From: AAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Detecting Feature Interactions from
Accuracies of Random Feature Subsets*

Thomas R. Ioerger
Department of Computer Science
Texas A&M University
ioerger@cs.tamu.edu

Abstract

Interaction among features notoriously causes diffi-
culty for machine learning algorithms because the rel-
evance of one feature for predicting the target class
can depend on the values of other features. In this pa-
per, we introduce a new method for detecting feature
interactions by evaluating the accuracies of a learning
algorithm on random subsets of features. We give an
operational definition for feature interactions based on
when a set of features allows a learning algorithm to
achieve higher than expected accuracy, assuming inde-
pendence. Then we show how to adjust the sampling
of random subsets in a way that is fair and balanced,
given a limited amount of time. Finally, we show how
decision trees built from sets of interacting features
can be converted into DNF expressions to form con-
structed features. We demonstrate the effectiveness
of the method empirically by showing that it can im-
prove the accuracy of the C4.5 decision-tree algorithm
on several benchmark databases.

Introduction

One of the most challenging aspects of applying ma-
chine learning algorithms to difficult real-world prob-
lems is choosing an appropriate representation for ex-
amples. The choice of features often has a significant
impact on the accuracy of many learning algorithms.
Most learning algorithms are effective only when there
exist some attributes that are fairly directly relevant
to (or correlated with) the target concept. Numerous
anecdotal examples have been reported where shift-
ing the representation of examples has been the key to
increasing accuracy, in domains from chess (Flann &
Dietterich 1986) to splice junctions in DNA (Hirsh &
Japkowicz 1994), for example.

The initial selection of features is often done with
the assistance of a domain expert, and there are usu-
ally many options for smoothing, quantizing, normal-
izing, or otherwise transforming the raw data. This
process is often called “feature engineering.” To facil-
itate decision-making, it would be convenient to have

Copyright ©1999, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

an automated way of quantifying the utility of features.
Unfortunately, this has proven to be a tricky task.
Some approaches, called “wrapper” methods, evalu-
ate features by running the learning algorithm itself
on subsets of features and examining the marginal im-
pact on accuracy of adding or dropping features (John,
Kohavi, & Pfleger 1994). However, highly relevant fea-
tures can mask the utility of less relevant or correlated
features, which might otherwise have information to
contribute. Other approaches, called “filter” methods,
attempt to evaluate the relationship between features
and the target class using an independent measure,
such as conditional entropy, or class-similarity between
nearest neighbors along each dimension (Kira & Ren-
dell 1992). In either approach, the utility of an indi-
vidual feature is often not apparent on its own, but
only in combination with just the right other features.

The root of these difficulties lies in a larger issue -
feature interaction - which is one of the central prob-
lems facing machine learning today. Feature inter-
action is informally defined as when the relationship
between one feature and the target class depends on
another. As a result, the utility of a feature might
not be recognizable on its own, but only when com-
bined with certain other ones, which are needed to
form a context in order to reveal its relationship to
the target concept. Feature interaction often disperses
positive examples in instance space, making learning
more difficult, as exemplified by parity functions. In
fact, feature interaction causes problems for almost all
standard learning algorithms (Rendell & Seshu 1990},
from decision-trees to perceptrons, which tend to make
greedy decisions about one attribute at a time. Fea-
ture interaction is also related to lack of conditional
independence among features, which violates a basic
assumption of the Naive Bayes algorithm, but can be
addressed by searching for a Bayesian network with a
specific structure that captures any dependencies via
restricted joint probability distribution tables at each
node (Singh & Provan 1996).

If the interacting features were known, then fea-
ture construction techniques could be used to augment
the initial representation in such a way as to circum-

vent the interaction by forcing the features to com-
bine together. This change of representation effectively
merges instances back together in instance space and
allows greedy algorithms to make more complex and
informed decisions. A wide variety of feature construc-
tion techniques have been proposed (for a survey, see
(Matheus 1989)). In many cases, the operators avail-
able for constructing features are limited, and the main
difficulty lies in determining which features to combine.
Previous feature construction algorithms each use a
different approach to avoiding a combinatorial search
(such as FRINGE exploiting the replication problem in
decision trees, or LFC using lookahead). However, the
complexity of feature construction in general remains
a challenge.

In this paper, we describe a new approach to de-
tecting feature interactions. Our main idea is to use
random sampling to select subsets of features, and then
to evaluate whether these features produce higher than
expected accuracy when used during learning. The key
technical details are: a) how to define the expected ac-
curacy for comparison, and b) how to organize the sam-
pling to provide a fair and balanced search for interact-
ing features within a limited amount of time. Then we
describe a simple method for constructing new features
from sets of interacting features discovered during the
search. Finally, we demonstrate the effectiveness of
this approach by showing that it can improve the ac-
curacy of C4.5 on three benchmark databases.

