
Abstract
We advocate the development of an agent capable of
processing diagrammatic information directly in all its
forms. In the same way that we will require intelligent
agents to be conversant with natural language, we will
expect them to be fluent with diagrammatic information and
its processing. We present a methodology to this end, detail
a diagrammatic information system that shows the merit of
this line of research, and evaluate this system to motivate its
future extensions.

Introduction
Of the set of behaviors that will be required of an
artificially intelligent agent, a somewhat neglected member
has been the ability to deal with diagrammatic information.
Much attention has been paid to machine synthesis,
recognition and understanding of natural language in both
textual and audio forms. The understanding has been that
such capabilities are required of an agent if it is expected to
fully communicate with human beings and function in
human environments. Much less attention has been given to
machine understanding of diagrammatic information, an
equally important mode of human communication.
Effective capabilities in this mode will be crucial to an
agent intended as a full partner in human discourse and
activity. In the same way that we will require such agents
to be conversant with natural language, we will expect
them to be fluent with diagrammatic information and its
processing. Ultimately, a machine with such capabilities
will interact with a real world environment, rife with
diagrammatic information, with a higher degree of
autonomy than those without such capabilities.

The main thrust of diagrammatic reasoning research to
date (from an artificial intelligence perspective) has been a
search for computational efficiency gains through
representations, and related inference mechanisms, that
analogously model a problem domain. As this has been the
aim of much of the seminal work in the field (e.g. Gelernter
1959; Larkin and Simon 1987), it is understandable that
much effort has been expended in this direction. Although

it is arguable that some progress has been made through
this line of research, we believe that the field's most
important contribution will be the development of an agent
that is capable of dealing directly with diagrammatic
information in all its forms.

We envision a system that takes diagrams as input,
processes these diagrams, abstracting information and
drawing inferences from them alone and in concert with
other forms of knowledge representation, and expresses
this newly gained knowledge as output in the form of text,
new diagrams, actions, etc. Although the approach taken
by this system will not necessarily claim cognitive
plausibility, the fact that human beings do these things as a
matter of course will stand as proof by existence that such a
system has been fashioned.

This diagram processing system will be comprised of a
number of important components. It will require a means
to input diagrams such as a vision component. It will
require a way to internally represent diagrams. The
diagrammatic representations so acquired will require
storage, as will knowledge needed to deal with these
representations, necessitating some storage management
component. A processing component will be required that
synthesizes and abstracts new knowledge from
combinations of diagrammatic and other forms of
knowledge representations. Various components will be
required to use the new knowledge to produce desired
output in a variety of situations.

Reflection on the design of these components raises a
number of questions: What constitutes a diagram? In what
form will diagrams be accepted as input by the system?
How will diagrams be internally represented? How will
knowledge be gleaned from diagrams? What is the nature
and content of a priori knowledge that will be required?
How will other forms of representation and inference be
integrated with diagrammatic representations and
inference? What is nature of the desired output? How will
this output be produced? Etc. These are hard questions
with a multiplicity of answers that in themselves generate
more questions. They form the parameters of the problem.
Our intent is to build a test bed in which various values for
these parameters can be tested, compared and contrasted,

Copyright © 1999, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

Towards Diagram Processing:
A Diagrammatic Information System

Michael Anderson

Department of Computer Science
University of Hartford

West Hartford, CT 06117
anderson@hartford.edu

From: AAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

and ultimately forged into a single general purpose diagram
processing system.

Following the methodology advocated in (Allen 1998),
we 1) identify the particular intelligence we seek to study,
2) define a set of telescoping restricted tasks, 3) define
evaluation criteria, 4) develop a model and system for our
most restricted domain, and 5) evaluate this model and
system for the next level of complexity.

Topic of Study
As we have stated, we are ultimately interested in
developing an agent with full diagrammatic reasoning
capabilities on par with human beings. If a picture is worth
a thousand words, we would like to obviate the need for
this text by being able to communicate with an agent
directly via pictures or diagrams. An agent should be able
to accept and understand such diagrammatic input from us
and our environment as well as being able to produce such
diagrams in its attempt to communicate diagrammatically
representable notions to us.

