two processes whose correlation is
largely mediated by a third; we show that such processes
can be approximated as conditionally independent given
the third if the latter evolves more slowly than they do, and
thereby “remembers” its state. These notions allow us to
determine the error induced by a decoupled approximation
to the belief state.

We also analyze a new notion ofsparse interaction,where
subprocesses mostly interact only weakly, but have an oc-
casional strong interaction. Indeed, this type of interaction
might be more accurate as a fine-grained traffic model, as
individual cars do occasionally have a very strong interac-
tion (e.g., when one makes an emergency stop directly in
front of another). In this case, the weak interaction assump-
tion is warranted only part of the time. We extend the BK
algorithm to settings such as this. The algorithm tailors the
approximation it uses to the circumstances; after a strong
interaction between two subsystems takes place, it stops
decoupling their states. Thus, it temporarily resorts to a dif-
ferent approximation structure. If the strong interaction is
momentary, then the processes go back to their usual mode
of weak interaction. Hence, after some amount of time,
the correlation attenuates. At that point, we can go back to
decoupling the subprocess states. Our analysis shows how
long this coupling needs to last in order to guarantee that
we incur only small error by decoupling the processes.

Our results show how the architecture of a dynamic sys-
tem can be exploited to provide an effective algorithm for
reasoning about it. The system structure can be used to se-
lect an approximation scheme appropriate to it, and to adapt
it as the system evolves. Our analysis provideserror bounds,
allowing a tradeoff between accuracy and computation.

Approximate inference in DBNs
In this section, we review the basic definitions of dynamic
systems represented compactly asdynamic Bayesian net-
works. We also review the approximate inference of the BK
algorithm, which is the starting point for our analysis.

A stochastic dynamic system is defined via a set of states,
and atransition modelthat represents the way in which one
state leads to the next. In complex systems, a state is best
described using a set ofrandom variablesA1; : : : ; An. We
useU; V;W;X; Y; Z to denote sets of random variables, and
their lower case version to denote instantiations of values
for the variables in the set. The transition model is described
via a directed acyclic graphB. The network contains nodes
A1; : : : ; An reprsenting the current state, andA0

1; : : : ; A
0
n

representing the next state. Each nodeA0
i has a set of

parents Pa(A0
i); nodesAi have no parents. The network

represents the qualitative structure of the transition model
— the variables that directly influence the new value of each
variableA0

i. The transition model is made quantitative by
associating with each variableA0

i a conditional probability
tableIP[A0

i j Pa(A0
i)].

Our goal in many dynamic systems ismonitoring: keep-
ing track of the state of the system as it evolves. In general,
we do not have access to the full state of the system. Rather,
we get to observe only some subset of the state variables.
Thus, the best we can do is to maintain abelief state— a
probability distribution�(t) over the possible states at the
current timet. In principle, the process of maintaining a
belief state is straightforward. Having computed�(t), we
propagate it forward using the transition model to obtain
the expected next belief state�(�t+1); we then condition
�(�t+1) on our timet+ 1 evidence to get�(t+1).

In practice, however, this process can be very computa-
tionally intensive. The problem is that�(t) is a distribution
over all possible assignments of values toA1; : : : ; An, i.e.,
an exponentially sized space. One might hope that this belief
state can be represented compactly. After all, the transition
model is structured; perhaps that also induces structure on
the belief state, allowing a compact representation. Un-
fortunately, despite the limited interaction that the transi-
tion model induces between the variables, they all become
correlated. Intuitively, unless the system is completely de-
coupled into noninteracting subprocesses, any two variables
A
(t)
i andA(t)

j will eventually be influenced by a common
cause, somewhere in the history of the process. Regardless
of how long ago that was, and how weak the correlation cur-
rently is, the variables are qualitatively correlated. As any
decomposition of a distribution rests on some form of con-
ditional independence structure, no factored representation
of the belief state is possible.

In BK, we propose an approach for circumventing this
problem. Our algorithm maintains anapproximatebelief
state that admits a factored representation. Specifically, we
consider belief states that fall into some restricted family
of distributionsΣ, e.g., ones where certain sets of variables
are marginally independent. Let ˜�(t) 2 Σ be our current
approximate to the belief state. When we transition it to the
next time slice, the result is a distribution'(t+1) which is
usually not inΣ. We must therefore project it back intoΣ.
We now make this algorithm more precise.

