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Abstract

The dynamic execution of plans in uncertain domains
requires the ability to infer likely current and future
world states from past observations. We cast this task
as inference on Dynamic Belief Networks (DBNs) but
the resulting networks are difficult to solve with exact
methods. We investigate and extend simulation algo-
rithms for approximate inference on Bayesian networks
and propose a new algorithm, called Rewind/Replay,
for generating a set of simulations weighted by their
likelihood given past observations. We validate our al-
gorithm on a DBN containing thousands of variables,
which models the spread of wildfire.

Introduction

In domains that contain uncertainty, evidential reason-
ing can play an important role in plan execution. For
example, suppose we are executing an evacuation plan
and have received the following messages:

Bus;: Arrived in Abyss, loading 5 passengers.

Exodus weather: Storm clouds are forming to the east.
Busz: Engine overheated on the way to Delta.

Bus;: Got a flat tire on the way to Barnacle.

Bus,: Loading 9 passengers.

Bus;: It is starting to snow in Barnacle.

Given the messages received so far, we might ask
questions such as what is the probability that a severe
storm will hit Barnacle? Or what is the probability that
Bus; will get another flat tire? Answers to these ques-
tions can be used to improve the plan. We might send
storm supplies to Barnacle or send Bus; on a longer but
better paved road. We might also ask about the likely
outcomes of various actions. For example, given the
evidence received so far, will the plan be more likely to
succeed if we send a helicopter to evacuate the people
in Exodus or use Busg, as originally planned?

We cast plan monitoring as inference on Bayesian
networks, but are interested in planning domains for
which the resulting networks are difficult to solve with
exact methods. In this paper, we explore the use of
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stochastic sampling methods for performing plan mon-
itoring. Our objective is an algorithm for quickly gen-
erating a set of weighted simulations, where the weight
indicates the probability of the simulation given obser-
vations made during the partial execution of a plan. We
show that a set of weighted simulations can be used to
estimate the probability of events and also as a basis
for planning future actions based on past evidence.

There are several simulation-based inference algo-
rithms for Bayesian networks, including: likelihood
weighting (Shachter and Peot 1989; Fung and Chang
1989), arc reversal (Shachter 1986; Fung and Chang
1989), and Survival Of The Fittest (SOF) (Kanazawa
et al. 1995). Below, we consider these algorithms and
find that none are especially well suited for, or were
designed for, plan monitoring. We describe a modifica-
tion to SOF that improves its performance and intro-
duce a new algorithm, Rewind/Replay (RR). We show
that RR performs significantly better than the other
algorithms on a large DBN which models the spread of
wildfire.

The rest of this paper is organized as follows. We first
formulate our task and then discuss previous algorithms
and analyze them on two example networks. We then
present RR and a generalization of SOF. Finally, we
describe our experiments and then discuss related and
future work.

Problem formulation

Previous work has shown how to encode probabilistic
processes and plans as Bayesian networks (e.g., (Dean
and Kanazawa 1989; Hanks et al. 1995)). Here, we
formulate our task as inference on Bayesian networks.
A Bayesian network describes the joint distribution
over a finite set of discrete random variables X. Each
variable X; € X can take on any value from a finite
domain val(X;). A veriable assignmentis an expression
of the form X; = z; indicating that X; has value z;.
We use capital letters (e.g., X,Y, Z) for variables and
lowercase letters (e.g., z,y, z) for values of variables.
A Bayesian network is a directed, acyclic graph in
which nodes correspond to variables and arcs to direct
probabilistic dependence relations among variables. A
network is defined by a variable set X, a parent func-



tion II, and a conditional probability table CPT. The
II function maps X; to X;’s parents. The CPT function
maps X; and a variable assignment for each parent of
X; to a probability distribution over val(X;). Variable
X; can be sampled by randomly drawing one value from
the probability distribution returned by CPT. An en-
tire network can be sampled by sampling the variables
in an order such that each variable is sampled after its
parents are sampled. See (Pearl 1988) for a more thor-
ough description.