Restricted Tasks Set
As this ultimate system is clearly beyond the grasp of
current theory and technology, we refine it into a nested
group of successively simpler tasks. Each nested level is a
subset of all levels it is nested within and, further, a
simplification of these containing levels. At the simplest
level, we attempt to prove the merit of this line of research
by developing a system that realizes the goal of this level.
As we succeed at one level, we will attempt to build upon
this success by applying what we have learned to the next
less simplified level, expanding our solution to cover new
problems it entails.

Given, as the outer most level, a system with full
diagrammatic reasoning capabilities, we define as a
simpler subset of this ultimate system a system that has
diagrammatic reasoning capabilities in some arbitrary
task. Examples of such systems are map understanding
robots, scientific diagram abstracting agents, diagram
generation systems, etc.

We choose, as the next level of simplification, to focus
on diagrammatic reasoning capabilities in one particular
task namely what we term diagrammatic information
systems systems that allow users to pose queries
concerning diagrams, seeking responses that require the
system to infer information from diagrams. As a final level
of simplification we constrain any given instantiation of
this diagrammatic information system to be knowledgeable
about particular diagram types in a particular domain.

That said, we strive to develop a core of this
diagrammatic information system that remains diagram
type and domain independent, capable of accepting domain
dependent diagrammatic and non-diagrammatic

knowledge. In this way, each body of knowledge produces
a new instantiation of the diagrammatic information system
knowledgeable in the particular domain and diagram types
represented by this knowledge.

Evaluation Criteria
To evaluate systems at all levels of nesting, we compare its
understanding of diagrammatic information with the
understanding that a human being exhibits with the same
information. In this manner, we evaluate an instantiation of
a diagrammatic information system in a particular domain
by the number of diagram types it can handle, the variety of
queries it can respond to, and the quality of responses it
gives to these queries. The level of success of such a
system is measured by how it approaches, matches, or
exceeds the performance of a human being reasonably
capable within the chosen domain.

Model and System
As the first task we have set for ourselves is an

implementation of a diagrammatic information system, we
choose one possible set of values to the parameters of this
problem.

We define a diagram to be a tessellation (tiling) of a
planar area such that it is completely covered by atomic
two dimensional regions or tesserae (tiles). Such a
definition is broad enough to include arbitrarily small
tesserae (points, at the limit), pixels, and, at the other end
of the spectrum, domain-specific entities such as countries,
regions, blocks, etc. Further, as this definition is not tied to
any particular semantics, it is general enough to encompass
all diagrams. Given the wide variety of semantic mappings
employed by diagrams, a general definition that makes no
semantic commitment is useful.

We sidestep a vision component by accepting bitmaps
depicting diagrams as input to our system. As this is a
likely output of a vision component, such a component can
be appended later.

Our currently chosen approach gleans knowledge from
diagrams by directly manipulating spatial representations
of them. This approach is motivated by noting that, given
diagrams directly input as bitmaps, any translation into
another representation will require some form of direct
manipulation of these bitmaps. In many cases, this
translation is superfluous. Given this approach, we store
input bitmaps directly with no further abstraction. This
strategy not only allows us to manipulate spatial
representations directly but, should the need arise, it will
allow us to translate to any other representations as
required.

We use, as a basis for this direct manipulation of
diagrams, the theory of inter-diagrammatic reasoning
(IDR) (Anderson and McCartney 1995, 1996). IDR

leverages the spatial and temporal coherence often
exhibited by groups of related diagrams for computational
purposes. Using concepts from set theory, image
processing theory, color theory, and others, like diagrams
are combined in ways that produce new like diagrams that
infer information implicit in the original diagrams.

Knowledge required to process diagrams is likely to be
both domain and diagram specific. Facts and rules
pertinent to targeted domains are necessary as is
information germane to processing diagram types
represented. We represent this knowledge both
diagrammatically and non-diagrammatically, as
appropriate, constraining both domains and diagram types
as necessary. We achieve integration of diagrammatic and
non-diagrammatic knowledge and inferencing by providing
an inter-lingua abstraction that furnishes a homogeneous
interface to various modes of representation and
inferencing, permitting inferences to be made with
heterogeneously represented knowledge.

Our output is both diagrammatic and textual, meant for
direct human consumption. Although we skirt other forms
of output such as action or intermediate output intended for
use by some other system, there is nothing in the nature of
the processing that precludes use of its product in such
ways.