Definition 1 A cluster forest(Jensen, Lauritzen, & Olesen
1990)F is an undirected forest whose nodes areclusters
F1; : : : ; Fm � fA1; : : : ; Ang and whose edges areE =
f(i; j)g. The forest has therunning intersection property
— if Fi andFj are clusters such thatAk 2 Fi andAk 2
Fj , then every cluster on the path betweenFi andFj also
containsAk.

Definition 2 We say that a distribution is representable
overF if it is represented as a set of marginals i over
the clustersFi, which arecalibrated, i.e.,  i[Fi \ Fj ] =



 j [Fi \ Fj ] for anyi; j. The distribution is defined as:

 (A1; : : : ; An) =

Qm

i=1 [Fi]Q
(i;j)2E  i[Fi \ Fj ]

:

We defineΣ[F ] to be the set of distributions that are
representable overF .

The BK algorithm takes the approximate belief state ˜�(t)

in Σ[F ], and generates the approximate belief state ˜�(t+1) in
Σ[F ], as follows. In the first phase, the algorithm propagates
�̃(t) to '(t+1) using the transition model. It then projects
'(t+1) into Σ[F ], generating (t+1). Finally, it conditions
on the timet+ 1 evidence, resulting in ˜�(t+1).

In order for this process to be performed correctly, we
require that, ifA0

k 2 Pa(A0
l), i.e.,Al has a parentAk in

its own time slice, then there must be some clusterFi such
thatAk andAl are both inFi. That is, all intra-time-slice
edges must be contained in some cluster. This assumption
allows us to focus attention on inter-time-slice influences.
We therefore define Pa�(A0

l) to be Pa(A0
l)\fA1; : : : ; Ang,

and Pa�(Y 0) for a set of variablesY 0 analogously.
The potential problem with this approach is that the re-

peated approximation at every time slicet could accumulate
unboundedly, resulting in a meaningless approximation. In
BK, we analyze this algorithm, and provide conditions un-
der which the error remains bounded. The first condition is
that the process is somewhat stochastic, so that errors from
the past are “forgotten.” The second is that each approxi-
mation step does not introduce too much error.

Definition 3 Let Y 0 be a cluster at timet + 1, andX be
Pa�(Y 0). We define themixing rate of the generalized
transitionX ! Y 0 as


[X ! Y 0]
4

= min
x1;x2

X
y

min[IP[y j x1]; IP[y j x2]]:

If X = V [ W , we also define themixing rate of the
conditional transitionV ! Y 0 as the minimal mixing rate
obtained over all possible values ofW ;


[V ! Y 0 jW ]

4

= min
w

min
v1;v2

"X
y

min[IP[y j v1; w]; IP[y j v2; w]]

#
:

Intuitively, the mixing rate is the minimal amount of mass
that two distributions overY 0 are guaranteed to have in
common: one is the distribution we would get starting atx1
and the other the one starting atx2. The minimal mixing rate
in the conditional transition is similar, except that we now
restrict to starting points that agree about the variables inW .
From here on, we will often drop the explicit reference to
W in the notation for mixing rate, asW is defined implicitly
to be Pa�(Y 0) n V .

The mixing rate can be used to bound the rate at which er-
rors arising from approximations in the past are “forgotten.”
Let Q = fQ1; : : : ; Qkg be the finest disjoint partition of
A1; : : : ; An, such that each clusterFi is contained in some
Qj ; i.e., eachQj is one of the connected components —

or trees— in the forest defined byF . Let r be the maxi-
mum inward connectivityof the process relative toQ, i.e.,
an upper bound, over all partitionsQ0

j , on the number of
partitionsQi such that there is an edge from (a variable in)
Qi to (a variable in)Q0

j . Similarly, let q be the maximum
outward connnectivityof the process relative toQ, i.e., an
upper bound, over allQi, on the number ofQ0

j such that
there is an edge fromQi toQ0

j . We define:


�
4

=

�
1
r

min
l

[Ql ! Q0

l]

�q
:

Based on this definition, we prove that the stochastic
transition decreases the error between the two distributions,
measured as their Kullback-Leibler divergence. TheKL
divergence(relative entropy) (Cover & Thomas 1991) be-
tween a reference distribution� and another ˜� is:

ID[�k �̃]
4

= IE�

�
ln
�(s)

�̃(s)

�
=
X
s

�(s) � ln
�(s)

�̃(s)
:

Theorem 1 (Boyen & Koller 1998)

ID[�(t+1) k'(t+1)] � (1� 
�) � ID[�(t) k �̃(t)]:

Of course, the timet + 1 approximation step — going
from '(t+1) to  (t+1) — introduces a new error into our
approximate belief state. We can show that if this error is
bounded, then the overall error in our approximation also
remains bounded.