Defining Interactions

We start by developing an operational definition for
feature interactions. Informally, a set of features is
said to interact if their utility for classifying the target
concept is only apparent when they are all combined
together. We take an empirical approach to captur-
ing this idea formally: we run the underlying learner
on some representative examples using various sets of
features, and observe the average accuracy of the con-
structed decision trees by cross-validation. While this
should work for any learner, we focus on decision-tree
algorithms in this paper. We define a (positive) inter-
action among a set of features as when the observed
accuracy for all the features taken together is larger
than expected, based on the accuracies of trees built
using any known subsets of those features.

Definition 1 A set of features constitutes an inter-
action when the observed accuracy of the underlying
learning algorithm with all of the features is higher than
“expected.”

At the very least, we can try to estimate what the
accuracy of the subset will be based on the performance
of the individual features (i.e. one-level decision trees).
However, the estimates will clearly be more accurate
if we have some information about the performance of
various combinations of features.

Bayesian Expectations for Accuracies

The key to this definition is determining what a rea-
sonable expectation is for the accuracy of the whole
combination, since interactions are defined in contrast
to this (i.e. when the observed accuracy differs from
it). One might expect that the accuracy of decision
trees built from a set of features would be at least be
equal to the maximum for any subset, since the same
features are available and presumably could be used
to reconstruct the tree. However, it is in general hard
to predict how new features will interleave with other
ones in being selected for splits, which could improve
the accuracy, or possibly even decrease it.

We can use a simple Bayesian analysis to provide a
reasonable estimate of the accuracy of a combination
of features. To simplify, assume we have two disjoint
sets of features, F and G, and we are interested in
predicting the accuracy of trees built from the union
FUG. We do not know the exact structure of the trees
built from each set of features; they can change with
each run of cross-validation. However we can treat the
trees built by the decision-tree algorithm with each set
of features as a black box, and combine them as in-
dependent learners. Call trees built with the first set
of features Ly and trees built with the second set of
features Lg. To classify a new example with a hypo-
thetical composite learner, we would get the predicted
class for the example by running it through Lg, get
the class predicted by L¢, and then make the optimal
decision based on the probabilities of mis-classification
for each of the learners.

For example, if the class predicted by Lr is ¢; and
the class predicted by Lg is ¢a, then the Bayes-optimal
decision would be to output the class that is most
likely, given these states of the component learners:
argmaz,., Proble(z) = ¢; | Lr(z) = ¢1, La(z) = ¢
The estimated accuracy of this approach would be
equal to the probability of the chosen class, which is
simply the maz. This is summed over all combina-
tions of class labels that could be output by Ly and
L, weighted by the probabilities of these cases:

P[Lpug(:c) = C(:E)] = Z P[LF(:B) = c_,-,Lg(:c) = ck]x
€jiCh
maz.; Ple(z) = ¢ | Lr(z) = ¢, La(z) = ckj
Next, re-write the conditional probability using Bayes

Rule and cancel the denominators with the weights:

PlLruc(z) =c(z)] = Y P[Lr(z) = c;, La(z) = ck]x
P[Lr(z) = ¢j, La(z) = crle(z) = ¢i] Ple(z) = ci]
P[Lr(z) = ¢j, La(z) = c]
=Y (maz., P[Lr(z) = ¢j, Lo(z) = ek | ofz) = &i]

€5 ¢k

Mas,,

x Ple(z) = ci])

Finally, invoke the Independence Assumption to break
apart the conditional probabilities into values that are
easy to determine experimentally:

P[Lruc(z) = c(z)] =
3" (maz.; P[Lr(e) = ¢; | c(z) = ci]

P[Lg(z) =ck | c(z) = ¢i] - Ple(z) = ci])

The values required for this computation can be de-
rived directly from the average rates of true and false
positives and negatives for trees built from each sub-
set of features (along with prior class probabilities).
Specifically, they can be extracted from the confusion
matrix averaged over multiple runs of cross-validation.
This approach can easily be extended to predicting the
accuracy for partitions with more than two subsets of
features. We note that this method of calculating ex-
pected accuracies often produces the maximum of the
accuracies of the combined subsets, consistent with
what is often observed in decision trees, though the
expected accuracy can also be higher than the maxi-
mum for synergistic combinations.

So this Bayesian approach provides reasonable esti-
mates of the performance of decision trees built from a
combination of features, based on the performance of
subsets. An important consequence of this approach
is that it essentially equates feature interactions with
non-independence. If the whole combination of fea-
tures produces an accuracy higher than expected, then
the Bayesian explanation for this would be that the
probabilities used in the calculation were not in fact
independent. The observed accuracy can also be lower
than expected, which we call a negative interaction.
This can happen in cases where features interfere with
each other in terms of selection of splits in trees.

