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Abstract

Recent empirical studies revealed two surprising
pathologies of several common decision tree pruning
algorithms. First, tree size is often a linear function
of training set size, even when additional tree struc-
ture yields no increase in accuracy. Second, building
trees with data in which the class label and the at-
tributes are independent often results in large trees.
In both cases, the pruning algorithms fail to control
tree growth as one would expect them to. We explore
this behavior theoretically by constructing a statistical
model of reduced error pruning. The model explains
why and when the pathologies occur, and makes pre-
dictions about how to lessen their effects. The predic-
tions are operationalized in a variant of reduced error
pruning that is shown to control tree growth far better
than the original algorithm.

Introduction
Despite more than three decades of intense research on
decision trees, arguably the most commonly used learn-
ing mechanism in implemented AI systems, existing
characterizations of their behavior are overwhelmingly
empirical rather than theoretical. There is currently a
large gap between the algorithms and representations
that appear to be amenable to theoretical analysis on
the one hand, and decision trees on the other. Empiri-
Cal studies have identified solutions to various parts of
the overall process of building decision trees that work
well in a broad set of circumstances. However, making
precise statements about when and, perhaps more im-
portantly, why those solutions are either appropriate or
inappropriate remains difficult.

This paper attempts to narrow the gap between the-
ory and practice by presenting a statistical model that
explains one particularly surprising pathology of sev-
eral common pruning algorithms that occurs with data
devoid of structure. The pathology is illustrated in Fig-
ure 1, which plots tree size as a function of dataset
size for three common pruning techniques - error-based
(EBP) (Quinlan 1993), reduced error (REP) (Quinlan
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1987), and minimum description length (MDL) (Quin-
lan & Rivest 1989).1 All trees were built with c4.5.
The datasets contained 30 binary attributes and a bi-
nary class label, all with values assigned randomly from
a uniform distribution. There was no relationship be-
tween the attributes and the class label. Given such
datasets, one would expect pruning algorithms to emit
trees with a single node - a leaf labeled with the major-
ity class. This does not happen. Trees built with these
data exhibit an almost perfectly linear relationship be-
tween the amount of structureless data used to build
the tree and the size of the final pruned tree.

Although the phenomenon depicted in Figure 1 is
most clearly demonstrated with structureless artificial
data, it occurs in a broad range of real world datasets
(Oates & Jensen 1997; 1998) because they contain sub-
sets of instances with no structure (or structure that
cannot be identified by tree growing algorithms). De-
cision tree growing algorithms typically do not stop
splitting the data precisely when all of the structure
in the data has been captured. Instead, they push past
that point, splitting subsets of the data wherein the at-
tributes and the class label are either totally or nearly
independent, leaving it to the pruning phase to find
the "correct" tree. The result is that some number of
subtrees in the unpruned tree are constructed through
recursive invocations of the tree growing algorithm on
structureless data, such as that used in Figure 1. The
question that remains to be answered is why trees (and
subtrees) built from such data escape pruning.

To better understand why several well-studied prun-
ing algorithms leave large amounts of excess structure
in trees, we developed a statistical model of one partic-
ular algorithm - a~P. Analysis of the model provides
insights into why and under what conditions REP fails
to control tree growth as it should. For example, we
identify two properties that hold for almost every deci-

1The horizontal axis is the total number of instances
available to the tree building process. Each point in the
plot reflects the result of 10-fold cross validation, so the ac-
tual number of instances used to build the trees is 9/10 of
the corresponding position on the horizontal axis. In addi-
tion, REP further split the data into a growing set (2/3 of
the data) and a pruning set (1/3 of the data).
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sion node rooting a subtree that fits noise. They are:

¯ The probability of pruning such nodes prior to prun-
ing beneath them is close to 1. That is especially true
for large pruning sets.

¯ Pruning that occurs beneath such nodes often has
the counterintuitive effect of reducing the probability
that they will be pruned to be close to 0.