We are especially interested in Dynamic belief net-
works (DBNSs) also called temporal belief networks (e.g.,
(Kjaerulff 1992)). DBNs are Bayesian networks used
to model temporal processes. A DBN can be divided
into subsections, called time slices, that correspond to
snapshots of the state of the world. Typically, certain
variables are designated as observation variables.

Figure 1 shows a simple DBN. The state variables
Pos; and Dir; represent a person’s position and di-
rection, respectively, at time i. The person’s direction
influences their position and direction in the following
time slice. The variable Obs; represents some possibly
noisy observation on Dir;, such as the output of a com-
pass or the observed person announcing their direction.
Note that we can infer a probability distribution over
the position of the person given a set of observations,
even though the position is never directly observed.

We now define the simulated inference task. The in-
puts are a Bayesian network B and a set of assignments
0 = {01 = 01,...,0, = 0,}, which give the observed
values for some of the observation variables in B, such
as {Obs; = west, Obsy = east}. The output is a set of
positively weighted samples of B, where each sample s;
is weighted by an estimate of the probability P(s;]O).

Inference on Bayesian networks is more typically for-
mulated as determining the probability of a query ex-
pression given the evidence. We chose our formulation
because it offers a wide range of reasoning for plan mon-
itoring. Suppose we are projecting from past observa-
tions to find the safest escape route in some hazardous
environment. We might enumerate each possible path
and query a probabilistic reasoner to infer the prob-
ability that it is safe. A more tractable alternative,
however, is to apply path-following algorithms to a set
of weighted simulations and let each simulation “vote”
its weight as to what is the safest path. We give an
example of this approach in our experiments.

Posg I Posg | !Pos,;

|

Figure 1: Example DBN

Previous algorithms
We now discuss previous simulation methods.

Logical sampling

A simple approach, called logical sampling (LS) (Hen-
rion 1988), is to repeatedly sample the network and
discard samples in which O; # o; for any O; = 0; € O.
LS assigns the same weight to each retained simulation.
Given a query ), LS estimates the probability of 2 as
the percentage of retained samples in which Q holds.
Logical sampling is an unbiased technique: as the num-
ber of simulations approaches infinity, the estimate of
1 approaches the true probability of §2.

The probability of retaining a simulation, however,
is exponentially low in the number of observations, as-
suming some independence among the observations. In
many examples we consider, LS can run for hours with-
out retaining a single sample.

Likelihood weighting

The most commonly implemented simulation tech-
nique, called likelihood weighting (LW), is a variation
on logical sampling which can converge much faster in
some cases (Shachter and Peot 1989; Fung and Chang
1989; Dagum and Pradhan 1996).

LW also samples the network repeatedly but weights
each instantiation by the probability it could have pro-
duced the observations. Consider a simple case in which
there is a single observation node O; with observed
value 0;. Logical sampling would repeatedly simulate
the network and discard any samples in which O # o;.
LW, however, weights each sample by the probability
that O1 would be assigned o; under the network’s CPT
function given the values of O;’s parents in the sample.!
For example, if O; had a .08 probability of being as-
signed o; in a sample then LW would weight the sample
.08, regardless of what value O; was actually assigned.

In the more general case, LW weights each sample
s as the Likelihood(O|s), where Likelihood(O|s) de-
notes the product of the individual conditional proba-
bilities for the evidence in O given the sampled values
for their parents in s.

LW is also unbiased and has been shown to be ef-
fective on many problems. However, as demonstrated
in (Kanazawa et al. 1995), LW does not work well on
DBNs. When the network models a temporal process
with an exponential number of possible execution paths,
the vast majority of random samples can have a likeli-
hood of, or near, zero.

