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Abstract

We consider the problem of learning an effective behav-
ior strategy from reward. Although much studied, the
issue of how to use prior knowledge to scale optimal
behavior learning up to real-world problems remains
an important open issue.
We investigate the inherent data-complexity of behav-
ior-learning when the goal is simply to optimize im-
mediate reward. Although easier than reinforcement
learning, where one must also cope with state dynam-
ics, immediate reward learning is still a common prob-
lem and is fundamentally harder than supervised learn-
ing.
For optimizing immediate reward, prior knowledge can
be expressed either as a bias on the space of possi-
ble reward models, or a bias on the space of possi-
ble controllers. We investigate the two paradigmatic
learning approaches of indirect (reward-model) learn-
ing and direct-control learning, and show that neither
uniformly dominates the other in general. Model-based
learning has the advantage of generalizing reward ex-
periences across states and actions, but direct-control
learning has the advantage of focusing only on poten-
tially optimal actions and avoiding learning irrelevant
world details. Both strategies can be strongly advanta-
geous in different circumstances. We introduce hybrid
learning strategies that combine the benefits of both
approaches, and uniformly improve their learning effi-
ciency.

Introduction
Reinforcement learning and control learning are sig-
nificant subareas of machine learning and neural net-
work research. Although a lot of effort has gone
into studying these problems, it is fair to say that
our current understanding of reinforcement and con-
trol learning problems still lags behind our compre-
hensive understanding of supervised learning. One of
the main issues in reinforcement and control learn-
ing is scaling up. Although several "general purpose"
learning algorithms such as Q-learning (Watkins 1989;
Watkins & Dayan 1992) have been developed for rein-
forcement learning problems, and recent variants have
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been proved to learn "efficiently" in some sense (Kearns
& Singh 1998), getting these algorithms to solve signif-
icant real world problems ultimately requires the use
of prior knowledge and domain constraints, just as
in supervised learning. However, the issue of how to
effectively exploit domain knowledge in reinforcement
learning is still an open research issue-if not the cen-
trM one in this area (Mahadevan & Kaelbling 1996;
Sutton & Burro 1998).

In this paper we consider a simplified version of re-
inforcement learning and focus on learning to optimize
immediate rewards. In standard (full) reinforcement
learning the agent’s actions affect not only its imme-
diate rewards but also its future states, and therefore
the agent must tradeoff any immediate gains against
the long term payoffs it might receive by following cer-
tain paths (Sutton g~ Burro 1998). Here we consider
a simpler interaction where the agent’s actions deter-
mine its immediate reward, but do not affect its future
states. That is, the agent interacts with the environ-
ment by receiving a current state s, chosing an action
a, and then receiving an immediate reward r; but the
next world state is then chosen obliviously to the agent’s
action. (For example, we can assume that the envi-
ronment choses states independently from a stationary
random source.) The goal of the agent, then, is to learn
a behavior map c : S --+ A that optimizes its expected
(immediate) reward.

Although simpler than full reinforcement learning,
immediate reward learning has often been studied in
the literature under the name of "associative reinforce-
ment learning" (Kaelbling, Littman, gz Moore 1996;
Burro & Anandan 1985; Ackley ~ Littman 1990) and
"associative search" (Sutton & Burro 1998). Examples
of this problem include skill acquisition from "episodic"
training and learning from repeated "attempts," where
the agent must experiment with its actions in order to
achieve a desired outcome. Some interesting case stud-
ies that have appeared in the literature are: learning the
inverse kinematics of a robot manipulator (i.e., learning
which joint angle settings will place a robot’s hand at
a desired location in its workspace) (Jordan & Rumel-
hart 1992; DeMers ~ Kreutz-Delgado 1997), learning
to volley a ping pong ball to a desired location (Moore
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1990), learning to sink billiard bMls in designated pock-
ets (Moore 1990), learning to deflect an air hockey
puck towards a goal (Brodie & DeJong 1998), learning
"hit/no-hit" strategies for blackjack (Sutton & Barto
1998), learning to shoot baskets (illustrative example
from (Jordan & Rumelhart 1992)), learning to putt 
golf ball into a hole (illustrative example from (Sut-
ton & Barto 1998)), learning to behave optimally with
limited resources (Russell, Subramanian, & Parr 1993),
neural networks for learning "one shot set-point" con-
trol (Miller, Sutton, & Werbos 1990), and learning the
inverse of functions with neural networks (Bishop 1995;
Kindermann & Linden 1990). In each of these cases,
the environment presents a problem to the agent, the
agent acts to achieve the desired toM, and the environ-
ment immediately responds with an indication of suc-
cess/failure; then the cycle repeats independently of the
previous events.