Insights gleaned from the model led to the develop-
ment of a novel variant of I~EP that yields significantly
smaller trees with accuracies that are comparable to
those of trees pruned by the original algorithm. Rather
than considering all of the available pruning data when
making pruning decisions, the new algorithm selects a
randomly sampled subset of that data prior to making
each decision. The degree of overlap between samples
is a user controlled parameter, with 100% overlap cor-
responding to standard REP, and 0% overlap (which is
feasible when large amounts of data are available) virtu-
ally eliminating the effect shown in Figure 1. Other de-
grees of overlap can be chosen depending on the amount
of data available.

The remainder of the paper is organized as follows.
The next section presents the statistical model of REP,
and the following section discusses implications of the
model, including an explanation for the behavior shown
in Figure 1. We then present the variant of REP based
on the theoretical model. The final section concludes
and points to future work.
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Figure 1: Tree size as a function of dataset size for three
common pruning techniques when the class labels are
independent of the attributes.

A Statistical Model of Reduced Error
Pruning

This section presents a statistical model of REP. The
goal is to model pruning decisions at nodes for which
the class label and the attribute values of instances are
independent, i.e. where there is no structure in the data
that, if found, would make it possible to predict the
class label better than always guessing the majority

class. Independence holds at node N when all of the
attributes with any utility in predicting the class label
have already been used to split the data on the path
from the root of the tree to N. Ideally, such nodes will
always be pruned, but as we saw in the previous sec-
tion, that is often not the case. The model will make
it possible to make probabilistic statements about the
likelihood of pruning under various conditions.

REP was chosen for analysis primarily because of its
simplicity. The algorithm takes as input an unpruned
tree and a set of instances, called the pruning set, drawn
from the same population as the set of instances used
to build the tree, but disjoint from that set. To begin,
the unpruned tree is used to classify all of the instances
in the pruning set. Let D~ be the subset of the pruning
instances that pass through decision node N on their
way to leaf nodes. The subtree rooted at N, denoted
TN, commits some number of errors on the instances in
DN. Let that number be rT. If TN is pruned back to a
leaf and assigned as a class label the majority class in
DN, then, assuming a binary class label, it will commit
a number of errors equal to the number of instances
in the minority class. 2 Let that number be rL. In a
bottom-up manner, rT and rL are computed for each
decision node, and TN is pruned when the number of
errors committed by the tree is greater than or equal to
the number of errors committed by the leaf, i.e. when
rT >_ rL.

The intuition behind REP is appealing. The number
of errors that a subtree commits on the training data
is clearly biased downward because the tree was con-
structed to minimize errors on this set, but the number
of errors committed on an independent sample of data,
the pruning set, is unbiased. Where the unpruned tree
fits noise in the training data (i.e. is overfitting those
data) the tree should perform poorly on the pruning
set, making it likely that pruning will occur. (We will
prove this assertion in the following section.) Where
the tree is fitting structure in the data, pruning back
to a leaf should result in more errors than retaining the
subtree. Given unbiased error estimates, the behavior
shown in Figure 1 seems inexplicable.

To model pruning decisions, and thus to explain Fig-

2The original formulation of REP as described in (Quin-
lan 1987) uses the majority class in the training set rather
than the pruning set to assign class labels when pruning.
The analysis in the remainder of the paper makes the sim-
plifying assumption that the pruning set is used to assign
class labels. In practice, there is very little difference be-
tween the two approaches. To verify that assertion, we took
19 different datasets (the same ones used in (Oates & Jensen
1998)) and built trees on 10 different splits of the data, with
2/3 of the data being used to build the tree and 1/3 used to
prune the tree. For every one of those 190 trees, we counted
the number of nodes for which the class label assigned by
the training set was the same as the label assigned by the
pruning set. To avoid spurious differences near the leaves
of the trees, nodes with fewer than 10 pruning set instances
were ignored. Over those 19 datasets, 94% of the nodes were
labeled identically by the training and pruning sets.