Apical Interactions

This definition for interactions so far is awkward be-
cause the appropriate partition to base the calculation
on is undefined, and essentially, the more subsets whose
performance we know, the better the estimate will be-
come. However, we can make a pragmatic improve-
ment by restricting the definition to a special class of
features interactions. We note that, since the accuracy
produced by a subset of features is usually at least as
great as the accuracy of the best feature by itself (in
the subset), interactions among lesser features will of-
ten be masked. Therefore, any observed interaction
will typically involve the most accurate individual fea-
ture in the subset, which we call an apical interaction.

Definition 2 An apical interaction is an interaction
among a set of features such that the most accurate
feature by itself is required for the interaction.

 Of course, any feature can participate in an apical in-
teraction with features of lower accuracy than it.

Detecting these types of interactions is much eas-
ier. Suppose Fj...F,, is a set of features sorted in in-
creasing order such that Fj,, has the highest accuracy
by itself. Consider the partition {{Fi...Fm_1}{Fm}}.
Empirically determining the accuracy of the combina-
tion of the first m — 1 features would reveal the utility
of almost all of them together, including possible inter-
actions among lesser features. This can be combined
with the accuracy of the single most accurate feature
to produce a reasonable Bayesian expectation for the
whole set. And yet, this calculation will probably un-
derestimate the true accuracy for apical interactions,
since it does not include the added boost in accuracy
that occurs only when F,, is combined with the others.

Searching for Interactions

Now that we have an operational definition for feature
interactions, we need to determine a way of finding
them efficiently. To establish a frame of reference, we
start by considering the amount of work it takes to do
an exhaustive search. Suppose we have a total of n
features and we are looking for interactions of order &
(i.e. a set of b features constituting an apical interac-
tion). To determine whether such an interaction exists,
and if so to identify it, we would have to run the learn-
ing algorithm on all possible combinations of n features
taken b at a time. This gives the observed accuracy for
each of the combinations, but we have to compare it to
the expected accuracy. To compute the expected ac-
curacy, we would have to evaluate the accuracy of all
but the highest feature (5— 1 total) and then calculate
the expected value of the full combination using the
Bayesian formula. Apical interactions would thus be
detected in cases where the observed accuracy is higher
than this expected value.

To fairly account for the work required, we need
to consider how the underlying algorithm itself is af-
fected by the number of features involved. In prac-
tice, decision-tree algorithms typically have run-time
roughly linear in the number of features (though the-
oretically they could be quadratic in the worst case,
since they depend on the size of the trees) (Quinlan
1986). Therefore, to a first approximation, we can
treat the run-time as a constant times the number of
features being evaluated. The constant can be deter-
mined empirically by running the decision-tree algo-
rithm on various randomly chosen sets of features, us-
ing the actual number of examples and cross-validation
procedure that will be used throughout the experi-
ment. We call this constant u, and hereafter concern
ourselves only with units of work based on numbers of
features evaluated.

Hence, the work for exhaustive search requires ,Cj
runs of the algorithm on b features at a time (b units
of work) plus ,Cj_1 runs of the algorithm on & — 1
features at a time (b — 1 units of work), or:

wWorkezn = b-nCy+ (b — 1) +nCh-1

This work scales up badly as n increases, and very
badly as b increases. It is usually only feasible to ex-
haustively search for at most binary interactions in
real-world datasets.

Random Sampling

To reduce the complexity of the search, we propose
sampling subsets larger than the postulated interac-
tion. The idea is that, if we are looking for an interac-
tion of size 3, for example, then instead of testing them
all, which is essentially exponential, we can try ran-
domly evaluating subsets of size 6, for example. The
probability of combining the right 3 features is higher
because the larger subsets each contain multiple triples
which are being evaluated simultaneously.

Of course, not all of these triples are easily identifi-
able as interactions in the set of 6 features. We discuss
this in more detail below. But for now, it is useful to
point out in general that the probability of selecting
the right b features of an interaction in a subset of size
k> bis:

_ n—5Cr—b _ k(k - 1)...(’6 —b+ 1)
p(n k,b) = 2Cr nn—1)..(n—b+1)

where the numerator represents the number of ways
that the remaining k — b features can be chosen out of
n — b total if the b interacting ones are forced to be
included, and the denominator represents all possible
combinations of n things taken k at a time.