Our first instantiation of a diagrammatic information
system is informed about cartograms (maps representing
information as grayscale or color shaded areas) of the
United States.

An Example
As an example, consider the diagram in Figure 1. This is a
cartogram that depicts in three levels of gray where each of
the major vegetation types are situated in the United States.
The darkest gray represents forest, medium gray represents
grassland, and the lightest gray represents desert. Given
this diagram as input to the system, as well as the semantics
of the gray levels in this particular diagram, posing the

query "Which states have grassland?" elicits the diagram in
Figure 2 as a response from the system. In this
diagrammatic response, each state in which grassland exists
is represented by its shape in black positioned where the
state lies within the United States. We use this example to
examine the implementation of this instantiation of a
diagrammatic information system in further detail.

Figure 1 is input to the system as a bitmap and is stored
as such with no further manipulation. The system is
supplied with the semantic mapping of the gray levels of
the diagram to the vegetation types present. The input
diagram is then parsed into three diagrams, each comprised
of a single gray level. Each of these diagrams represents,
then, the location of a particular vegetation type within the
United States. Figure 3, for example, shows the diagram
resulting from this parsing that represents the locations of
grassland in the United States.

A priori diagrammatic knowledge required to respond to
this query is comprised of a set of diagrams that represent
the locations of each state within the United States. Figure
4 is an example of such a diagram which shows the
location of the state of Nevada within the United States by
marking its area on the map in black. There are fifty such
state diagrams.

The response to the query “Which states have
grassland?” is generated by comparing each of these state
diagrams with the diagram representing grassland. When a
state diagram intersects the grassland diagram (both
diagrams without the United States outline), the semantics
of the domain dictate that that state contains grassland. All
such states are then accumulated on a single diagram (with
the United States outline) and presented to the user as the
response to the query.

In this manner, diagrammatic responses can be generated
for a wide variety of queries concerning vegetation in the
United States including “Which states do not have forest?”,
“How many states have desert?” (Simply return a count of
the state diagrams that intersect the desert diagram.), “Does

Figure 1: Vegetation in the United States Figure 2: Response to query: "Which states have grassland?"

Figure 3: Location of grassland in the United States Figure 4: Location of Nevada in the United States

Rhode Island have desert?” (Simply return true if the state
diagram for Rhode Island intersects the desert diagram.),
“Which vegetation type covers the most states?”, “Do any
states have both grassland and desert?”, “Which states have
either desert or forest?”, “Do more states have grassland
than desert?”, “Which states have forest but not
grassland?”, etc.

An overview of the formalism we use to generate
responses to these queries, the theory of inter-diagrammatic
reasoning, follows.

Inter-Diagrammatic Reasoning
The theory of inter-diagrammatic reasoning (Anderson and
McCartney 1995, 1996; Anderson and Armen 1998)
defines diagrams as tessellations. Tesserae take their
values from an I, J, K valued subtractive CMY color scale.
Intuitively, these CMY (Cyan, Magenta, Yellow) color
scale values (denoted vi, j, k) correspond to a discrete set of
transparent color filters where i is the cyan contribution to a
filter’s color, j is the magenta contribution, and k is the
yellow contribution. When overlaid, these filters combine
to create other color filters from a minimum of WHITE
(v0,0,0) to a maximum of BLACK (vI-1, J-1, K-1). In the current
work, i, j, and k are always equal, providing grayscale
values from WHITE to BLACK only. The following unary
operators, binary operators, and functions provide a set of
basic tools to facilitate the process of inter-diagrammatic
reasoning.