ure 1, we must characterize rT and rL because they are
the only quantities that enter into pruning decisions.
Given DN, determining the value of rL is straightfor-
ward. Let n = IDN] be the number of pruning set in-
stances that arrive at N. Assuming a binary class label,
which will be the case for the remainder of the paper, let
Pc be the probability that an instance in DN is labeled
with class ’+’. (That probability is simply the number
of instances in DN labeled ’+’ divided by n.) Then the
value of rL is given by the following equation:

rL = n min(pc, 1 -- PC)

If pc < 1 --PC the majority class in DN is ’-’. Pruning
TN will result in a leaf labeled ’-’, and all of the npe
instances in DN labeled ’+’ will be misclassified. If I -
Pc < Pc the majority class in DN is ’+’, and after
pruning all of the n(1 -Pc) instances in DN labeled ’-’
will be misclassified.

Characterization of rT is more difficult because its
value depends on the tree structure beneath N. With-
out exact knowledge of the instances in DN and of TN,
the exact value of rT cannot be determined. However,
the distribution of values from which rT is drawn can
be characterized. Let RT be a random variable that
represents the number of errors committed by TN on
DN. Let the probability that a randomly selected in-
stance in DN will arrive at a leaf labeled ’+’ be PL.a The
probability that the subtree will misclassify an instance
in D~, which we will denote PC#L, is the probability
that an instance labeled ’+’ will arrive at a leaf labeled
’-’ plus the probability that an instance labeled ’-’ will
arrive at a leaf labeled ’+’. Because the class label and
attribute values are independent, that quantity is given
by the following equation:

PC~L = pC(1 -- PL) (1-- PC)PL
= PC -F PL -- 2pCPL

We can think of assigning a class label to an instance
in DN as a Bernoulli trial in which the two outcomes
are an incorrect classification (which occurs with prob-
ability PCCL) and a correct classification (which occurs
with probability 1 -PCCL). Therefore, the number of
errors committed by TN on DN has a binomial distri-
bution with mean ]~T -~ npC#L and standard deviation

aT : k/nPC#L(1 --PC~L) which, for large n, can be
approximated by a normal distribution. There is no
way to precisely specify when n is large enough to use
the normal approximation, but one commonly used rule
of thumb is that it can be used when both npc#L and
n(1 - PC#L) are greater than five (Olson 1987).

The model is shown graphically in Figure 2. Given
n, Pc and PL, an exact value of rL can be determined.
However, we can only say that rT is drawn from a nor-
mal distribution with known mean and standard devi-
ation. The node will be pruned if the value drawn from
that distribution is greater than or equal to rL.

3Although pL depends on Tjv and DN just as rT does, we
will see later that the actual value ofpL has little qualitative
effect on the predictions of the model.

Do notprune

Figure 2: Given n, Pc and PL, an exact value for rL can
be determined, and rT is drawn from a normal distri-
bution with know mean and standard deviation. The
node will be pruned if rT > rL.

Implications of the Model

This section uses the model just presented to derive
several results that provide insight into the behavior of
REP. At a high level, there are two important conclu-
sions, both concerning decision nodes rooting subtrees
that fit noise. First, the probability of pruning such
nodes prior to pruning beneath them is close to 1. Sec-
ond, pruning that occurs beneath such nodes often has
the counterintuitive effect of reducing the probability
that they will be pruned to be close to 0.

The Probability of Pruning a Node Prior
to Pruning Beneath It

It is easy to show that the expected number of errors
committed by subtree TN on DN is greater than the
number of errors committed by the leaf that results
from pruning TN. The expected number of errors for
the subtree is E(RT), which is simply #T. In terms of
Figure 2, the fact that E(RT) > rL means that rL is
always to the left of the mean of the distribution.

Theorem 1 For Pc ~ 0.5, E(RT) > rL.

Proof: There are two cases to consider. Either 1/2 >
pc or 1/2 < Pc.