SOF

Of the algorithms we investigated, the Survival Of The
Fittest (SOF) algorithm is the best suited for plan mon-
itoring. SOF uses the evidence to guide the simulation,
rather than simply to weight it afterwards (Kanazawa
et al. 1995). We now provide an informal description

'We assume observation variables have no children.
Thus, their values do not effect the value of other variables.



of the SOF algorithm. Figure 5 contains pseudo-code
for a slight generalization.

SOF was designed specifically for DBNs. The idea
is to seed the next round of simulations, at each time
point, with the samples that best matched the evidence
in the previous round. SOF maintains a fixed number
of possible world states, but re-generates a sample pop-
ulation of world states for each time ¢ by a weighted
random selection from the world states at time ¢ — 1
where the weight for a world state is given by the like-
lihood of the observations at time ¢ in that world state.

Initially, SOF generates a fixed number, say 100, of
samples of the state variables in the first time slice. The
weight, w;, of the ith sample, s;, is the likelihood of the
observed evidence for time 1 in sample s;. SOF now
generates a new set of 100 samples by randomly select-
ing from samples s, ..., 8100 Using weights wy, ..., w1go-
Some samples may be chosen (and copied) multiple
times and others may not be chosen at all. SOF next
samples the state variables in the second slice in each of
its 100 samples. SOF then weights each sample by the
likelihood of the evidence at time 2 and re-populates its
samples by random selection using these weights. SOF
repeats this process for all time slices.

Investigation of SOF

We now describe two DBN’s designed to expose poten-
tial problems with using SOF for plan monitoring,.

Discarding plausible hypotheses

Consider the following thought experiment. Suppose
you put 1,000 distinct names in a hat and repeatedly
draw a name from the hat, write it down, and return the
name to the hat. If you repeat the process 1,000 times
you will have, on average, about 632 distinct names.2
SOF can discard hypotheses by random chance in a sim-
ilar manner. Even though the evidence favors selecting
the most likely hypotheses, SOF can lose plausible hy-
pothesis if there are hidden state variables whose value
becomes apparent only by integrating information over
time from a series of reports.

We designed the following network to demonstrate
this problem. The network contains one state and one
sensor node for each time slice. At time 1, the state
node is assigned an integer value between 1 and 50 from
a uniform distribution. For ¢ > 1, the state simply in-
herits its value from the state node at time £ — 1. At
each time step ¢ > 1, if the state node’s value is evenly
divisible by ¢ then the sensor returns Yes with .9 prob-
ability or No with .1 probability and otherwise returns
Yes with .1 probability or No with .9 probability. If,
for example, we observe Yes,Yes,Yes, No,Yes, then
there is a 22.5% chance that the state’s value is 30.

The goal is to guess the state node’s value. This
seems like an easy problem for SOF to solve with, say,
1000 samples. There are only 50 distinct hypotheses,
and thus SOF initially has several copies of each of

2BEach name has a 1 - .999'°%° chance of being selected.
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Figure 2: Number of hypotheses maintained by SOF
compared to the number of hypotheses with probability
greater than .005 on the NumberNet DBN.

them. As time progresses, the more likely hypothe-
ses should be steadily re-enforced by the evidence. We
tested SOF by summing the weights associated with
each hypothesis, and seeing if the one with the highest
weight is, in fact, one of the most likely hypotheses.
Based on 1,000 trials, however, SOF with N = 1000
achieves only an 81% accuracy on this problem. Even
with N = 2000, SOF achieves only 92% accuracy.

The graph in figure 2 shows the average number of
distinct hypotheses that SOF maintains, with N =
1000, after ¢ time steps for 0 < t < 25 as well as
the average number of hypotheses that have a .005 or
greater probability of being true given the evidence at
time ¢.* We counted the hypotheses maintained by SOF
by counting the number of distinct values for the state
node contained in the 1000 samples maintained by SOF.
As the graph shows, the number of hypotheses that
SOF maintains is noticeably lower than the number of
plausible hypotheses.