Definition 4 The implicit projection errorof approximat-
ing' by with respect to a “true” distribution�, as

"�(' 7!  )
4

= IE�

�
ln
'(s)

 (s)

�
:

Theorem 2 (Boyen & Koller 1998)Let "� be a bound on
"�(�t)('(t) 7!  (t)) for all t. Then, on expectation over the
sequence of observations, for allt:

IE ID[�(t) k �̃(t)] � "�=
�:

Note that, since'(t) and (t) are distributions prior to con-
ditioning on the timet observation, the implicit projection
error should be taken relative to�(�t) — the true timet
belief state prior to the conditioning step.

Measuring interaction
In BK, we provide an analysis for the contraction rate
�,
allowing it to be bounded in terms of parameters of the
dynamic system. We do not provide a similar analysis for
"�. Rather, we argue that, if the processes do not interact
very strongly, such an approximation does not incur too
large an error. Indeed, our experimental results support this
prediction. Our goal in this paper is to try to analyze this
error and to relate it to the structure of the process.

The problem with analyzing the implicit error is that it
is, as its name suggests, implicit. As we do not have access
to the true distribution�(�t), we cannot measure the error
incurred by the projection. Instead, we will analyze a closely
related quantity — the KL divergence from' to  . Then,
we show how this projection error can be analyzed in terms
of the architecture of the system and its dynamics.



Definition 5 We define theprojection errorof approximat-
ing' by as

"(' 7!  )
4

= ID['k ] = IE'

�
ln
'(s)

 (s)

�
:

Although the projection error is not precisely the quantity
that appears in the analysis of the BK algorithm, there are
good reasons for believing it to be close. In particular, if our
current approximation ˜�(t) is fairly close to the true distri-
bution�(t), then our estimate of the projection error relative
to '(t) is close to the implicit approximation error relative
to�(t). In this case, if we guarantee that the projection error
is small, we can show that ˜�(t+1) remains close to�(t+1).
We are currently working on formalizing this intuition. For
now, we will analyze the projection error.

The key aspect of this analysis is based on a close rela-
tion between the projection error and mutual information
between clusters in the cluster forestF .

Themutual informationbetween two (sets of) variables
X andY givenZ, is defined as (Cover & Thomas 1991):

II [X ;Y j Z]
4

= IEZ ID[IP[X;Y j Z]k IP[X j Z]
 IP[Y j Z]];

where
 is the outer product.
We now show that the projection error" can be decom-

posed according to our clustering. In fact, the decomposi-
tion is done on a related structure, which is a hierarchical
grouping of the clusters ofF .

Definition 6 We define acluster hierarchyG as a binary
tree whose leaves are the clustersF1; : : : ; Fm, such that, for
every pair of sibling subtrees, there is at most one edge in
the cluster forest between those clusters at the leaves of one
sibling and those at the leaves of the other. Each interior
node is associated with a(cluster) groupGi, which is the
union of the clustersFk at its leaves. We say that the groups
Gi andGj for sibling subtrees aresibling groups, and use
R to denote the set of them � 1 pairs(i; j) such thatGi

andGj are siblings. For(i; j) 2 R, we denote byMij the
intersectionGi \Gj , and byGinj the differenceGi nMij .

Intuitively, G is a recursive partition ofF , where each
split divides up the clusters of a groupGk into a pair of “re-
ciprocal” sub-groupsGi; Gj , so that no more than one edge
of F is broken by the partition (in which caseGi andGj

will share the variables shared by the clusters on the broken
edge). The following picture shows one possible cluster hi-
erarchy (dotted lines) for a given cluster forest (solid lines).

F
1

F
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F
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F
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F
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G
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It is important to emphasize the distinction between the
cluster forestF and the group hierarchyG. The former has a
material effect, as it defines the approximation scheme used
by the inference algorithm. On the other hand, the group
hierarchyG is merely used for the purpose of analysis, and

can be chosen freely onceF is fixed. The nature ofF and
G is also different: the clusters inF may or may not be
overlapping, and if they are, they must satisfy the running
intersection property; in contrast, some groups inG are
necessarily overlapping, since each group is a proper subset
of its parent in the hierarchy. The key insight is that the
approximation error for using the clusters inF decomposes
nicely according to the structure ofG, as we now show.