Case 1:

1/2 > Pc
1 > 2pc

PL > 2pCPL
pL--2pCPL > 0

PC + PL -- 2pCPL > PC
n(pC + PL -- 2pCPL) > npc

npC#L > npc
]~T > npc

E(RT) > rL



Case 2:

Pc > 1/2
2pc>l

2pc(1--pL) > 1--pL
2pc -- 2pCPL > 1 -- PL

2pc + PL -- 2pCPL -- 1 > 0
2pc + PL -- 2pCPL > 1
PC + PL -- 2pCPL > 1 -- PC

n(pC+PL--2pCPL) > n(1--pc)
npccL > n(1 --pc)

#T > n(1 -pc)
E(RT) > rL

Deriving an expression for the probability that TN
will be pruned is straightforward as well. It is simply
the probability that rT ~_ rL, which is the area under
the normal distribution to the right of rL in Figure
2. Let O(#,a,x) be the cumulative density up to x
of the normal distribution with mean # and standard
deviation a. O(#T, aT,rL) is the area to the left of rL
in Figure 2, so the area to the right of that point is:

PT--+L -~ 1 - ff~(~T, aT, rL) (1)

Figure 3 shows plots of PT-~L for all possible values of
Pc and PL at various levels of n. When the class labels
of instances in DN are distributed evenly (Pc = 0.5) the
probability of pruning is 0.5 (PT-~L -~ 0.5) regardless
of the value of PL. However, that probability rapidly
approaches 1 as you move away from the Pc = 0.5 line,
with the steepness of the rise increasing with n. That is,
for all values of Pc and PL, you are more likely to prune
a subtree that fits noise the more pruning instances are
available. For example, numerical integration of the
curves in Figure 3 shows that the average ofpT--+L when
n = 100 is 0.926. That number is 0.970 when n = 1000
and 0.988 when n -- 10,000. Unless Pc is very close
to 0.5, pruning of subtrees that fit noise in the data
is virtually assured given that no pruning has occurred
beneath them. Note that most decision tree splitting
criteria either explicitly or implicitly choose the split
that maximizes purity of the data. Said differently, they
attempt to move Pc as far away from 0.5 as possible.

The intuition that PT~L increases with n, all other
things being equal, is now made rigorous. Let
PT~L (Pc,PL, n) be the probability of pruning given the
specified values of Pc, PL and n.

Theorem2 For pc ~ 0.5 and ~ > O, it holds that
pT-~L(PC,PL,n) < pT-~L(PC,PL,n -}- 

Proofi First, we manipulate Equation 1 so that
refers to the standard normal:

PT--aL ~-- 1 -- ff2(#T,O’W,rL)

= 1-@(0,1,rL-#t)
fT

= 1- O(0,1, z)

....... :!

Figure 3: Plots of PT-+L for PC and PL ranging from 0
to 1 and n = 100 (the top graph), n = 1000 (the middle
graph), and n = 10,000 (the bottom graph).

increases monotonically as z increases, so PT--~L de-
creases monotonically as z increases. That is, the prob-
ability of pruning is inversely related to z. The question
then becomes, what is the effect of changing n on z?

rL -- #t
z --

fT

nmin(pc, 1 -Pc) - npC#L

~/npc#L (1 -- PC#L)

./~ (min(pc, - Pc) - PC¢L)

x/PC#L (1 - PC#L)
= x/nK

Because rL < #T (see Theorem 1) and fiT is non-
negative (from the definition of the standard devia-
tion), the quantity (rL -- #t)/fT is always negative.