Note that, even though this problem is simpler than
the full reinforcement learning problem, associative re-
ward learning is still fundamentally harder than stan-
dard supervised learning. This is because in reward
learning we only receive partial evaluation feedback
from the environment. That is, in supervised learn-
ing, every training instance (x, y) evaluates every can-
didate function f : X --4 Y via the prediction error
loss(f (x), y). In a reward learning problem, by con-
trast, each training instance (s, a, r) evaluates only 
subset of the candidate control functions c : S --~ A;
namely, those that would have taken action a in state s
(Barto & Anandan 1985; Kaelbling, Littman, gz Moore
1996). The reward r says nothing directly about what
would have been obtMned if a controller took a different
action a~ in situation s.

One key observation is that this type of partial feed-
back automatically creates a distinction between two
types of prior knowledge/constraints that does not exist
in complete-feedback learning: prior knowledge could
be about the set of possible reward models one might
face in the world, or it could specify a restricted class of
controllers one might be limited to considering. This
distinction is mirrored in two fundamental learning ap-
proaches that one might consider for this problem:

Model-based learning: Do we learn a model of the fo-
rM reward function, and then infer the best candidate
controller?

Direct-control learning: Do we restrict attention to a
set of possible controllers, and attempt to identify a
good one directly?

Note that this distinction is independent of temporal
credit assignment and exploration/exploitation trade-
off issues. Thus, we can investigate the issue of model-
based versus direct-control learning in a very simple
setting. In fact, in this paper we will consider the prob-
lem of batch learning a good controller from a station-
ary distribution of training instances. The simplicity of
this framework allows us to make some straightforward
yet telling observations about the relative benefits of

the two learning approaches. Here we can clearly de-
termine when one is advantageous over the other, and
devise hybrid learning strategies that dominate the per-
formance of both.

We begin the investigation by formalizing our model
and drawing the major distinctions we wish to make.
We then briefly investigate each of the two funda-
mental learning approaches--model-based and direct-
control learning--and present learning strategies and
data-complexity results for each. The paper then brings
these two investigations together and asks which learn-
ing strategy is best. We show that in fact neither ap-
proach dominates the other in general: for some classes
of reward models it is best to learn the model first and
then infer the optimal controller, but for other classes
it is best to ignore the models entirely and just focus
on the corresponding class of potentially optimal con-
trollers. This distinction is made strictly in terms of the
data-complexity of learning, and is not necessarily tied
to the issue of computational efficiency (as is sometimes
suggested, for example in (Wyatt 1997)).

Finally, we consider whether there are hybrid learn-
ing strategies that are neither purely model-based nor
controller-based, but that can strictly dominate the per-
formance of both. We demonstrate that such learning
strategies do indeed exist.

Formulation
The learner interacts with the world according to a pro-
tocol where the world chooses a state s E S, the learner
responds with an action a E A, and the world returns a
scalar reward r E ht/; and the cycle repeats. The reward
process could be stochastic (or even nonstationary) 
general, but for simplicity we will find it convenient to
think of the rewards as being generated from a deter-
ministic function rr~ : S × A ~ h~, which we refer to
as the (true) reward model.

The direct goal of reward learning is not to identify
the underlying reward model per se, but rather identify
a good behavior strategy c : S --~ A. Of course, this
might be achieved indirectly, by first approximating the
reward model and then inferring a good controller. (But
whether one would actually want to learn a controller
this way is exactly the point of this investigation.) No-
tice that attempting to identify a good control func-
tion directly from training data introduces the problem
of incomplete feedback: each training instance (s, a, r)
evaluates only a subset of possible controllers--namely,
those controllers c such that c(s) = a--but does not
directly inform us about the rewards that other con-
trollers might have obtained in this state. Therefore,
given an accumulated sequence of training instances
(sl, aa, rl), ..., (st, at, rt) we can estimate the expected
rewards of a set of controllers in the usual way, but the
effective sample size of these estimates will vary from
controller to controller; i.e., some will have been "tried"
more than others. (This is unlike standard supervised
learning where each candidate prediction function f can
be evaluated by every training example (z, y), and thus



the effective sample size is always uniform among the
candidates.) So there is an inherent exploratory aspect
to the learning problem here--the learner must choose
actions that evaluate different parts of the controller
space (at different rates) to build up enough evidence
to reliably distinguish good candidates from bad.