Premature variable assignment

We designed the following problem to reduce the use-
fulness of SOF’s re-population strategy. We consider
a case in which the state variables are assigned values
several time steps before they are observed. We believe
this represents an important aspect of plan monitor-
ing. Probabilistic planners (e.g. (Kushmerick et al.
1995)) take as input a probability distribution over ini-
tial states. The value of conditions in the initial state
are decided before they are observed, but may be cru-
cial to the success of a plan. For example, in evacua-
tion plans, there might be uncertainty about whether a
certain bridge is usable, and the first report on its con-
dition may come when a vehicle encounters the bridge
during plan execution.

3We can easily compute the exact probability of each
hypothesis given the evidence, but there may be ties.

“The set of hypotheses with probability > .005 can grow
as evidence favors some hypotheses and eliminates others.



Consider a simple DBN in which there are K fair
coins, all flipped at time 1. The ith coin is reported
with 95% accuracy at times 1+ 1 and K + ¢ + 1. The
network for this DBN contains a state node ¢; for each
coin and a single sensor node. Initially all the coins
are given a random value from {Heads, Tails}. For all
times j > 1 the coin ¢; simply inherits its value at time
7 — 1. At time j + 1 the sensor outputs the value of
coin ¢; at time j + 1, with .95 accuracy. Similarly, at
time K 4 j + 1 the sensor outputs the value of coin ¢;
at time K + § + 1, with .95 accuracy.’

The goal is to compute the probability that coin
¢; = Heads for each coin, given all 2K observations.
To evaluate SOF, we compare the actual probability of
¢; = Heads with the estimate computed from the simu-
lations returned by SOF. We compute the estimate from
SOF by dividing the sum of the weights of the simula-
tions in which ¢; = Heads by the sum of the weights of
all simulations.

The graph in figure 3 shows the average error rate
on a problem with 15 coins for SOF with N = 1000
samples. The graph reports the absolute error between
the actual probability of c¢; = Heads given the evidence
and the weighted estimate from SOF. The graph shows
both that the errors are high (the average error is .24)
and that the error is worse for the higher number coins.
Our explanation is as follows. At time 1, SOF picks
1000 of the possible 2'® combinations of Heads or Tails
for the coins. At time 2, SOF re-populates its samples
based on the first report on coin 1. At time 3, SOF does
the same for coin 2. As SOF gets to the higher number
coins, its sample population becomes more and more
skewed as it generates more copies of the combinations
of coin flips that match the lower number coins.

Figure 3 also shows the performance of a modified
version of SOF, called SOF-Bayes, which we describe
below. As shown in the graph, SOF-Bayes performs
much better on this problem.

New algorithms

We now present new methods.

Rewind/replay algorithm

We now introduce the Rewind/Replay (RR) algorithm,
which is closely related to the sampling method called
sequential imputation (discussed below).

We first describe RR informally in terms of solving a
DBN. RR samples each time slice of the network a fixed
number of times, and then randomly chooses one sam-
ple from those that contain the observations for that
time slice. It discards all the other samples of the cur-
rent time slice and simulates forward from the chosen
sample into the next time slice. If the observed evidence
does not arise in any of the samples of a time slice, then

SNote that not all time slices are identical in this DBN,
because different state nodes are connected to the observa-
tion node in different time slices.
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Figure 3: Error for SOF with N = 1000 and SOF-Bayes
with N = 50 on the CoinNet problem. Results averaged
from 200 trials.

RR abandons the current instantiation of the DBN it is
constructing, and begins again from the first time slice.

The number of times RR samples each time slice is an
input integer, Riqz, to the RR algorithm. Each time
RR makes it through all the time slices it generates
a single sample of the entire network that matches all
the evidence. RR assigns the sample a weight of F} X
Fy x ... x F, where F; is the fraction of samples of
time slice ¢ that matched the observations for time 1.
The justification for this weighting method is that the
probability of the sample given the evidence is P(E; |
S1) X P(E2 | S2) X ... x P(E, | Sn), where P(E; | S;) is
the probability of the evidence at time 7 given the state
at time 7 and is approximated by Fj.