It follows that K is always negative as well. Be-
cause K does not depend on n, (X/~ 5)K < v~K.
Coupling that fact with the previous observation that
PT-~L increases monotonically with decreasing z, we
conclude that PT-+L(PC,PL,n) < PT-~L(PC,PL,n + 

The Probability of Pruning a Node After
Pruning Beneath It

How does pruning that occurs beneath a decision node
affect the probability that the node itself will ultimately
be pruned? Recall that the number of errors commit-
ted by TN is defined recursively to be the sum of the
errors committed by N’s children. Because pruning oc-
curs when the leaf commits the same number or fewer
errors than the subtree, if any of the descendants of
N are pruned, rT (the number of errors committed by
TN) must either stay the same or decrease. In effect,
there are two values of rT in which we are interested.
There is the value that exists prior to pruning beneath
N, and there is that value that exists when all of the
descendants of N have been visited by the pruning pro-
cedure and a decision is about to be made concerning
N. Denote the latter value r~.

Let rNdi be the number of errors committed by the
i th descendant of N at depth d after a pruning decision
has been made concerning that descendant. If no leaf
nodes occur in T~ until depth d + 1, then r~ is simply

~i rNdi. Assume that N and all of its descendants at
depth d share the same values of Pc and pL.4 If each
of the subtrees rooted at those descendants is pruned,
then r~, becomes the following:

tit = ~ rNdi
i

---- ~ ni min(pc, 1 - PC)
i

= n min(pc, 1 - Pc)

---- rL

That is, the number of errors committed by the subtree
rooted at N will be the same as the number of errors
committed when that subtree is pruned back to a leaf,
and so the subtree will be pruned.

Now consider what happens if just one of the descen-
dants at depth d is not pruned. If descendant k is not
pruned, then rNdk < nk min(pc, 1 --PC), so the sum
above becomes:

= +

= ~ n/min(pc, 1 - Pc) q- rNdk
i#k

= (n -- nk) min(pc, 1 -- PC) + rNdk

4To a first approximation, that is a good assumption
when there is no structure in the data and n is large.

< (n - nk) min(pc, 1 - Pc) + nk min(pc, 1 -- PC)

nmin(pc, l--pc)

rL

If just one of the descendants of N at depth d is not
pruned, TN will be retained. If more than one descen-
dant is not pruned, TN will still be retained as that can
only decrease r~. Said differently, N will be pruned
only if all of its descendants at depth d are pruned.

We can now derive an expression for the probability
of pruning a subtree given that pruning has occurred
beneath it. Let ptT__+L denote that probability. (As
with rT and r~, the prime indicates the value of the
variable at the time that a pruning decision is to be
made for the node.) Let the number of descendants at
depth d be ra, and let Pi be the probability that the ith

descendant will be pruned. Then the following holds:

m

= IIp,
i=1

The value of d has two effects on P~-~L that may not be
immediately obvious. First, as d increases, m increases
exponentially, leading to an exponential decrease in
PT-~L" Second, as d increases, the number of pruning
set instances that reach each of the descendants de-
creases exponentially. As Theorem 2 makes clear, that
decrease leads to a decrease in the value ofpi, and thus
to a dramatic decrease in pIT_~L.

Figure 4 shows plots ofPT-~LI for all possible values
of pc and PL. The top graph assumes a subtree rooted
at a node with 10 descendants, the middle graph as-
sumes 20 descendants, and the bottom graph assumes
50 descendant. All three graphs assume that each de-
scendant has 5 pruning instances. In each case, there
are large regions in which the probability of pruning is
virtually zero. Only when Pc and PL are very different
(i.e. where IPc - PLI ~ 1) is the probability of prun-
ing close to one. Numerical integration of the curves in
Figure 4 shows that the average value of ptT~L is 0.33
when the number of descendants is 10. The average is
0.25 and 0.18 when the number of descendants is 20
and 50 respectively. As the number of descendants of
a node increases, the probability of pruning that node
decreases.

There are two important observations to make about
Figure 4. First, as a practical matter, combinations of
Pc and PL yielding a value of IPc - PLI close to one
are rare. Such a combination would indicate that the
class distributions in the training and pruning sets are
vastly different, and should not be the case when the
two samples are drawn from the same population. The
implication is that the effective probability of pruning
in any scenario that is likely to occur is much lower
than the averages mentioned above. Second, Figure 4
involves exactly the same quantities as Figure 3, only
the latter is plotted prior to pruning beneath a node
and the former is plotted after pruning beneath a node.