FormMly, we assume successive states are drawn in-
dependently according to some stationary distribution
Ps, and therefore characterize the world by a state dis-
tribution Ps and the reward model m,o. For each state
s E S a controller c picks an action c(s) E and re-
ceives reward rn~ (s, c(s)) E Since successive states
are independent of a controller’s actions, we can char-
acterize the expected reward of a controller simply in
terms of its expected immediate reward

ER(c) = / ,~ (s, c(s)) dPs.

In this paper we Mso focus on a batch learning protocol
where the learner is free to choose actions to gain infor-
mation in an initial training phase, but then settles on a
fixed controller in the subsequent test phase. The signif-
icance of this assumption is that the need for exploita-
tion is completely eliminated from the training phase,
and the learner can concentrate solely on gMning in-
formation. That is, the problem is entirely exploration.
(We therefore do not address the exploration/exploita-
tion tradeoff directly in this paper. The benefit of fo-
cusing on the batch paradigm instead of the customary
on-line model is that we can still formulate the distinc-
tion between model-based and direct-control learning,
but compare them in a much simpler setting that per-
mits provable separations between the two approaches
and clear suggestions for new learning strategies.)

We now describe the two approaches to learning that
we will be considering. The key distinction is how we
express our prior knowledge/constraints on the learning
problem.

The first approach, embodied by direct-control learn-
ing, is just to directly consider a restricted class of con-
trol functions C. In this case, C expresses any prior
constraints we have about the solutions to the learn-
ing task, but does not express direct knowledge about
the reward model nh0. In this situation the learner is
forced to learn from partial evaluations, since any ac-
tion it chooses can only return information about a sub-
set of C. Learning strategies in this situation therefore
amount to strategies for deciding which subsets of C to
examine in order to accumulate evidence about which
controllers are best and which are suboptimal.

The second approach we consider is to directly learn
the reward model mw: S x A --+ £~ and then, once an
accurate reward model has been acquired, using it to
deduce a good controller. In this situation prior knowl-
edge is not expressed as a restricted class of controllers,
but rather as a restricted class of possible reward mod-
els M. This type of learning seems advantageous since
it is just a supervised learning task; that is, each train-
ing instance (s, a, r) evaluates every possible model m

in M. (This is a slightly novel supervised learning prob-
lem however, in that it has both passive and active
elements--the world chooses the state s but the learner
chooses the action a.)

On the face of it, the model-based approach seems su-
perior to direct-control learning, since supervised learn-
ing is intuitively easier than partiM feedback learning.
However, to properly compare the two approaches, we
need to adequately control for their different forms of
prior knowledge. Note that there is a natural relation
between reward models and controllers: for any reward
model m : S × A --+ ~/there is a controller cm : S --+ A
that is optimal for m (perhaps more than one). Thus
(since states are independent of actions) we can charac-
teri~.e the optimal controller cm as the one which takes
the immediately optimM action in each state:

cm(s) = argm~m(s, 
sEA

Therefore from a class M of possible reward models, we
obtain a corresponding induced class CM of potentially
optimal controllers. From this correspondence we can
formulate a direct comparison between the two learning
approaches: Given a class of reward models M and
implied class of controllers CM, how do direct-control
learning and model-based learning compare in terms of
inherent data-efficiency? Below we show that neither
approach dominates the other in general. However we
then show that there is a hybrid learning strategy which
dominates both.

Direct-control learning

We first consider the direct-control approach to learn-
ing. Here prior knowledge is expressed as a restricted
class of control functions C = {c : S --~ A} which we as-
sume contains a good candidate. Notice that this says
nothing directly about the reward model into (except
perhaps that one of the candidate controllers is opti-
mM) so in principle we have no way of generalizing the
outcome (s, a, r) of a particular action a to other actions
a~. As noted above, direct-control methods have to ac-
cumulate evidence for the quMity of each controller in a
"differential" fashion: each training instance evaluates
only a subset of the controllers, therefore some con-
trollers will have been "tried" more often than others
and consequently have a higher quality estimate of their
true performance. So direct-control learning methods
need to decide which actions (controllers) to focus their
attention on at each stage.