Binary operators each take two diagrams, d1 and d2, of
equal dimension and tessellation and each return a new
diagram where each tessera has a value v that is some
function of the values of the two corresponding tesserae,
vi1, j1, k1 and vi2, j2, k2 , in the operands.

y OR, denoted d1 d2, returns the maximum of each pair�

of tesserae where the maximum of two corresponding
tesserae is defined as vmax(i1,i2), max(j1, j2), max(k1,k2).

y AND, denoted d1 d2, returns the minimum of each pair�

of tesserae where the minimum of two corresponding
tesserae is defined as vmin(i1,i2), min(j1, j2), min(k1,k2).

y OVERLAY, denoted d1 + d2, returns the sum of each
pair of tesserae where the sum of values of
corresponding tesserae is defined as vmin(i1+i2, I-1), min(j1+j2, J-1),

min(k1+k2, K-1).

y PEEL, denoted d1 - d2, returns the difference of each
pair of tesserae the difference of values of corresponding
tesserae is defined as vmax(i1-i2, 0), max(j1-j2, 0), max(k1-k2, 0).

y NONNULL (NULL), denoted NONNULL(d),
(NULL(d)) is a one place Boolean function taking a
single diagram that returns TRUE if d contains any
non-WHITE (all WHITE) tesserae else it returns
FALSE.

y ACCUMULATE, denoted (d, ds, o), is a three place�

function taking an initial diagram, d, a set of diagrams of

equal dimension and tessellation, ds, and the name of a
binary diagrammatic operator, o, that returns a new
diagram which is the accumulation of the results of
successively applying o to d and each diagram in ds.

y MAP, denoted (f, ds), is a two place function taking a�

function f and a set of diagrams of equal dimension and
tessellation, ds, that returns a new set of diagrams
comprised of all diagrams resulting from application of f
to each diagram in ds.

y FILTER, denoted (f, ds), is a two place function taking&

a Boolean function, f and a set of diagrams of equal
dimension and tessellation, ds, that returns a new set of
diagrams comprised of all diagrams in ds for which f
returns TRUE.
Given these inter-diagrammatic operations, the

vegetation and state maps as previously described, and a
null diagram (denoted) standing for a diagram with all�

tesserae WHITE-valued, the following more formally
specifies the generation of a diagrammatic response to the
query “Which states have grassland?”:

(, ((x) NONNULL(Grassland x), State),+).� � & � �

This 1) defines a lambda function that ANDs its parameter
with the grassland diagram and returns true if the result is
not null, 2) filters out diagrams from the set of state
diagrams for which this lambda function does not return
true (these are the state diagrams that do not intersect the
grassland diagram), and 3) overlays the remaining state
diagrams onto the null diagram giving the desired result.
Figure 5 details this example.

Responses to all of the queries suggested previously can
be generated via IDR operators. As in the example, those
queries requiring a diagrammatic response produce an
appropriate set of diagrams which are OVERLAYed
together. Those queries requiring a numeric response
produce an appropriate set of diagrams and return the
cardinality of it. For instance, the number of states that
have grassland can be returned by taking the cardinality of
the set returned by the filtering operation instead of
accumulating that set upon the null diagram as is done in
the example. Those queries requiring a Boolean response
return the value of the NONNULL function applied to an
appropriately derived diagram. For instance, a response to
the query "Are there any states that have grassland?" will
derive a diagram as in the example and return the result of
applying the NONNULL function to it. Responses to
queries seeking negative information can be derived by
using the NULL function to produce an appropriate set of
diagrams. For instance, a response to the query "Which
states do not have grassland?" can be generated by simply
replacing the NONNULL function with the NULL function.
Queries seeking responses to conjunctions or disjunctions
need to use set intersection and set union (respectively) to
produce the appropriate sets of diagrams. Responses to
relational (<,>,<=,>=,<>,=) queries need to compare the

cardinality of each set of diagrams produced for each
subquery involved.

Although IDR operators can produce responses to this
wide variety of queries in this domain, it is by no means
intuitive how they should be used to do so. In the
following, we introduce a higher level query language that
permits a user to query diagrams more intuitively,
specifying what they wish to know more than how it should
be generated.

Diagrammatic SQL
Diagrammatic SQL (DSQL) is an extension of Structured
Query Language (SQL) (Date 1989) that supports querying
of diagrammatic information. Just as SQL permits users to
query information in a relational database, DSQL permits a
user to query information in diagrams.

We have chosen to extend SQL for use as our query
language for a number of reasons. As we will show, SQL
has a remarkable fit to the uses we wish to make of it. It is
a reasonably intuitive language that allows specification of
what data you want without having to specify exactly how
to get it. It is a well-developed prepackaged technology
whose use allows us to focus on more pressing system
issues. SQL's large installed base of users provides a ready
and able audience for a fully developed version of the
system. The availability of immediate and imbedded
modes provide means to use the system for both direct
human consumption and further machine processing. The

availability of natural language interfaces to SQL will
allow the system to provide an even more intuitive
interface for its users.