Figure 4: Plots of pIT_,L for PC and PL ranging from 0
to 1, where N has 10 descendants (top), 20 descendants
(middle) and 50 descendants (bottom).

An Improved REP Algorithm

As demonstrated in the previous section, the prob-
abilities of pruning node N before and after prun-
ing has occurred beneath it are often quite different
(i.e. PT-~L ~ PIT--~L). This phenomenon exists because
pruning decisions are made so as to minimize errors on
the pruning set, and the number of errors committed by
the subtree rooted at N is a sum of the errors commit-
ted by N’s descendants at any given depth (assuming
no leaf nodes exist above that depth). This observation
suggests that excess tree structure might be avoided if
a pruning set different from the one used to prune N’s
descendants was available to prune N itself. The rea-
son is that although N’s descendants were pruned so
as to minimize errors on the original pruning set, that
has no effect on whether N will be pruned when a new

pruning set is obtained just for N.

The above intuition was tested on three artificial
datasets: the rand structureless dataset that was used
to create Figure 1, and the led-24 and waveform-40
datasets taken from the UC Irvine repository. Figure
5 shows tree size and accuracy as a function of train-
ing set size given that a completely new pruning set is
generated prior to making each pruning decision. Cre-
ating new pruning sets is possible with these particular
artificial datasets, and may be possible with very large
real-world datasets as are common in the KDD com-
munity. Note that over all training set sizes, the trees
pruned with non-overlapping pruning sets are smaller
and just as accurate (determined by a t-test at the 0.05
significant level) as the trees pruned with a single prun-
ing set.

Generating completely new pruning sets for each
node is often impractical. However, it is possible that
part of the benefit of totally independent pruning sets
can be obtained by drawing a random sample of the
available pruning instances for each node. Specifically,
given m pruning instances, a random sample of size c~m
where 0 < a _< 1 can be drawn. Note that ~ -- 1 cor-
responds to standard REP; the same pruning set (the
full pruning set) is used at each node. Smaller values of
(~ lead to less overlap in the pruning sets used at each
node and make those pruning sets smaller.

We ran this variant of REP with (~ = 0.5 on the 19
datasets used in (Oates & Jensen 1998) and found that
sampling led to significantly smaller trees in 16 cases,
and in only one of those cases was accuracy significantly
less. (Significance was measured by a t-test comparing
means of 10-fold cross-validated tree sizes and accura-
cies with a significance level of 0.05.) Accuracy was
lower on the tic-tac-toe dataset because it is noise-
free and all of the attributes are relevant (much like the
parity problem). Pruning trees built on that dataset
almost invariably leads to lower accuracy, with more
aggressive pruning leading to additional losses.

Discussion and Future Work

Despite the use of pruning algorithms to control tree
growth, increasing the amount of data used to build a
decision tree, even when there is no structure in the
data, often yields a larger tree that is no more accurate
than a tree built with fewer data. A statistical model
of REP led to a theoretical understanding of why this
behavior occurs, and to a variant of REP that results in
significantly smaller trees with the same accuracies as
trees pruned with the standard REP algorithm.

Future work will include generalizing the results in
this paper to other pruning algorithms, such as MDL and
EBP (Oates ~ Jensen 1997), and to further exploration
of the idea of using partially overlapping samples of
pruning sets to minimize excess structure in trees.
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Figure 5: Tree size (top row) and accuracy (bottom row) as a function of training set size for the following datasets:
rand (first column), led-24 (middle column) and waveform-40 (last column). In each plot, the REP curve corresponds
to standard aEP, and the NDP curves refers to a variant of the algorithm in which a completely new pruning set is
generated and classified by the tree prior to making each pruning decision.
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