Since we are generating subsets by random sampling
rather than exhaustive search, we cannot guarantee
that we will observe an arbitrary interaction of size
b. However, if we repeat this process some number of
times, eventually the probability becomes quite high.
For example, if we repeat the sampling of subsets of
size k for r times, the chances that we will observe
an arbitrary combination of b features (the postulated
interacting ones) becomes:

p(n, k,b,r) = 1— (1 —p(n,k,b))"

In the approach we will be describing, we will allow
the user to specify the minimum acceptable probabil-
ity, such as p > 0.95, to set the level of completeness
required in the search. For a given value of k, de-
termined by our approach, we can then solve for the
smallest number of repetitions of sampling required to
meet the requirement specified by p. Generally, as k
grows, many fewer repetitions are required.

To use this idea of sampling to search for interactions
requires a bit more sophistication. First, even if a given
set of features contains a subset of interacting features,
it might be masked by other features with higher ac-
curacies. Also, we must consider that sampling larger
sets of features costs more. Therefore, we break up
the search into sub-searches for specific apical inter-
actions. Apical interactions are easy to identify since
they necessarily involve the top feature in the subset.
Such an interaction will generally not be affected by

the inclusion of additional (non-interacting) features
of lower accuracy, and the only penalty is that we have
to repeat these tests for each feature as the candidate
apical feature.

In detail, we sort all of the features by their indi-
vidual accuracies (assume w.lo.g. that Fi...F, are in
sorted order). Starting with m = b, we look for api-
cal interactions of Fy with the b — 1 features below it.
Then we increment m to search for apical interactions
where Fyy; is the top feature, and so on, up to F,.

If we were to structure the exhaustive search in lev-
els like this, it would require ,,.1Cp1 subsets to be
evaluated (running the decision-tree algorithm) with
and without F,,, for each m from b up to n. However,
at each level m, we can use our idea of sampling sub-
sets larger than b — 1 to reduce the amount of work.
What size subsets should be sampled, and how many
should we generate? Since the number of features to
choose from grows with m, we suggest increasing the
size of the sampled subsets linearly. The growth rate
4 can be anything between 0 and 1. For example, us-
ing ¥ = 1/2, finding apical interactions with the 12tk
(least accurate) feature F; would involve evaluating
combinations of 6 features at a time including Fy, (or
Fy5 combined with 5 of the 11 lesser features). In any
case, if m -y < b, we always evaluate subsets of size
at least b (exhaustive for small cases). When v = 1,
this is essentially equivalent to asking for each feature:
when combined with all the features with lower accu-
racy than it, is there an interaction? However, the
problem with this extreme case is that it risks confu-
sion if multiple sets of interacting features are mixed
together. We would prefer to make v as small as possi-
ble, so that the subsets of features provide an isolated
context and hence the best chance to identify a given
interaction, with as little distraction from additional
features as possible.

Making v smaller means we have to repeat the sam-
pling at each level a greater number of times to achieve
the desired probability p. However, evaluating smaller
subsets for apical interactions requires less time in run-
ning the decision-tree algorithm. Although it is not im-
mediately obvious, it turns out that as y decreases, the
overall cost (summed over all levels m) increases, tak-
ing into account both the number and size of samples
required. For a given value of v, the cost of evaluating
each sample to identify apical interactions for each fea-
ture F, is approximately: m-y+(m-y—1) = 2my—1
(for running the cross-validation once with m - v fea-
tures and once without Fp,). This has to be repeated
enough times to ensure with probability > p that an in-
teraction among b arbitrary features will be observed.
So we compute the minimum number of repetitions 7,
required by increasing r until p(m—1, m-y,b—1,7) > p,
since we have m — 1 features to choose from, we are
sampling subsets of a fraction « of that size, and we are
trying to identify the right 56— 1 features that complete
the apical interaction. Hence the total cost for deter-

mining whether F,, is involved in an apical interaction
is 7 - (2my — 1). This is summed up for all levels m:
n
Worksampiing = Z Tm * (Zm‘y - 1)
m=b

This cost estimate is used to determine the optimal
value for 4. Suppose we have a fixed amount of time ¢
(in units of work, or ¢-u seconds) to devote to searching
for interactions. Our approach involves determining
the minimum value for 4 such that the overall cost of
the experiments does not exceed t. This is done by
estimating the cost for various values of v distributed
uniformly between 0 and 1, and selecting the smallest
value of 4 that allows the total work to be completed
within ¢.