Direct-control learning methods were the focus of
much early research on associative reward learning
(Kaelbling, Littman, ~ Moore 1996; Kaelbling 1994;
Ackley ,~ Littman 1990; Barto & Anandan 1985;
Williams 1988; 1992), learning in behavior based
robotics (Maes ~z Brooks 1990), neural networks for
learning direct inverse control (Brodie & DeJong 1998;
DeMers & Kreutz-Delgado 1997; Mel 1989), and neural
nets for learning the inverse of functions (Bishop 1995;
Kindermann ~ Linden 1990). There is a large and



interesting literature on this approach (even though
most recent research has focused on the model-based
approaches considered below).

To gain a concrete understanding of this problem,
we will investigate a simple version where we assume
rewards are 0-1 valued and that there exists a perfect
controller in C (i.e., a controller c C C that always
receives reward 1). This allows us to formulate a very
simple ~PAC learning" version of the task.

Problem: Batch DC-Learning. Given a class of
controllers C, an approximation parameter e, and a re-
liability parameter 6; with probability at least 1 -
return a controller c whose expected reward is at least
1 - e, for any distribution Ps and reward model ~o.

The benefit of this formalization is that we can now
ask concrete questions and prepare for future compar-
isons: What are good learning strategies for batch DC-
learning, and how can we measure the "complexity" of
C so as to quantify the inherent data-complexity of the
task? (That is, how can we quantify the "strength" of
the prior knowledge encoded by C?)

To measure the complexity of C we note that in the
two action case it suffices to use the standard notion
of VC-dimension.t (For the multi-action case we need
to resort to the generalized notions of VC-dimension
developed by (Ben-David et al. 1995; Natarajan 1991).)
We observe that, as in standard PAC learning, there is
a simple generic learning strategy that achieves near
optimal data-efficiency.

Procedure: D(3-Learn. Proceed inaseries of rounds.
For each round, observe random states s E S and
take uniform random actions a E A until every con-
troller c E C has been "tried" at least once; that is,
for every c E C there exists an example (si,ai,ri)
such that c(si) = ai. (Below we note that this oc-
curs within a reasonable number of examples for most
C.) Repeat for a number of rounds that is sufficient
to obtain uniform e-accurate estimates of the expected
reward of every controller in C with probability at
least 1 - 6 (using the standard PAC bounds from VC-
theory, and its generalizations (Blumer et al. 1989;
Ben-David et al. 1995)). tteturn any controller that has
always been successful every time it has been "tried".

The idea here is simply to accumulate evidence across
the entire space of possible controllers to reliably distin-
guish the good candidates from bad. As simple-minded

tit is often claimed that the two action case reduces
to standard supervised learrfing--by making the hypothe-
sis that (s,a,r) implies (s,-~a,-~r). But this cannot 
in general (Sutton & Barto 1998). If the actions are not
randomly sampled with a uniform distribution, then an in-
ferior action can accidentally demonstrate a higher expected
reward. Barto and Anandan (Barto & Anandan 1985) re-
duce the two-action case to supervised learning by making
the assumption that m(s,’~a) = 1 - m(s,a). But this just
amounts to making explicit assumptions about the reward
model. We address such a model-based approach to learning
in the next section.

as this procedure seems, it turns out that it is impossi-
ble to dramatically improve its data-efficiency in terms
of scaling in e, 6 and the VC-dimension of C.

Proposition 1. For any e > 0, 6 > 0 and class C with
VC-dimension d, procedure DC-learn correctly solves
the batch DC-learning problem and halts with an ex-
pected sample size of O (½ ((dZ lnd)(ln ~) + In 

(Proof idea) The key step is showing that each round
of DC-learn halts within a reasonable number of train-
ing examples. This is proved by observing that the only
way a controller can be completely avoided is by always
matching the actions of its "negation". But the class of
negated control functions also has small VC-dimension,
and the probability of staying in this class by choosing
random actions becomes vanishingly small as the sam-
ple size increases. This leads to an O(dlnd) expected
stopping time for each round.

The next proposition shows that it is impossible
to improve on the performance of DC-learn beyond a
(dlnd)(ln ½) factor.

Proposition 2. It is impossible to solve the batch DC-
learning problem with an expected sample size that is
less than F~ (~(d + In ~)).