Theorem 3 Let' be a distribution and its projection on
the cluster forestF . Then the projection error

"(' 7!  ) =
X

(i;j)2R

II [Gi;Gj jMij ];

where the mutual informations are computed with respect
to the distribution'.

Proof sketch We use an induction argument. LetGk

be any interior node, andGi; Gj the children ofGk. Since
Mij is fully contained in some clusterFl, we have [Mij ] =
'[Mij ]. Therefore,

ID['[Gk]k [Gk]]

= IE'(Gk)[ln ('(Gk)='(Mij)'(Gi jMij)'(Gj jMij))

+ ln ('(Mij)'(Gi jMij)= (Mij) (Gi jMij))

+ ln ('(Mij)'(Gj jMij)= (Mij) (Gj jMij))]

= II [Gi;Gj jMij ]

+ID['(Gi)k (Gi)] + ID['(Gj)k (Gj)]:

The claim follows by recursion on the last two terms, notic-
ing that for any clusterFl, ID['(Fl)k (Fl)] = 0.

The key to exploiting this decomposition is the following.
Recall that'(t+1) is obtained from propagating a distribu-
tion  (t). The distribution (t) is in the restricted space
Σ[F ], i.e., it satisfies the independence assumptions defined
by F . Intuitively, there is a limit to the amount of depen-
dencies introduced by a factored stochastic transition on a
factored distribution. This should result in bounds on each
of the mutual information terms that appear in the theorem.
Our analysis will make this idea formal.

It turns out that the notion of mixing rate, which captures
the extent to which information is retained from a set of
variablesX to a set of variablesY 0, can also be viewed as
representing the extent to which a set of variables influences
another. In particular, we are interested in the extent to
which one groupGi at timet influences another groupGj

at timet. We therefore define


ij
4

= 
[(Gi nMij)! (G0
j nM

0
ij)]:

(As usual, the dependence on other parents ofG0
j is implicit.)

Theorem 3 shows that the projection error is decomposed
as a sum of conditional mutual informations — one term
for each pair of siblingsGi,Gj . In the rest of the paper, we
shall derive bounds on those mutual information terms.



Weak interaction
We begin with analyzing the error for two groups that our ap-
proximation takes to be completely independent, i.e., groups
contained in different connected components of the cluster
forest. Intuitively, we would expect the error in this case
to depend on the extent to which these two groups interact.
In other words, if our system is such that the variables in
these two groups interact only weakly, the error incurred by
assuming them to be independent is small.

We first state a central lemma for this kind of analysis.

Lemma 4 LetU; V;W;X; Y; Z be sets of random variables
with the following dependency structure:

W

V

U

X

Y

Z
Then, writing
UY for 
[U ! Y ], etc.,

II [Y ;Z j W ] � (1� 
UY ) � (1� 
V Z) � II [U ;V jW ]

+3 � ln jdomX j: � (1�min[
XY ; 
XZ ])

Proof sketch We pose
Y = 
[(U;X)! Y ] and
Z =

[(V;X)! Z].

To start with, we observe that we can decompose the
given system as

V

U

X
Z"

YA

B

Y"

Y’

Z’
Z

W

Each of Y 0 and Y 00 either copies the value of its par-
ent, or enters a special “contraction state”c, depending
on the value ofA. The domain ofA has four values,
respectively triggering the contraction forY 0, Y 00, both,
or none. These values are distributed with probabilities
(
UY � 
Y ); (
XY � 
Y ); 
Y ; (1� 
UY � 
XY + 
Y )
respectively. We can show that all of these quantities are
non-negative, so that they form a well-defined distribution.

It suffices to show that: (i) One can construct the condi-
tional probabilities ofY andZ in the new network so as to
emulate the joint distribution specified by the original net-
work. (ii) The mutual informationII [Y ;Z jW ] computed
in the new network is bounded as claimed. We defer details
to a longer version of this paper.

We are now ready to prove our theorem.