Example
Table 1 shows an example that gives the schedules for
several values of v (0.2, 0.4, 0.6, and 0.8), designed to
identify interactions up to order b = 4 among n = 20
features. Each column gives a prescription for testing
features (in increasing order of accuracy) for apical in-
teractions. Each entry shows the size of the random
subsets to generate and combine with the correspond-
ing apical feature for the evaluation, along with the
number of repetitions required to guarantee with at
least 95% confidence that a hypothetical interaction
will be contained in at least one of the subsets. For ex-
ample, in the row for m = 8 and the column y = 0.2,
we see that 104 random subsets of size 3 among the
7 features with lower accuracy than Fg would have to
be generated. Each of these would be tested for apical
interactions with Fg by calculating the cross-validated
accuracy of the decision tree algorithm on the random
set of features with and without F3, and comparing
to the expected accuracy from the Bayesian analysis
of confusion matrices. As < increases across a row,
proportionally larger subsets of lesser features must be
sampled (e.g. for Fig: 3/15, 6/15,9/15, and 12/15).
In the table, we also indicate the work (units of run-
time) estimated for evaluating each feature for apical
interactions. These are shown at the bottom. Note
how the total work required drastically decreases as v
increases. Figure 1 gives a better picture of how the
work decreases for increasing values of 4. For com-
parison, the amount of computation required for an
exhaustive search of all four-way interactions among
20 features would be 22,800 units of time. Therefore,
if one did not have enough time to do an exhaustive
search, one could use random sampling with a value
for « that requires less time (e.g. >~ 0.3 in this case).
To use this analysis to generate a search schedule
for a specific time bound, we could compute the work
required for a uniform distribution of values of v, such
as in increments of 0.05, and take the lowest one that
meets the time bound. For example, suppose we only
wanted to allot 5,000 units of time for the search for in-
teractions. Based on the above graph, v = 0.55 would

Table 1: Example schedule for searching for interac-
tions of order 4 among 20 features. W=work.

v=0.2 v=0.4 v=0.6 v =038
m || Sz Rp || Sz Rp || Sz Rp || Sz Rp
4 3 1 3 1 3 1 3 1
5 3 11 3 11 3 11 4 1
6 3 29 3 29 3 29 4 6
7 3 59 3 59 4 14 5 5
8 3 104 3 104 4 25 6 4
9 3 167 3 167 5 16 7 4
10 3 251 4 62 6 12 8 3
11 3 358 4 89 6 17 8 5
12 3 493 4 123 7 13 9 5
13 3 658 5 65 7 18 || 10 4
14 3 856 5 85 8 14| 11 4
15 3 1089 6 54 9 12 12 4
16 3 1362 6 67 9 15 12 5
17 3 1677 6 83 10 13 || 13 5
18 3 2036 7 57 || 10 16 14 4
19 3 2444 7 69 [11 14 | 15 4
20 4 725 8 51 || 12 12 || 16 4
W 87690 12122 3638 1376

suffice. In fact, by sampling for apical interactions us-
ing 556% of the features with accuracy less than each
one being tested for apical interactions, the work can
be accomplished in 4991 units of time.

Feature Construction

Once we have discovered a feature interaction, we
would like to take advantage of this knowledge to con-
struct a new feature based on it, hopefully to improve
the overall accuracy of the learning algorithm. If the
features interact, then there must be something about
the way that they combine together in a decision tree
that produces a higher accuracy than expected based
on a simple Bayesian analysis. If this is the case, then
we would like to create a new feature that instanta-

120000 | S S . R S S —
100000 |- i
@
£ 80000 | -
S
[22]
£ 60000 | -
2
= | _
5 40000
3
20000 |- 1

0
0 010203040506070809 1
Gamma

Figure 1: Work (in units of time) required to search
for interactions using different values of «.

neously captures the information in this complex deci-
sion, effectively allowing the splitting algorithm to re-
alize the benefit (information gain) of several tests in
one step and avoid the pitfalls of making greedy, less
informed decisions based on one attribute at a time.

The method we propose for constructing the new
feature is to build a decision tree using the interacting
features and then extract a DNF expression that rep-
resents a grouping of the positive leaves. Let T(S) be
a tree built from a subset S C F of the initial features.
Let Ly...L, be the leaf nodes of T(S). Each leaf node
can be expressed as a conjunction of attribute tests
(@1 = v1) A (a2 = v2) A ... on the path from the root
to that node in the tree. Now, we could construct a
DNF expression L;, V L;, V ...L;, for the d leaf nodes
L; that are positive (P[c(z) = + | Ls] > 0.5, assuming
a two-class model). However, this does not necessarily
guarantee to form a new feature with maximum in-
formation gain. It is possible that it might be better
to group some positive leaves with negative leaves to
avoid diluting the impact of a few very pure leaves.