An optimization in our implementation of RR is to
proceed to the next time slice as soon as the evidence
arises in any sample. This is as random as choosing
from the samples that matched the evidence after R4,
tries, since the trials are independent. If RR manages
to fully instantiate the network, it computes the weight
for the network by returning to each time slice j and
sampling it Rp,.c — k; times, where k; is the number
of samples already performed on the jth time slice.
This optimization reduces the computation expended
in RR’s failed attempts to sample the network.

The intuition behind RR can be explained in terms
of the task of flipping twenty coins until all of them
are heads. The logical sampling approach is to flip all
twenty coins, and if they do not all come up heads, flip
them all again. This is expected to succeed in 1 out of
220 trials. The Rewind/Replay approach is to flip each
coin until it is heads and then move on to the next coin.
For Rmez = 5, RR should succeed with 1 — (Z31)20
probability, or about 1 in 2 times. With R, = 10,
RR will succeed with over .99 probability.

We now describe RR in terms of an arbitrary
Bayesian network. To do so, we need to distribute the
input observations O = {01 = oy, ...,0, = 0,} into a
sequence of sets of observations &£, &3, ...£,, such that



procedure: RR(B,€ = {£:..€m}, N, Rmaz)
SIMS « b
for i=1toN
8i —0; wi « 1; step+ 0
while (step <m and w; >0)
nodes + ANC(Estep, £, B)
M0
for | =1to Rmax
add a sample of nodes to s;
if HoLDS(Estep, Si)
then add copy of s; to M
remove sampled values of nodes from s;

w;(—wixM—

Rmoz
if [M|>0
then s; + random selection from M
step ¢ step+1
if w >0,
then add (s,-,w,») to SIMS
return SIMS

function: ANC(&;, {€1...€m}, B)
Return set of all variables V; in B from which
there is a directed path in B from V; to a
variable in £; but not a directed path to
any variable ¢; € £1U€2U...U&j-1.

Figure 4: The Rewind/Replay algorithm.

each observation goes into exactly one evidence set. Al-
though it will not effect correctness, the distribution of
the evidence can have a significant impact on the per-
formance of RR. For example, if all the evidence is put
into a single set, i.e, £, = {O}, then RR is equivalent
to LS. Unless otherwise stated, we will assume the op-
posite extreme of putting each observation in its own
set, i.e, for 1 < i < n, & = {0; = 0;}.

RR needs to determine which nodes influence the ob-
servations in each set £;. When sampling a Bayesian
network, the only nodes which can influence the proba-
bility distribution over the value of some node O; when
O; is sampled are the ancestors of O; (i.e., the parents
of O;, the parents of the parents O;, and so on). As we
process each evidence set £;, we want to sample only
the variables which are ancestors of £; and that we have
not already sampled, i.e., that are not ancestors of any
observation in &i,...,€;-1. This set is determined by
the function ANC, defined in figure 4.

The pseudo code for RR is shown in figure 4. For
each simulation, RR iterates through the evidence sets
E1yey Em. For each £;, RR samples the unsampled
ancestors of £; a total of Rpe, times and selects one
of the samples that satisfies every variable assignment
in £;. The weight for each returned sample is —}%:

M . x Mm where M; is the number of samples

that matched evidence set &;.