Theorem 5 Let F and G be a cluster forest and group
hierarchy, andGi andGj two siblings contained in different
connectedcomponents ofF . Let�̃ be a distribution factored
according toF . Let' be obtained from̃� by propagation
through the given transition model. Then, with respect to',

II [G0
i;G

0
j ] � 3 � ln jdom(Gi [Gj)j � (1�min[
ij ; 
ji]):

Proof sketch We consider the transition model involving
Gi andGj at t andt + 1. The idea is to transform it into
an equivalent model by introducing a “mediator” variable
X through which the cross-interaction betweenGi andGj

is funneled.

G

G

G’

G’

i i

j j

G

G

G’

G’

i i

j j

X

Specifically,X simply copies the values ofGi andGj , and
the new edges fromX to G0

i andG0
j reproduce the previ-

ous cross-dependencesGi ! G0
j andGj ! G0

i. Notice
that
Xi and
Xj in the new model are respectively equal
to 
ji and
ij in the original one. Then, an application of
Lemma 4 to the new structure gives

II [G0
i;G

0
j ]

� 3 � (1�min[
Xi; 
Xj ]) � ln jdomX j+ c � II [Gi;Gj ]

= 3 � (1�min[
Xi; 
Xj ]) � ln jdom(Gi [Gj)j;

where we have used the fact thatII [Gi;Gj ] = 0 sinceGi

andGj are independent in the belief state representation at
time t.

Note that, asGi andGj are disjoint, we haveMij = ;.
Thus, the termII [G0

i;G
0
j ] bounded in this theorem is pre-

cisely the termII [Gi;Gj jMij ] that appears in Theorem 3.
In other words, Theorem 5 gives us a bound on the error
introduced by two specific groupsG0

i; G
0
j . To get the overall

bound on the error, we simply add the contributions of all
pairs of siblings.

The bound forG0
i andG0

j closely matches our intuition
regarding their “strength of interaction.” To understand
this, consider the term
Y X for two groupsX andY that
are “weakly interacting”. In this case, we believe thatY
is not a strong influence onX , i.e., IP[X 0 j x; y1] is close
to IP[X 0 j x; y2] for any x, y1, and y2. But in this case,P

x0 min[IP[x0 j x; y1]; IP[x0 j x; y2]] is close to one for all
x; y1; y2, and hence so is
Y X . If both
ij and
ji are close
to one, the error bound in our analysis will be close to zero.

To illustrate, consider the process composed of a number
of cars on a highway. In normal circumstances, the cars
interact weakly with each other, so we want to place each
car in a separate clusterFi in our belief state representation.
We can use the above theorem to justify this, as the weak
interaction between the cars will ensure that each
ij ' 1
in any group hierarchyG that we choose. In fact, since
the choice ofG is arbitrary given a clusteringF , we can
chooseG to maximize the various
ij . In our highway
example, it is reasonable to assume that only neighboring
cars may experience any kind of (weak) interaction. We
can maximize
ij by minimizing the number of neighboring
cars belonging to any two siblingsGi andGj . This is very
intuitive: we simply group cars according to their proximity.



Conditional weak interaction
The previous section analyzed the error of approximating
clusters of variables as completely independent. However,
as we show experimentally in BK, we can sometimes obtain
much lower errors by approximating distributions (or parts
of them) asconditionally independent. For example, it may
be much more reasonable to have an approximate belief
states where the states of individual cars are conditionally
independent given the overall traffic on the road. In this
case, our cluster forest would contain a cluster for each
vehicle, which also contains theTraffic random variable.
In this case, the clusters are overlapping, which will cause
some siblings to overlap inG. We therefore analyze the
error bound for two groups that need not be disjoint.

The conditional entropy of X given Y , denoted
IH[X j Y ], is defined as

IH[X j Y ]
4

= IEY IEXjY

�
ln

1
IP[X j Y ]

�
:

Lemma 6 Let W;X; Y; Z four sets of random variables
with an arbitrary dependency structure. Then,

jII [Y ;Z j X ]� II [Y ;Z jW ]j � IH[X jW ] + IH[W j X ]:

Theorem 7 LetF be a cluster forest,G a cluster hierarchy,
andGi andGj two siblings inG. Let�̃ and' be defined as
in Theorem 5. Then, with respect to', we have

II [G0
i;G

0
j jM

0
ij ]

� 3 � ln jdom(Ginj [Gjni)j � (1�min[
ij ; 
ji])

+IH[Mij jM
0
ij ] + IH[M 0

ij jMij ]:

Proof sketch The proof is based on a similar construction
as in Theorem 5, introducing a mediator variableX to cap-
ture the cross-interactions betweenGinj andGjni. Using
Lemma 4, we obtain

II [G0
i;G

0
j jMij ]

� 3 � ln jdom(Ginj [Gjni)j � (1�min[
ij ; 
ji]):

Applying Lemma 6, we get

II [G0
i;G

0
j jM

0
ij ] � II [G0

i;G
0
j jMij ]

+IH[Mij jM
0
ij ] + IH[M 0

ij jMij ];

so the claim follows.