Therefore, the algorithm we use is to sort the leaves
according to their purity (100% to 0% positive), and
incrementally try shifting the proportion p* that sep-
arates the two groups. For each division, we form
the DNF expression of the group of more positive
leaves and evaluate the information gain (Quinlan
1986) of this new candidate feature. Call the leaves in
sorted order L,,...L,,, such that the fraction of pos-
itives decreases monotonically p(L,,) > p(Ls,) > ...
We begin by separating out the most positive leaf
and calculating the information gain of the partition:
{{Ls, H{L,, V ...Ls,}}. Then we shift the next most
positive leaf over: {{L,, V Ly;}{Ls, V -..L,.}}, Te-
calculate the information gain, and so on. Finally, we
return the disjunction L,; V L,, V ...L,_ that produces
the maximum information gain. The value of this new
feature is calculated for each example and appended
to its attribute vector.

Experiments

In this section, we describe the results of some ex-
periments with this approach for discovering interac-
tions and constructing new features from them, using
C4.5 (Quinlan 1993) as the underlying learning sys-
tem. We applied our approach to three databases from
the UC Irvine repository: congressional-voting (with
physician-fee-freeze feature removed), census, and
heart-disease. In each of the databases, we were able to
discover interactions among features that, when used
in feature construction, boosted the accuracy of C4.5
by 3 — 8% using cross-validation.

The general course of the experiments is as follows:

1. First, the database is randomly divided into three
equal subsets, which we call the “training,” “prun-
ing,” and “testing” sets, respectively.

2. Next a schedule is generated that is estimated to

take about 10 — 15 minutes on a typical workstation.
(This may require some preliminary tests to evaluate
how long it takes to run C4.5 with cross-validation
on various numbers of features.)

3. Then this schedule is followed to test random subsets
of features for apical interactions using the training
examples. A given subset with its apical feature are
evaluated for interaction by determining the accu-
racy of C4.5 on the set of features with and without
the apical feature, and comparing the observed ac-
curacy to that expected by a Bayesian analysis.

4. When an interacting subset is discovered, a decision
tree based on the features is built by C4.5 using all
of the training data, and is pruned with the pruning
set using reduced-error pruning (Quinlan 1987).

5. This pruned tree is used to construct a new feature
by converting its paths into a DNF expression and
finding the subset of disjuncts (in linear order) that
produces the highest entropy reduction.

6. Finally, the new feature is added to the original fea-
tures in the database, and the change in accuracy is
determined over the testing examples using a paired
T-test (i.e. running cross-validation within the test-
ing examples to see if the new feature leads C4.5 to
generate more accurate trees).

It is important to note that the accuracies we report
are slightly lower (but not much) than have been re-
ported by others in the literature, but this is because
we are evaluating the utility of constructed features by
running C4.5 on only one-third of the data.

Voting Database

The Voting database contains the voting records for
435 US Congresspersons during 1984 on 15 key bills.
The attributes are all discrete, consisting of three pos-
sible votes. The goal is to learn to how to discriminate
between Democrats and Republicans. In the original
database, one feature, physician-fee-freeze, could
be used to achieve 95% classification accuracy on its
own. We removed this feature, which make the prob-
lem a little more challenging; C4.5 can usually only get
85 — 90% accuracy using the remaining features.
Table 2 shows the 15 features, their individual ac-
curacies cross-validated within the training set, and
a schedule established for searching for interactions.
This schedule was designed for searching for interac-
tions of up to third order within 3000 units of time.
During the search, a total of 389 subsets with three
to six features were evaluated for apical interactions.
108 subsets exhibited some degree of interaction, where
the accuracy when the most accurate feature was
added to the rest was higher than expected, by a differ-
ence ranging from just over 0 up to 8.0% (note: we do
not require the increase to be statistically significant at
this stage). Each of these was used to construct a new
feature by building a decision tree, pruning it, convert-
ing to a DNF expression, and finding a set of disjuncts

N

Table 2: Features, accuracies, and sampling schedule
for the Voting database. ‘Sz’ means how many of the
features with lower accuracy should be selected in ran-
dom subsets and tested for apical interactions, and
‘Rp’ means how many times this should be repeated.

num | feature acc | Sz | Rp
F1 Religious-Groups-In-Schools 0.589

F2 Synfuels-Corporation-Cutback | 0.605

F3 Water-Projects-Cost-Sharing 0.642 2 1
F4 Immigration 0.648 2 8
F5 Exports-To-South-Africa-Act 0.704 2| 17
Fé Handicapped-Infants 0.707 | 2| 29
F7 Duty-Free-Exports 0.710 2| 44
F8 Superfund-Right-To-Sue 0.729 2| 62
F9 Crime 0.753 | 3 | 27
F10 | Anti-Satellite-Test-Ban 0.774 3| 35
F11 | Aid-To-Nicaraguan-Contras 0.796 | 3 | 44
F12 | MX-Missle-Program 0831 | 4| 26
F13 | Education-Spending 0.843 | 4| 32
F14 | El-Salvador-Aid 0.860 | 4 | 38
F15 | Adoption-Of-The-Budget-Res | 0.863 5| 26

with maximal entropy reduction. Many of these new
features, when added to the original 15 attributes, did
not produce a measurable increase in the performance
of C4.5. Often this was because interactions were de-
tected among less relevant features, the combinations
of which were masked by the performance of better
features in the decision trees anyway.