RR uses the evidence to guide the simulations, but
can avoid the problems caused by SOF’s re-population
phase. With Ry, = 10 and N = 500, RR achieved
.96 accuracy on the number guessing problem described

procedure: SOF-Bayes (B, = {£1...€m}, N)
for i=1toN
s1,i 0 wi 1
for j=1to m
X; + Anc(&;,€,B)
for i=1to N
$j,i + randomized selection from sj-1,1, ..., 8j-1,n
weighted by wi, ..., wn.
add a sample of X to sj,i
w; ¢+ LIKELIHOOD(Ej|s:)
for i=1toN
sample of any unsampled nodes in sm,;

return (Sm,1, w1)...{Sm,N, WN)

Figure 5: The Survival-of-the-fittest algorithm for an
arbitrary Bayesian network

above, on 1000 random trials. In the worst case, RR
might effectively sample the network 10 x 500 = 5000
times, but in practice RR samples it much less fre-
quently and, on average, only generates 69.4 complete
instantiations of the network per 500 attempts. The
other 430.6 attempts to instantiate the network require
many fewer than 5000 samples of the network. In our
Lisp implementations, RR required 3.3 CPU seconds to
complete its inference, which is comparable to the 4.8
CPU seconds for SOF with N = 1000 to achieve an
accuracy of .82. Additionally, RR achieved .09 error on
the CoinNet problem, with R,,.; = 10 and N = 1,000.

The RR algorithm is closely related to the sta-
tistical sampling technique called sequential imputa-
tion (Kong et al. 1994; Liu 1996). Sequential im-
putation is a Monte Carlo technique for solving non-
parametric Bayes models given some data dy,...,d; by
incrementally sampling from the probability distribu-
tion P(d; | di, ..., d;—1) for increasing values of 7. RR is
perhaps best viewed as one of many possible instantia-
tions of sequential imputation for the task of inference
on Bayesian networks.

SOF-Bayes

Figure 5 shows pseudo code for a variation of SOF that
works on arbitrary Bayesian networks (SOF was de-
signed for DBNs). Like RR, SOF-Bayes requires that
the evidence be distributed into evidence sets £1, ..., Em.-
Like SOF, SOF-Bayes incrementally instantiates a set
of N samples of the given network in parallel. How-
ever, while SOF samples the nodes time slice by time
slice, SOF-Bayes first samples the ancestors of £1, then
the (unsampled) ancestors of £2, and so on until all the
evidence is accounted for. As a final step, SOF-Bayes
samples any nodes which are not ancestors of any of the
evidence variables.

There are two advantages of SOF-Bayes over SOF
even for solving DBNs, both of which are also enjoyed
by RR. First, SOF-Bayes lazily samples the network,
only assigning values to variables when necessary for
determining the likelihood of the evidence currently be-
ing used to re-populate the samples. Note that in any



DBN, a state variable in time slice 7 is only observed in
time slice ¢ if it is directly connected to an observation
variable. In the CoinNet problem, for example, SOF-
Bayes generates N independent samples of a coin just
before the evidence re-enforces the most likely value of
that coin. In contrast, SOF samples all the coins at
time 0. By the time a coin’s value is observed, SOF
may have copied and re-populated the samples so many
times that only a few independent samples of the coin
remain, copied hundreds of times each.

A second advantage, somewhat conflated with the
first advantage in the CoinNet problem, is that SOF-
Bayes does not have to sample an entire time slice of
nodes at once. Suppose K coins are flipped at time 1
and then all are reported with 100% accuracy at time 2.
For SOF, only one of out 2X samples will likely match
the evidence. SOF-Bayes can work on each coin flip
independently and thus will very likely match all the
evidence with as few as N = 10 samples.

Experiments

We now describe our experiments. Our goal was to
generate a large, non-trivial DBN in order to demon-
strate the potential value of simulation-based reasoning
for plan monitoring in uncertain domains.

We constructed a simple forest-fire domain based
loosely on the Phoenix fire simulator (Hart and Co-
hen 1992).We use a grid representation of the terrain.
During the course of the simulation, each cell is either
burning or not. At each time step, the probability that
a cell will be burning is computed (by a function not
described here) based on the status of that cell and that
cell’s neighbors at the previous time slice.