Let us examine the result of the theorem from an intuitive
standpoint. The first term was already present in Theorem 5
and represents the amount of correlation introduced by the
weak interaction. The second term is new: it represents the
amount by which conditioning onM 0

ij instead ofMij might
change the mutual information. Intuitively, ifM 0

ij is a faith-
ful (deterministic) copy ofMij , then conditioning on one
or the other should not make any difference. In this case,
indeed, we would have both conditional entropies equal to
zero. This behavior generalizes to more realistic situations,
whereMij does evolve over time, but more slowly than the

two clusters it separates. More precisely, let us assume that
Gi andGj interact only throughMij , and thatMij tends to
preserve its value from one step to the next. (In particular,
this implies that all external influences onMij are weak.)

j
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i
G

ij

j\i

i\j
G

M

G
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j\i

i\j
G

M

G

(t)(t-1)

(t-1)

(t-1)

(t)

(t)

ij
M

(t+1)

(t+1)

(t+1)

i\j
G

j\i
G

The processesGi andGj are conditionally independent

given the entire sequenceM (�)
ij . Assuming thatGinj and

Gjni are mixing fast enough,G(t)
i andG(t)

j will be approx-

imately independent given the values ofM
(�)
ij in a vincinity

of t. If Mij evolves slowly (implyingIH[Mij jM 0
ij ] ' 0,

IH[M 0
ij jMij ] ' 0), these values ofM (�)

ij will be approxi-

mately determined by the knowledge ofM (t)
ij , so thatG(t)

i

andG(t)
j are approximately independent given the single

pointM (t)
ij . The same analysis holds ifGinj andGjni do

interact directly, but only weakly.
In the real world, we find many examples of processes

whose primary interaction is via some more slowly evolving
process. Our freeway example is a typical one: we can refine
the model of the previous section if we consider external in-
fluences that affect some or all cars in mostly the same way,
such as road work or the weather. Different stocks on the
stock market is another: the price trend of different stocks is
clearly correlated, but they are reasonably modeled as con-
ditionally independent given the current market trends. In
both cases, the conditioning variables fluctuate more slowly
than the dependent subprocesses. In these examples, our
model will contain a number of clustersF1; : : : ; Fk that all
contain some variableW , which will therefore appear in the
Mij at one or more levels in the group hierarchy.

Sparse interaction
As we have argued, many systems are composed of inter-
acting processes. However, the assumption of weak inter-
action throughout the entire lifetime of the system is an
idealization. In many domains, we may have processes that
interact weakly (if at all) most of the time, but may have an
occasional strong interaction. In our example of cars on a
freeway, the interaction of one car with another is very weak
most of the time. However, there are momentary situations
when the interaction becomes quite strong, e.g., if one car
gets too close to another, or if one wants to change lanes
into a position occupied by the other.

The interaction structure of the system is very different
in these two situations. So long as the processes interact
weakly, an approximation of the belief state as independent
components is a very reasonable one. However, when a
strong interaction occurs, this approximation incurs a large
error. A naive solution would have us correlate the belief



states of any two processes that can interact strongly. Un-
fortunately, in many systems, this solution greatly reduces
our ability to select clusters of small sizes and achieve com-
putational efficiency.

An alternative solution is to target our approximation to
the context. When two processes have a momentary strong
interaction, we should avoid decoupling them in the belief
state. In fact, we must take care. The strong correlation
between the two processes usually lasts for more than one
time slice. But as the system evolves, and the two processes
return to their standard weak interaction, the correlation
decays. After some amount of time, we will be able to
return to an approximation that decouples the states of these
two processes.