However, there were several interactions that pro-
duced feature constructions that improved the accu-
racy of C4.5 over the testing set. One example in-
volved an interaction between EL-SALVADOR-AID
(F14) and SYNFUELS-CORP-CUTBACK (F2). This
was discovered when evaluating a subset of features
including these two plus HANDICAPPED-INFANTS
(F6), IMMIGRATION (F4), and EXPORTS-SOUTH-
AFRICA (F5). On the training data, the accuracy of
F14 was highest (86.3%), and the accuracy of the oth-
ers combined (F2, F4, F5, and F6) was 81.6%. Based
on the Bayesian analysis of confusion matrices, the ac-
curacy for all five features together was expected to be
89.6%, but when the accuracy of C4.5 on all five fea-
tures was determined by cross-validation on the train-
ing set, the accuracy was observed to be 91.2%, which
was 1.7% higher than expected. Hence this is assumed
to be an apical interaction.

A decision tree was constructed with these five fea-
tures using the training examples, and was then pruned
using the pruning examples. Here is the pruned tree:

EL-SALVADOR=N : DEMOCRAT
EL-SALVADOR=7 : DEMOCRAT
EL-SALVADOR=Y :
| SYNFUELS-CORP-CUTBACK=Y : DEMOCRAT
| SYNFUELS-CORP-CUTBACK=N : REPUBLICAN
| SYNFUELS-CORP-CUTBACK=7 : REPUBLICAN

The pruned tree was used to construct the follow-

Table 3: Results on the Voting database. The fea-
tures constructed from some detected interactions are
shown. The ‘acc w/o’ column represents the accuracy
of C4.5 on the original features, using cross-validation
on the set of testing examples, while the ‘acc with’ col-
umn shows the accuracy when the constructed feature
is added. The last two columns show the difference
and the Z-score, which is the test statistic for a paired
T-test; Z> 1.83 is significant for p < 0.05.

[facc w/o [acc with | diff | Z
(EL-SALVADOR=7) or (EL-SALVADOR=N) or
((EL-SALVADOR=Y) and (SYNFUELS=Y))
81.7% | 87.1% | 54% | 4.91
(MX-MISSLE=Y) or (MX-MISSLE=7) or
((MX-MISSLE=N) and (SYNFUELS=Y))
80.8% | 84.6% [3.8% | 3.29
EL-SALVADOR=7) or (EL-SALVADOR=N) or
((EL-SALVADOR=Y) and (BUDGET=Y or ?))
80.2% | 86.2% | 6.0% | 3.26

ing feature (DNF expression), which covered mostly
Democrats:

(EL-SALVADOR=N) or (EL-SALVADOR=?) or

((EL-SALVADOR=Y) and (SYNFUELS-CORP-CUTBACK=Y))

When this constructed feature was added to the orig-
inal 15 features, the cross-validated accuracy of C4.5
on the testing examples rose from 81.7% to 87.1%, and
the increase of 5.4% in accuracy was significant based
on a paired T-test (Z = 4.91, p < 0.05). Table 3 shows
several other features, constructed from interactions,
that were found to improve the accuracy of C4.5 on
the testing set. It should be noted that these types of
paired T-tests have been shown to occasionally lead to
high type I error (Dietterich 1998), and more robust
methods are being explored to assess the significance
of the constructed features more accurately.

Census Database

The Census database consists of thousands of records
of people taken during a recent census. For each indi-
vidual, a total of 14 attributes, including both discrete
and continuous ones, are given, such as age, sex, educa-
tion, type of occupation, marital status, etc. The goal
is to predict from these attributes whether the annual
income of an individual is > or < $50,000. We used a
subset of 1000 randomly selected examples in our ex-
periment. A schedule similar to the one for the Voting
database was developed for searching for interactions.

A total of 681 feature subsets were evaluated, and of
these, 54 were found to have apical interactions; the ac-
curacies of these subsets were greater than expected by
up to 3.8%. Table 4 shows some features that were con-
structed from these detected interactions which pro-
duced significant gains in the accuracy of C4.5 (each
by around 3.5%) for predicting income levels on the set
of testing examples (about 300 examples)

Table 4: Results on the Census database.
acc wfo | acc with | diff | Z

(RELATIONSHIP#Husband) or
((RELATIONSHIP= Husband) and
(YEARS-EDUCATION<9))

75.0% | 78.4% | 3.2% | 2.23
(MARITAL-STAT# MarriedToCivilian) or
((MARITAL-STAT=MarriedToCivi1ian) and
(YEARS-EDUCATION<9))

76.6% 80.3% 3.7% 2.50
(CAPITAL-GAIN<5013) and
(CAPITAL-LOSS<1741)

76.9% 80.4% I 3.5% I 5.4

Table 5: Results on the Heart Disease database.