Besides providing a basis for a diagrammatic query
language, a relational database that stores image data can
be used by the system as a storage management component.
Further, as relational databases already manage other types
of data, use of one as a storage management component
with a diagrammatic extension to its SQL gives the system
a means to query both diagrammatic and non-diagrammatic
data simultaneously. This provides a linkage between
heterogeneous data allowing whole new classes of queries,
for example, "What is the total population of states having
desert?", "Which of the states having forest has the highest
per capita income?", "What vegetation is contained by the
state with the highest annual rainfall?", etc.

We have developed a grammar for a subset of DSQL
that allows it to handle queries of the types previously
discussed. Where SQL queries return relations, DSQL
queries return sets of diagrams. These diagram sets can
have their members OVERLAYed upon a null diagram for
diagrammatic results or counted to return numeric results.
Further, these sets can be tested for emptiness to return
Boolean results or used as operands in set operations such
as union, intersection, and difference. Examples of DSQL
syntax and semantics follow.

DSQL Example. Figure 6 shows an example data
definition and sample queries in DSQL. Figure 6a uses

 � X

 � X

 [ACCUMULATE State diagrams that give NONNULL result]

 �

Figure 5: Generation of response to query "Which states have grassland?" via inter-diagrammatic reasoning operators

DSQL to define a schema for the diagrammatic information
required by the examples presented previously. It creates a
table named US that contains two diagram sets named
State and Vegetation. In the current Lisp
implementation, as no connection has yet been established
to a relational database management system, a table is
simply a list of related diagram sets. Each diagram set has
inserted into it a number of diagrams appropriate to the set.
In the current Lisp implementation, these are actually
symbols that evaluate to diagrams.

Figure 6b is a DSQL query that represents the example
query "Which states have grassland?". It has the same
SELECT FROM WHERE clauses that SQL queries have
and these share similar semantics with their SQL
counterparts. Most often, the SQL SELECT clause
specifies what attribute(s) will have values in the resulting
relation. In DSQL, the SELECT clause specifies what
diagram set(s) will have values returned from the query.
The SQL FROM clause specifies which table(s) are
involved in the query. In DSQL, the FROM clause
specifies which list(s) of diagram sets are involved in the
query. The SQL WHERE clause specifies which
condition(s) have to be satisfied by values returned by the
query. This is the same use that a WHERE clause is put to
in DSQL.

The DSQL query in Figure 6b states that the set of
diagrams from the diagram set State of the diagram set list
US that conform to the constraints specified will be
returned. The WHERE clause specifies 1) that the
Vegetation diagram set of the diagram set list US is
restricted to the Grassland diagram only and 2) that the

diagram in the Vegetation diagram set must intersect given
State diagrams. In one context, the SQL IN Boolean
operator returns true if and only if the value on the left
hand side is a value in the attribute on the right hand side.
In DSQL, IN is a Boolean operator that returns true if and
only if the diagrams involved intersect. When sets of
diagrams are involved, as in this and following examples,
the semantics of a DSQL query dictate that this
intersection be tested for each member of each set. In this
case, the Grassland diagram will be tested for intersection
with each member of the State diagram set, in turn,
allowing the query to return only those states that contain
grassland. As previously detailed, the response to this
query is achieved by IDR operators as:

(, ((x) NONNULL(Grassland x), State),+).� � & � �

Figure 6c is a DSQL query that seeks a response to the
question "Which states do not have forest?". The
semantics of this query is much like the previous example.
In this example, though, the Vegetation diagram set is
restricted to the Forest diagram and this diagram must not
intersect with a state diagram for it to be included as part of
the result. The response to this query is achieved by IDR
operators as:

(, ((x) NULL(Forest x), State),+).� � & � �

Figure 6d is a DSQL query that seeks a response to the
question "How many states have desert?". This change in
mode from a diagrammatic response to a numeric response
is signaled by the application of the COUNT function to
the diagram set in the SELECT clause. It is realized by the
following IDR formulation where cardinality is a function
returning the number of members in a set:

Figure 6: DSQL data definition and example queries

a. CREATE SCHEMA;
CREATE TABLE US (State, Vegetation);
INSERT INTO US (State)
VALUES (Alabama, Arizona, ...);
INSERT INTO US (Vegetation)
VALUES (Grassland, Desert, Forest);

b. SELECT State
FROM US
WHERE Vegetation = Grassland

AND
Vegetation IN State;

c. SELECT State
FROM US
WHERE Vegetation = Forest

AND
Vegetation NOT IN State;

d. SELECT COUNT(State)
FROM US
WHERE Vegetation = Desert

AND
Vegetation IN State;

e. EXISTS
((SELECT State
 FROM US
 WHERE Vegetation = Grassland

 AND
 Vegetation IN State)

 INTERSECT
 (SELECT State
 FROM US
 WHERE Vegetation = Desert

 AND
 Vegetation IN State));

f. (SELECT State
 FROM US
 WHEREVegetation = Desert

AND
Vegetation IN State)

 UNION
 (SELECT State
 FROM US
 WHERE Vegetation = Forest

 AND
 Vegetation IN State));

g. (SELECT State

 FROM US
 WHERE Vegetation = Forest

AND
Vegetation IN State)

EXCEPT
(SELECT State
 FROM US
 WHERE Vegetation = Grassland

 AND
 Vegetation IN State);

(((x) NONNULL(Desert x), State)).cardinality & � �

Figure 6e is a DSQL query that asks "Are there any
states that have both grassland and desert?". The fact that a
Boolean response is required is signaled by the use of the
EXISTS function. In SQL, the EXISTS function tests for
an empty (single attributed) relation resulting from a
subquery. In DSQL, it is used to test for an empty set of
diagrams resulting from any query. To produce the set to
be tested using IDR operations, the set of state diagrams
that have grassland is intersected () with the set of state�

diagrams that have desert. If this resulting set is not empty
(), return true else return false. Following is the�empty
IDR realization of this query:

(((x) NONNULL(Grassland x), State)�empty & � �

 �
 ((x) NONNULL(Desert x), State)).& � �

Figure 6f is a DSQL query that seeks a diagrammatic
response to the question "Which states have either desert or
forest. This response is generated by taking the union ()�

of the set of states that have desert and the set of states that
have forest and, then, OVERLAYing them onto the null
diagram. Expressed as IDR operations:

(, ((x) NONNULL(Desert x), State)� � & � �

 �
 ((x) NONNULL(Forest x), State),+).& � �

In a similar vein, Figure 6g is a DSQL query that seeks a
diagrammatic response to the question "Which states have
forest but not grassland?". This response is generated by
taking the difference (-) of the set of states that have forest
and the set of states that have grassland and, then,
OVERLAYing them onto the null diagram. Expressed as
IDR operations:

(, ((x) NONNULL(Forest x), State)� � & � �

 -
 ((x) NONNULL(Grassland x), State),+).& � �

Evaluation of Model and System
To reiterate, our current goal is to develop an instantiation
of a diagrammatic information system knowledgeable
about a particular diagram type (cartograms) in a particular
domain (United States) that produces quality responses to
the full range of queries that would be expected of a
reasonably capable human being given the same
knowledge.

A subset of a DSQL grammar required to handle the
range of queries exemplified in this work has been
developed, a rudimentary compiler that translates this range
of DSQL queries into their IDR formulations has been
constructed, and the IDR operations that produce the
desired output have been realized in Common Lisp. The
current instantiation of the diagrammatic information
system responds to an interesting range of queries posed
against cartograms of the United States. This range of
queries can be characterized as those whose responses are

generated by various combinations of input diagrams and a
priori diagrams. It is arguable that, within this range, the
quality of responses equals or exceeds human capabilities
with the same diagrammatic information. These are
indicators of a promising line of research.

That said, there is much work yet to accomplish to
realize fully the goal of even this relatively simple level.
For example, not all queries that a human would be
expected to answer in the example domain can be handled
currently by the system. These include, for instance,
queries that seek information about area or neighborhood
relations. Further, only cartograms of the same size and
orientation as the a priori diagrammatic knowledge can be
handled by the system. Clearly, humans are capable of
handling such variations. Noise and uncertainty concerns
present in real world data have also been avoided. For
instance, textual annotations on a cartogram, although
helpful to a human, are noise to the current system. Ready
recognition of these limitations is the product of a clearly
delineated task and well-defined goal. These limitations,
then, provide the focus for future work.