We now proceed to extend both the inference algorithm
and the analysis to account for this type ofsparse interac-
tion. First, we define the notion of sparse interaction. The
idea is to consider two separate transition models, which
will be applicable respectively in the standard and excep-
tional mode of interaction. Concretely, ifX andY interact
sparsely, we define a binary random variableBXY which
will be a parent of bothX 0 andY 0, and will select their mode
of interaction. We will speak of theweak interaction model
and thestrong interaction modelto designate the portions of
the conditional probability distributions ofX 0 andY 0 that
are relevant to either value ofBXY .

The extended algorithm uses a different cluster forest
F (t) at each time slicet. If at time t the algorithm detects
a strong interaction between the variables in two clusters, it
couples them for some length of time. In fact, it couples all
the variables in the two siblings which contained either of
the two clusters. More precisely, at each timet, we maintain
a setC(t) � R of couplings— pairs(i; j) of siblings. At
timet, we define a new cluster forestF (t), derived from the
basic cluster forestF . Each clusterF (t)

k in F (t) is either a
cluster ofF , or obtained by merging two siblingsGi; Gj .
In other terms, each clusterFl in F is assigned to some
clusterF (t)

k , in which caseFl � F
(t)
k . We require that if

Fl is assigned toF (t)
k , Fl � Gi, and(i; j) 2 C(t), then

Gi [Gj � F
(t)
k .

Note that, in general, the algorithm might not be able to
observe directly the existence of a strong correlation. In
some circumstances, there may be certain tests that are re-
liable indicators of such an event, e.g., a sensor detecting a
car signalling a lane change with its blinkers. In other do-
mains, the strong interaction may be due to an action taken
by the agent tracking the system; in this case, correlations
can be predicted. One general (but expensive) approach
for discovering strong interactions is by evaluating the error
that would be incurred by taking two clusters to be inde-
pendent. Here, to simplify the analysis, we assume that
strong interactions can be detected. When one occurs, the
algorithm couples the two sibling groups involved. If no
strong interaction occurs for some number of time slicesd,
the algorithm decouples them back.

We begin by analyzing the error of this algorithm in the
case the groups are disjoint. LetGi andGj be two siblings

decoupled at timet + 1. What do these groups contribute
to the error at timet + 1? There are two cases. IfGi

andGj were decoupled at timet, then we assume that their
most recent interaction was weak. In this case, the analysis
reduces to that of Theorem 5. Otherwise, the groups were
coupled att, and we have chosen this time slice to decouple
them. In this case, we have assumed that, for some number
of time slicesd, these groups have been coupled. For that
period of time, no error has been incurred by this pair. We
therefore need to estimate the extent to which the strong
correlation that occurredd time slices ago has attenuated.
Let 
wij = 
[G

(t)
i ! G

(t+1)
j ] be the mixing rate using the

conditional probabilities of the weak interaction model.

Theorem 8 Let Gi and Gj be two disjoint reciprocal
groups of clusters inG, and assume that no strong inter-
action has occured between them since time slicet� d.

1. IfGi andGj were decoupled at timet, then

II [G(t+1)
i ;G(t+1)

j ] �

3 � ln jdom(Gi [Gj)j � (1�min[
wij ; 

w
ji]):

2. If Gi andGj were coupled at timet and have just been
decoupled, then

II [G(t+1)
i ;G(t+1)

j ] � ln jdom(Gi [Gj)j� 
(1� 
wii )

d � (1� 
wjj)
d
+

3 � (1�min[
wij ; 

w
ji])


wii + 
wjj � 
wii � 

w
jj

!
:

Proof sketch The first case follows from Theorem 5. The
general case is obtained by applying Lemma 4d times,
giving

II [G(t+1)
i ;G(t+1)

j ] �

(1� 
wii )
d � (1� 
wjj)

d � II [G(t�d)
i ;G(t�d)

j ]

+3 � ln jdom(Gi [Gj)j � (1�min[
wij ; 

w
ji]) �Pd�1

k=0 (1� 
wii )
k � (1� 
wjj)

k

Note that all the
’s are for the weak interaction model, since
no strong interaction has occured since epocht� d. Then,
the claim follows from the fact thatII [G(t�d)

i ;G(t�d)
j ] �

ln jdom(Gi [Gj)j and
Pd�1

k=0 x
d � 1=(1� x).

Thus, the error induced by decoupling two groupsd time
slices after a strong correlation decreases exponentiallywith
d. The analysis also tells us how long we need to couple
two groups in order to guarantee a bound on the error.