[(acc w/o [acc with | diff Z

(NUM-COLOR-VESSELS=0) or
((NUM-COLOR-VESSELS=1) and (SEX=Fem))

70.4% | 78.3% | 8.4% | 4.25

or ((EX-ANGINA=F) and (COLORED-VESSELS<1))

((EX-ANGINA=T) and (CHEST-PAIN=None or Asymp))

69.7% | 74.8% |51%| 2.13

Heart Disease Database

The Heart database consists of medical records taken
from approximately 300 patients in a clinic in Cleve-
land. It contains 13 attributes, both continuous and
discrete, on personal history and various test results.
The state of health for each of the patients is given as
a number from 0 to 4 indicating level of heart disease,
with 0 representing absence and 4 being worst. For
this experiment, we grouped all of the levels from 1
to 4 together, making the goal to distinguish between
health and sickness. A schedule similar to the one for
the Voting database was developed for searching for
interactions by sampling random subsets and evaluat-
ing their accuracy with and without the apical feature.
Out of 422 feature subsets evaluated, 27 revealed api-
cal interactions, with accuracies that were greater than
expected by up to 5.8%. Table 5 shows two of the fea-
tures that were constructed from detected interactions
which produced significant gains (5.1% and 8.4%) in
the accuracy of C4.5 on the set of testing examples.

Conclusion

We have shown that feature interactions can be effec-
tively discovered by random sampling. We introduced
the notion of an apical interaction, in which the ac-
curacy a learning algorithm can achieve with a given
subset of features is higher than the expected accuracy
from a Bayesian combination of the most accurate fea-
ture with a hypothesis learned from the rest of the fea-
tures. This definition essentially equates interactions
with feature non-independence. An important conse-
quence of defining interactions this way is that they

are dependent on the learning algorithm being used.
Thus an interaction discovered with a decision-tree al-
gorithm might not necessarily interact in a neural net-
work, for example. We also provided a method for ad-
justing the sampling for a limited amount of CPU time
so that testing for interactions remains fair and bal-
anced. Exhaustive testing for interactions is generally
infeasible. By randomly selecting slightly larger sub-
sets to test for apical interactions, we can increase the
probability of observing an interaction with less work.
We provide a prescription for determining the optimal
size of subsets to sample, and how many, to make a
probabilistic guarantee of adequate search within re-
source bounds. Finally, we describe a method for con-
verting observed interactions into new features by ex-
tracting DNF expressions from pruned decision trees
built with the interacting features. The resulting con-
structed features combine multiple attribute tests that
allow the learning algorithm to make more complex
and informed decisions with each test, which can po-
tentially overcome the greediness of many learning al-
gorithms.

References
Dietterich, T. 1998. Approximate statistical tests
for comparing supervised classification learning algo-
rithms. Neural Computation 10:1895-1924.
Flann, N., and Dietterich, T. 1986. Selecting appro-
priate representations for learning from examples. In
Proceedings of the Fifth National Conference on Ar-
tificial Intelligence, 460-466.
Hirsh, H., and Japkowicz, N. 1994. Bootstrapping
training-data representations for inductive learning.
In Proc. AAAI 639-644.
John, G.; Kohavi, R.; and Pfleger, K. 1994. Irrelevant
features and the subset selection problem. In Eleventh
International Conf. on Machine Learning, 121-129.
Kira, K., and Rendell, L. 1992. A practical approach
to feature selection. In Proceedings of the Ninth Inter-
national Workshop on Machine Learning, 249-256.
Matheus, C. 1989. Feature Construction: An Analytic
Framework and an Application to Decision Trees.
Ph.D. Dissertation, University of Illinois, Depa.rtment
of Computer Science.
Quinlan, J. 1986. Induction of decision trees. Machine
Learning 1:81-106.
Quinlan, J. 1987. Simplifying decision trees. Interna-
tional Journal of Man-Machine Studies 27:221-234.
Quinlan, J. 1993. C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann: Palo Alto, CA.
Rendell, L., and Seshu, R. 1990. Learning hard con-
cepts through constructive induction: Framework and
rationale. Computational Intelligence 6:247-270.
Singh, M., and Provan, G. 1996. Efficient learning of
selective bayes1an network classifiers. In Thirteenth
International Conf. on Machine Learning, 453—461.