(Proof idea) The idea is simply to fix a set of shat-
tered states sl, ..., Sd and choose a difficult distribution
such that every state must be seen to guarantee a good
controller, and yet one state is left out with signifi-
cant probability if the expected sample size is too small
(Schuurmans & Greiner 1995).

Although the generic direct-control learning proce-
dure DC-learn does not seem very refined, it has some
interesting advantages over well-known learning algo-
rithms in the literature: For example, consider the
IEKDNF algorithm from (Kaelbling 1994), which learns
controllers c : {0, 1}" --+ {0, 1} that can be expressed as
k-DNF formulae. The class of k-DNF controllers clearly
has finite VC-dimension, so the procedure DC-learn is
guaranteed to reliably learn a near-optimal controller
using a reasonable sample size. However the IEKDNF
procedure presented in (Kaelbling 1994) is notl In fact,
there are simple cases where IEKDNF is guaranteed to
converge to a bad controller, even when a perfect con-
troller exists in the assumed class Ck-DNF.

(To see this, consider a state space described by two
bits s = (xl, x2> and concentrate on the class of pure
disjunctive controllers C1-DtCF. Assume the distribu-
tion Ps puts probability 1/3 on state (0, 1> and 2/3 on
(1, 0>, and the reward model is such that m~ (s, 1) 
and into (s, 0) = 0 for all states s. Then, using the no-
tation of (Kaelbling 1994), we let er(x~, a) denote the
expected reward of a specific controller c which takes
actions c((~1,z2>) = a if zi = 1 and -~a if zi = 
In this case we have er(m~, 0) = 1/3, er(xl, 1) -- 2/3,
er(z2, 0) = 2/3, and er(z2, 1) ---- 1/3. So here IEKDNF
will converge to the controller c((zl, z2)) -- zl 
probability 1, and this controller has expected reward



2/3. However, the optimal controller in C:-DNF,
c((x:, m2>) ---- m: V x2, actually has expected reward 
and this is the controller that will be discovered by DC-
learn with probability at least 1 - 6 for reasonable e.)

Given that the IEKDNF algorithm was actually de-
signed to cope with the exploration/exploitation trade-
off this might not seem like an appropriate comparison.
However, notice that convergence to a suboptimal con-
troller means that IEKDNF could not compete with
DC-learn after the batch training phase is complete,
even in an on-line evaluation. That is, convergence
to a sub-optimal controller is an undesirable property
whether one is using a batch or an on-line assessment.
This example demonstrates the benefit of our analysis:
carefully evaluating the data-complexity of learning led
us to uncover a weakness in an existing learning proce-
dure that had not been previously observed.

Model-based learning

We now consider the alternative model-based approach
to learning. Here we consider prior knowledge that is
expressed in a rather different form: we assume the
world’s reward model mw belongs to some restricted
class of models M. Learning a good reward model
m : S x A -+ ~ from training examples (s, a, r) is 
standard supervised learning problem, so it seems like
it should be easier than direct-control learning. Once
an adequate model m E M has been identified, we can
simply infer a corresponding optimal controller cm and
return this as the final hypothesis for the test phase.

This model-based approach to learning control has
been commonly pursued in the literature on associa-
tive reinforcement learning (Munroe 1987; Kaelbling,
Littman, & Moore 1996), particularly under the guise
of learning "forward models" for control (Moore 1990;
1992; Jordan & Rumelhart 1992).2

As in the previous section, to develop a concrete un-
derstanding of this problem and to facilitate compar-
isons with the direct-control approach, we consider a
simple version of the learning task where we assume
that the rewards are 0-1 valued, and that the class of
reward models M always contains the true model rr~.

Problem: Batch MB-Learning. Given a class of
reward models M, an approximation parameter e, and
a reliability parameter 6; with probability at least 1 -
6 return a reward model m that agrees with the true
reward model m~ on every action for at least 1 - e of
the states, for any state distribution Ps and any true
reward model mw E M.

2Note that Moore (Moore 1990; 1992) does not consider
a restricted class of models per se, but his work makes a
strong model-based assumption that similar actions in simi-
lar states will yield similar outcomes. We view this as relying
on the true reward model to be sufficiently well-behaved so
that one can generalize across states and actions. General-
izing in this way is what we are characterizing as a model-
based approach to learning.