There are ten noisy fire sensors, each of which reports
on a 3 x 3 block of grid cells. The sensor can output
Low, Med, or High, indicating that 0, 1-3, or 4-9 of
the cells are on fire, respectively (with 10% noise added
in). Additionally, each sensor has a solar battery with
a 75% chance of being charged in each time slice. If the
battery is not charged at time ¢ then the sensor outputs
Recharging at time ¢ + 1.

A fire fighter is initially situated in the middle of the
grid. The fire fighter monitors the fire sensors in or-
der to decide whether to flee to one of four helipads
situated on the edges of the grid. Each helipad, how-
ever, has only a .65 chance of being functional. The fire
fighter receives reports of varying reliability about the
condition of four helipads.

In these experiments, we used a 10 x 10 grid, and
created a DBN with 30 identical time slices, resulting in
a network with 3660 nodes. Most nodes in the network
have nine parents. There are a total of 14 observations
per time slice: 10 fire sensors and 4 helipad reports.®
Figure 6 contains an ASCII representation of several
time slices from one execution trace.

SA complete description of the domain is available at
http://www.merl.com/projects/sim-inference/.

LW | SOF SOF-Bayes | RR
N = 1000 N = 1000 Rmaz = 50
CPU seconds 181 | 235 168 . 128
Acc. on fire — .64 .83 .82
Acc. on - .53 .66 .94
helipad

Table 1: Accuracy at predicting if a cell will contain fire
and the condition of the helipads. Numbers averaged
over 100 trial runs.

LW | SOF SOF-Bayes | RR
N = 1000 N = 1000 Rmae =75
Survival - .61 75 .95
rate

Table 2: Survival rate of simulated fire fighter. Num-
bers averaged over 25 trial runs.

Results

The first set of experiments measured how accurately
the algorithms could predict aspects of the world state
from past observations. The results in table 1 were
produced as follows. First we generated a sample of
the network, s,. We then set O, to be the variable
assignments for all the sensor nodes in s, in the first
6 time steps. We then called LW, SOF, SOF-Bayes,
and RR with observations O,. The algorithms ran un-
til they produced at least 50 sample simulations or a
3 minute time limit elapsed. If the algorithm was still
running after 3 minutes, we allowed it to finish its cur-
rent run and included the simulations it returned (note
that some of the reported times exceed 3 minutes). The
SOF and SOF-Bayes algorithms require more time per
run because they compute N simulations in parallel.

We then evaluated the sample simulations returned
by the inference algorithms against the sample s,. For
each grid cell, we compared the status (Burning or Safe)
of the cell at time 10 with the weighted estimate of the
returned cell. We credit the algorithm with a correct
prediction if the weighted estimate of the cell being Safe
was greater than .5 and the cell’s status in s, is Safe or
if the weighted estimate is less than .5 and the cell’s sta-
tus is Burning. Similarly, for each helipad, we compared
the value of the helipad in s, (either Usable or Unus-
able) with the weighted estimate of the returned distri-
butions. If no distributions were returned, we counted
this as guessing that all cells are Safe and all helipads
Usable. As shown in table 1, RR performs best, and
SOF-Bayes performed better than SOF. LW never gen-
erated any matches, primarily because it never matched
all the Recharging signals, and thus we did not list any
accuracies for LW.

In the second set of experiments, we used the
weighted simulations to control the movements of the
fire fighter and then compared the survival rate with
the different inference algorithms. In each iteration the
fire fighter can stay in its current cell or move to one
of the eight adjacent cells. The procedure for decid-
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Figure 6: ASCII representation of several time slices of an example simulation of the fire world domain. A '+’
indicates fire, an 'H’ indicates a working helipad, an ’h’ indicates a non-working *helipad’, an ’x’ indicates an
impassable terrain. The fire fighter is denoted by an ’f’. In the sensor readings, a 0 indicates a low reading, a 1
indicates a medium reading, a 2 indicates a high reading, and a -’ indicates that the sensor is recharging. The
messages indicating the condition of the helipads are not shown here.

ing where to go computes, for each weighted simulation
and each cell, whether there is a path to safety from the
cell. Based on the weights of the simulations, the pro-
cedure then moves to one of the cells with the highest
probability of being safe, with a preference for remain-
ing in the same cell. To speed the experiments, we only
re-computed the weighted simulations given the obser-
vations at time 6, 8, and 10. As shown in table 2, the
fire fighter survives much more often when using the
Rewind/Replay algorithm than the other algorithms.