To see how this theorem can be used, let us go back to
our highway example, and assume that we observe a strong
interaction between two vehicles (such as one cutting in
front of the other). Our algorithm would then “couple”
the reciprocal groupsGi andGj to which these vehicles
belong, which results in the merging ofGi andGj (and all
their subgroups) for a certain number of time slices, until the
correlation induced by the strong correlation has sufficiently



decayed that the groups can be decoupled without incurring
too much error. Our theorem guarantees that this eventually
happens, and gives us an upper bound on the time it takes.

We finally put all of our results together, and state the
theorem for models that involve both sparse interactions
and overlapping clusters.

Theorem 9 Let Gi and Gj be two reciprocal groups of
clusters inG, andMij their intersection. Assume that no
strong interaction has occured between them since time slice
t� d. Then

1. IfGi andGj were decoupled at timet, then

II [G(t+1)
i ;G(t+1)

j jM
(t+1)
ij ] �

3 � ln jdom(Gi [Gj)j � (1�min[
wij ; 

w
ji])

+IH[M
(t)
ij jM

(t+1)
ij ] + IH[M

(t+1)
ij jM

(t)
ij ]:

2. If Gi andGj were coupled at timet and have just been

decoupled, thenII [G(t+1)
i ;G(t+1)

j jM
(t+1)
ij ] �

ln jdom(Ginj [Gjni)j � (1� 
wii )
d � (1� 
wjj)

d

+

d�1X
k=0

(1� 
wii )
k � (1� 
wjj)

k

�

�
3 � (1�min[
wij ; 


w
ji]) � ln jdom(Ginj [Gjni)j

+IH[M
(t�k)
ij jM

(t�k+1)
ij ] + IH[M

(t�k+1)
ij jM

(t�k)
ij ]

�

Discussion and conclusions
Our results show how various system properties, such as
weak interaction, conditional weak interaction, and sparse
interaction, can be exploited by our inference algorithm.
We argue that these properties appear in many real-world
systems. Complex systems are almost always hierarchically
structured out of subsystems. For example, a freeway sys-
tem is made up of individual roads, which are composed of
many road segments; each segment has several vehicles on
it. A computer network has multiple subnets,each with mul-
tiple devices, each in turn has several users, running many
processes. From a different perspective, one could argue
that, regardless of whether complex systems are actually hi-
erarchical, people can deal with them only by decomposing
their description into more manageable chunks.

Hierarchical dynamical systems, such as those investi-
gated in (Friedman, Koller, & Pfeffer 1998), are ideally
suited for the kind of decomposition provided by the algo-
rithm. Let us consider the interaction structure of such a
system. Most of the interaction in the system occurs within
subsystems. The lower-level the system, the more tightly
it is coupled. Besides this internal interaction, a subsystem
usually interacts primarily with its enclosing system. Our
results apply exactly to situations such as this. As our results
demonstrate, if the interaction between subsystems in a level
is weak (or sparse), the correlation it induces can (mostly) be
ignored. The correlation induced by the enclosing system
is often stronger. However, as Simon states, “the higher-
frequency dynamics are associated with the subsystems, the
lower-frequency dynamics with the larger systems.” This

is precisely the case to which our results for conditionally
independent clusters apply. Thus, we can model the vari-
ables in the subsystems as conditionally independent given
the state of the enclosing system. This decomposition can
be extended to lower levels of a hierarchy, resulting in a
hierarchical decomposition of the belief state analogous to
that of the system.

Finally, in many settings, there may be an occasional
strong interaction that crosses tradional boundaries. Our
extended algorithm and analysis for sparse interactions are
precisely designed to handle such situations.

Our results can also help guide the construction of mod-
els that will support effective approximation. For example,
the decomposition described above relies on the existence
of a slowly-evolving enclosing system that renders its sub-
systems almost independent. We may therefore wish to
introduce such a component deliberately into our model,
enabling such a decomposition. For example, we can intro-
duce a variable that corresponds to aggregate properties of
the system as a whole, e.g., the amount of overall traffic on
the road, or stock market indicators. Such aggregate vari-
ables typically evolve very slowly, making them suitable to
the type of analysis described above.

In summary, the results we have presented allow us to
exploit the architecture of a dynamic system for efficient
and accurate approximate inference. They also allow us to
design the architecture of the system so as to support such
an approximation. We therefore hope that they will help us
to reason effectively about the very large complex systems
that we encounter in the real world.
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