Clearly, identifying an accurate model of the pay-
off function to this extent is sufficient to infer a near
optimal controller: If successful, we can correctly de-
duce the optimal action for at least 1 - e of the states
and therefore return a controller that achieves expected
reward at least 1 - e. Note that this is a slightly
unorthodox supervised learning problem in that the
states are observed passively but the actions chosen
actively, and both are inputs to the target function
rn~. Moreover, we have to identify the marginal re-
ward map A ~ JR exactly for most states s E S,
so our success criterion is harder than standard PAC
learning. This forces us to define a measure of com-
plexity for M that combines the notion of the VC-
dimension of the class M on its domain S × A, with
a measure of how hard it is to exactly identify the
marginal reward map A ~ ~R for each state. We do
this by appealing to the notion of "universal identifica-
tion sequence" developed in (Goldman & Kearns 1991;
Goldman, Kearns, 2z Schapire 1990) which measures
the difficulty of identifying an arbitrary boolean func-
tion from a given class of functions. (A universal iden-
tification sequence is a set of points that is labeled
uniquely by each function in the class.)

As is typical for batch learning tasks, we find that
a very simple learning procedure can achieve near op-
timal performance in terms of scaling in e, 6 and the
complexity of M.

Procedure: MB-learn. For each state s E S iden-
tify off-line a shortest universal identification sequence
(s, ai,) ..... (s, aik) for the class of maps A -+ £~ that M
induces from s. Proceed in a series of rounds. Given a
random state s, choose an action ai~ uniformly at ran-
dom from the universal identification sequence for s.
Repeat until a sufficient number of training examples
have been observed. Take any model m that is con-
sistent with every training example and return a cor-
responding optimal controller cm. (Note that this pro-
cedure is not limited to a finite state or action space,
so long as there is a finite bound on the lengths of the
universal identification sequences.)

Proposition 3. For any e > 0, g > 0 and class M
with VC-dimension d over the joint space S × A, proce-
dure MB-learn correctly solves the batch MB-learning
problem and halts with an expected sample size of

t 1O (:(dln 7 + In ~)); where $ is the length of the longest
universal identification sequence over all s E S.

(Proof idea) The only minor trick is to observe that
learning a global approximation with error less than e/t
on the induced joint distribution over S x A means that
the model could make a mistake on one action for at
most e of the states (since each action is observed with
conditional probability at least 1/t in any state).

Proposition 4. Any learning procedure requires at
least f~ (½(d + In ~)) training examples to correctly
solve the batch MB-learning problem. (Follows from
(Ehrenfeucht et al. 1989).)



These definitions formalize our intuition about what
it means to follow a strictly model-based approach (that
is, where we attempt to identify the true payoff struc-
ture of the world). Having completed this formaliza-
tion, we are now in a position to rigorously compare
the model-based approach in its simple form against
the simple form of direct-control learning described in
the previous section.

Comparison

We can now compare the two basic learning approaches
considered so far, and examine the presumption that
model-based learning is always more efficient than
direct-control learning, given that model-based learn-
ing apparently receives more feedback from each train-
ing example. However, we will see immediately that
this fact does not always help. (Note that we draw our
distinctions based strictly on the exploration costs of
learning and not on issues of computational complex-
ity.)

To conduct the comparison, recall that for any class
of reward models M -- {m : S × A -+/R} there exists
a corresponding class of potentially optimal controllers
CM = {c : S -+ A}. The basis of the comparison
is: given a class M and corresponding class CM, how
does the data-efficiency of model-based learning on M
compare to that of direct-control learning on CM?

To best illustrate the fundamental differences, we
first consider a simple setting where the world has just
one state but there are several possible actions. In
this case we can represent a class of reward models
M as a matrix whose rows correspond to actions and
whose columns represent the individual 0-1-valued re-
ward models m E M.

(A) ml mz
al 0 1
a2 0 1
aa 0 1

i 0 1

aa 1 0

First, consider the question of when model-based
learning is more data-efficient than direct-control learn-
ing. The intuition is clearly that model-based learning
should obtain its greatest advantage when the class of
reward models allows us to generalize the outcome of
a single training instance (a, v) across set ofactions
a’. Matrix A demonstrates this in its most extreme
form. Here, observing any single action a will allow us
to exactly identify the true reward model over the entire
action space. Model-based learning in this case will be
able to return a successful action after just one train-
ing example. On the other hand, direct-control learning
needs to examine all n actions (in the worst case) before
it could be guaranteed to find a successful one. (This
is because a direct-control learner is oblivious to any

restrictions on the payoff model, and therefore must
follow a fixed exploration strategy through the action
space. For any deterministic strategy the rows of the
matrix can be permuted and a column selected so that
the successful action is the last one visited. Similarly,
a random (uniform) search strategy takes IAI trials in
expectation to find a single successful action.)