Discussion- plan monitoring

Although the above domain contains very little plan-
ning, recall that our initial motivation was to monitor
and improve plans during their execution in dynamic
domains. We now discuss how simulation-based infer-
ence can be applied to the task of plan monitoring.

Due to space limitations we will not describe in detail
how a probabilistic plan and domain can be encoded as
a DBN. Roughly speaking, however, the given infor-
mation about possible initial states must be encoded
into the first time slice of the network. The model of
how actions effect the world must be encoded into all
subsequent time slices. Additionally, the plan being ex-
ecuted must be incorporated into the network in order
to indicate when actions will be executed.

We now briefly discuss how the simulation-based in-
ference algorithms can be used to evaluate a possible
modification to the plan. We assume that some of
the actions in the plan will generate observable results.
Thus, at any point during plan execution there will be

observed values for some of the variables in the DBN.
These values can be input to RR or SOF-Bayes which
will return weighted instantiations, or samples, of the
DBN. For each returned instantiation, we can extract
the time slice corresponding to the current state of the
world. We now have a set of world states, each weighted
by the probability that it is the current world state. In
order to evaluate a potential modification to the plan,
we can simulate the execution of the remaining steps of
the original plan from each of the returned states, and
do the same for the modified plan. These simulations
will give us an estimate of the probability that the plan
will succeed with and without the proposed modifica-
tion. The more simulations we perform, the better our
estimates will be.

Related and future work

One previous technique we have not yet mentioned is
arc reversal (Shachter 1986; Fung and Chang 1989),
which has been applied to DBNs (Cheuk and Boutilier
1997). Arc reversal involves reversing the arcs that
point to the evidence nodes. This technique essentially
uses the information in the CPT of the Bayesian net-
work to perform reverse simulation from the observed
evidence. Arc reversal can increase the size of the net-
work exponentially and would do so on our networks.
When reversing an arc from node n; to node nz, all
parents of n; and ny become parents to both nodes.
Reversing a single arc in the fire network can increase
the number of parents of a node from 9 to 17. This



increases the size of the CPT for that node from 2° to
217, Furthermore, in our algorithm the original CPT is
encoded compactly as a function, but would have to be
expanded out into a table in order to reverse an arc.

There have been many other approaches to approx-
imate inference on Bayesian networks (e.g., (Dechter
and Rish 1997)) though most have not been specifically
evaluated on complex temporal processes. (Boyen and
Koller 1998) propose a method for approximating the
belief state for DBNs and prove that, under certain as-
sumptions, the error in the belief state can be bounded
over time. Additionally, this approach allows for con-
tinuous monitoring of a system while RR, as presented
here, requires an initial starting time. Prior work has
suggested the use of sequential imputation for solving
Bayes nets (Hanks et al. 1995), but did not propose our
specific implementation of this idea or compare RR to
SOF.

In this paper we have investigated simulation tech-
niques for plan monitoring and have shown that some
techniques have significant advantages over others. We
have extended existing simulation algorithms by gener-
alizing SOF to arbitrary Bayesian networks and intro-
ducing the Rewind/Replay algorithm.

Our plans for future work include determining
whether RR is unbiased, substituting in LW rather than
LS on the sampling step for RR, and developing strate-
gies for distributing the evidence into evidence sets and
for choosing the value for Ry,,,. Additionally, we would
like to compare RR and SOF-Bayes both with each
other and previous methods on the task of solving ar-
bitrary Bayesian networks.
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