(B) ml m2 m3 "’’ ~n T/ln+I

al 0 1 1 1 1 1
az 1 0 1 1 1 1
a3 1 1 0 1 1 1

i 1 1 1 0 1 1

a, 1 1 1 1 0 1

However, this situation could easily go the other way.
The problem with naively attempting to identify the
reward model is that one could spend significant effort
learning details about the model that are simply not
relevant for achieving optimal control. For instance,
consider Matrix B. Here, any direct-control learning
technique needs to examine at most two distinct ac-
tions before it is guaranteed to find a successful one.
Model-based learning, on the other hand, would need
to examine at least n - 1 actions in this situation be-
fore it is guaranteed to identify the true reward model
in the worst case. (This is because the data-complexity
of identifying the reward model is lower bounded by the
"teaching dimension" of the class of models M (Gold-
man & Kearns 1991). So, for example, the teaching di-
mension of the last column in Matrix B is n - 1 (easily
determined using the technique of (Goldman & Kearns
1991)). This is a lower bound on the smallest num-
ber of actions that can guarantee that this column is
distinguished from all others in the matrix.)

Thus, we see that there is no strict domination ei-
ther way. Of course, these examples might seem trivial
in that, once represented this way, it is obvious that
naive model-based or naive direct-control learning are
not sensible approaches to this problem. But that is
exactly our point! By conducting a careful evaluation
of the data-complexity of learning optimal controllers
we have been led to uncover a specific tradeoff that has
not always been carefully described. Neither of these
two extreme forms of learning can be the proper way to
approach associative reward learning problems in gen-
eral.

These observations easily generalize to the case of
stochastic rewards and multi-state problems. For
stochastic rewards the learner must repeatedly sample
actions to get reliable estimates of their expected re-
ward, but must still identify near-optimal actions with
high probability in order to succeed. In this case, con-
structions very similar to those above can be used to
demonstrate the same advantages and disadvantages of
the two approaches.

Thus, in general, investigating these two extreme
forms of learning highlights the dangers of single-



mindedly pursuing either approach, and clarifies the
tradeoffs between the two. With this new understand-
ing, we can turn to the question of deriving more re-
fined learning strategies that combine the benefits of
both approaches.

Hybrid learning

Given a class of reward models M, it seems sensible
to consider a learning approach that exploits this prior
knowledge but pays attention to the fact that we are
only trying to derive a good controller, and not neces-
sarily learn all the details about the reward model.

(C) ml m2 m3 ..- mn
al 1 0 0 0 0
a2 0 1 0 0 0
a3 0 0 1 0 0

i 0 0 0 1 0

a, 1 1 1 1 1

Continuing in the simple setting discussed above, it is
actually easy to see what a good hybrid learning strat-
egy might look like. Consider matrix C. In this case the
worst case exploration costs of model-based and direct-
control learning are n - 1 and n respectively. However,
no exploration is required at all in this case! In this
matrix there is a single action, an, that is successful in
every reward model, and therefore a,, could be immedi-
ately returned as the optimal controller without exam-
ining a single point. From this simple observation we
can derive an optimal learning procedure for the single
state task.

Optimal procedure. Given a matrix of possible re-
ward models M, choose a subset of actions {ai~, ..., aih}
that is a minimal cover of the columns of M (where
each action "covers" those columns in which it receives
reward 1). Explore these actions in any fixed order un-
til either a successful action is found or only one action
remains. Return this as the final hypothesis.

Note that this procedure is neither model-based nor
direct-control based in the sense discussed above, but
it necessarily dominates the data-efficiency of both:

Proposition 5 (Optimality). The size of the mini-
mal cover (minus one) determines the worst case data-
efficiency of the optimal procedure. Moreover, the size
of this minimal cover (minus one) is also lower bound
on the worst case exploration cost of any procedure.

(Proof idea) The upper bound is immediate. The
lower bound follows because any smaller set of actions
must leave some world "uncovered," which permits an
adversary to choose a reward model under which every
chosen action fails.

It is not hard to scale this basic exploration proce-
dure up to handle multiple states and stochastic re-
wards. The multi-state case can be handled by con-

sidering a minimal cover of the potentially success-
ful actions for each state s, and then follow a strat-
egy that only considers actions that fall within these
covers. In fact, we can use this method to construct
examples of reward learning problems with boolean
controllers c : {0, 1}" --+ {0, 1}k and reward models
m : {0, 1}’*+k --~ {0, 1} where our hybrid approach re-
quires O(1) observations to identify a successful con-
troller, but naive model-based and direct-control learn-
ing both require ~(k2") observations in the worst case.
(The construction just multiplies a representation of
Matrix C across the set of states, {O, 1}’~.)

To handle stochastic rewards, one converts each
stochastic reward model m : s x a ~-~ "expected reward"
to a 0-1 reward model mI, where ml(s, a) = 1 if the
conditional expected reward of action a given state s is
within e/2 of the best conditional expected reward for
state s, and m~(s,a) ~- otherwise. Then one can ap-
ply the minimal set cover approach on each conditional
reward map A ~ {0, 1}, as outlined above, and com-
bine this with repeatedly sampling chosen actions for
each state to obtain e/2-accurate estimates of their true
conditional expected rewards. This leads to a provably
correct procedure that has near optimal data-efficiency
(as in propositions 1 and 3).

We are currently extending our hybrid learning ap-
proach to apply to robot learning problems, and in
particular to learning the inverse kinematics for robot
manipulators. Here we hope to gain advantages over
current approaches in two ways. First, robotic manip-
ulators often have excess degrees of freedom which al-
low them to place their end-effectors at targets using
several different arm configurations. This means that
the set of possible control maps c : "goal position" --~
"arm configuration" might contain several optimal so-
lutions. By ignoring the reward models, direct-control
learning cannot automatically infer that these dis-
tinct controllers are equally effective, and therefore can
waste significant training data in detecting their equiv-
alence (or worse, we might accidentally average dis-
tinct solutions together to obtain an inferior controller
(Bishop 1995, Chapter 6)). On the other hand, a 
brid learning method can exploit the possible error
models m : "target position" x "arm configuration" --~
"sensed position error" to determine when two con-
trollers are equally effective and thereby avoid this im
efficiency.

Second, sensors must be used to measure the posi-
tioning error, and models of these sensors must often be
learned before one can predict the configurations to use
on novel targets. (That is, the robot must learn the er-
ror map m.) Although the characteristics of these sen-
sors can vary greatly, which makes the problem of learn-
ing the error map quite difficult, most sensors operate in
a way that the reported errors are monotonic functions
of the true error, and small errors are reported near
optimal solutions. Therefore, rather than learn every
detail of the error map (which is characteristic of naive
model-based learning), we can use the hybrid learning



approach to focus on learning an accurate model of the
map only in regions that are close to zero-error config-
urations, and ignore the remaining details of the map
that are irrelevant for achieving optimal control.

Conclusions
We considered the two fundamental approaches to asso-
ciative reward learning, compared their advantages, and
proposed a notion for hybrid learning which dominates
the performance of both. The key insight is that naively
following a strictly model-based or direct-control ap-
proach is generally not the most effective way to learn
a good controller. Although it is important to exploit
prior knowledge that encodes information about the re-
ward models--this can yield tremendous benefits and
is essential to scaling up to real-world tasks--careful
attention must be paid to the fact that this knowledge
will ultimately be used to derive a good controller, and
that not every detail about the reward model is needed
to accomplish this. The notions for hybrid learning
strategies proposed here, we feel, are a first step towards
understanding how prior domain knowledge might be
concretely exploited to achieve systematic benefits in
reward learning tasks.

Future work. Obviously these are preliminary theo-
retical steps, and there is a long way to go before signifi-
cant contributions to reward and reinforcement learning
practice can be made. Some immediate directions are to
(1) pursue application studies of these techniques and
compare their performance on real tasks, for example,
on the problem of learning the inverse kinematics of a
robot manipulator, (2) extend the theoretical model 
stochastic rewards, and most importantly (3) to intro-
duce dependence between actions and states and extend
our learning strategies and theoretical analysis to deal
with state-transition dynamics and temporal credit as-
signment issues (Kearns & Singh 1998).
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