Queries that seek information about area provide an
opportunity to integrate IDR with another theory of
diagrammatic reasoning. Furnas' BITPICT theory (Furnas
1992) postulates a logic that deals with diagrams via
BITPICT rule mappings that can be used to transform one
diagram into another and, therefore, allow reasoning from
diagrams to diagrams. A BITPICT rule is meant to convey
that all instances in a diagram of the bit pattern on the left
hand side of a rule are replaced with the bit pattern on the
right hand side of that rule. As interesting as this theory is,
it can be subsumed by IDR by using appropriate sets of
diagrams representing the universal instantiation of
BITPICT rules. With this theory irregular shapes can be
normalized, allowing comparison of their relative areas.
Queries such as "Does California have more desert than
grassland?" can then be handled. Further, domains that
seem less amenable to IDR techniques (for instance, line
graphs) can be made more manageable by use of this
theory (for instance, by shading the area under a curve).

Queries that seek information about neighborhoods
provide an opportunity to integrate IDR with an image
processing theory. Mathematical morphology (Serra 1982;
Serra 1988) is a image processing technique based on
shape that is used to simplify, enhance, extract or describe
image data. Sets of pixels describe an image object.
Information about the geometric structure of image objects
is extracted via use of other objects called structural
elements. Information pertaining to the size, spatial
distribution, shape, connectivity, convexity, smoothness,
and orientation can be obtained by transforming the
original image object by various structural elements. As
primitive mathematical morphological operators can be
modeled by IDR operators, IDR subsumes this theory as
well. One such primitive operator, dilation, can be

intuitively viewed as an operation that adds layers to the
border of a two-dimensional object. Adding a sufficiently
wide layer to a state diagram, for instance, allows this
modified diagram to be tested for intersection with the
other state diagrams. This can produce the set of state
diagrams that neighbor the original state. In combination
with area querying capabilities introduced previously, new
classes of interesting queries can be handled. For example,
"Which of the states surrounding Nevada have the greatest
amount of forest?" is one such query that could then be
handled.

Problems with real world data can be approached using
geometrical transformations. Orientation and size of
cartograms can be normalized by combinations of rotation
and scaling operations. The search for the required
combination and parameters of operations could be guided
by the user. These operations, themselves, are
implementable within the theory of IDR.

In addition to the above extensions, we are developing a
full DSQL grammar, a complete interpreter and compiler to
translate DSQL to IDR, and support for both immediate
and imbedded modes of operation. We also are planning a
relational database implementation with an exploration of
the heterogeneous data inference that such an
implementation will allow. We are also interested in
investigating the extension to DSQL of natural language
interfaces for SQL. Finally, when we have satisfactorily
accomplished the stated goals for this level, we will then
lift constraints and focus on the set of problems introduced
by exploring new diagrams types in new domains.

Acknowledgments
We thank Dr. Chris Armen for his insightful comments and
encouragement throughout the duration of this project.
This research is supported by a grant from the National
Science Foundation.

References

Allen, J. 1998. AI Growing Up: The Changes and
Opportunities. AI Magazine 19(4):13-23.

Anderson, M. and Armen, C. 1998. Diagrammatic
Reasoning and Color. In Proceedings of the AAAI Fall
Symposium on Formalization of Reasoning with Visual and
Diagrammatic Representations, Orlando, Florida. October.

Anderson, M. and McCartney, R. 1995.
Inter-diagrammatic Reasoning. In Proceedings of the 14th
International Joint Conference on Artificial Intelligence,
Montreal, Canada. August.

Anderson, M. and McCartney, R. 1996. Diagrammatic
Reasoning and Cases. In Proceedings of the 13th National
Conference on Artificial Intelligence, Portland, Oregon.
August.

Date, C. 1989. A Guide to the SQL Standard, Second
Edition. Addision-Wesley.

Feigenbaum, E. A. and Feldman, J., eds. 1963. Computers
and Thought, McGraw-Hill.

Furnas, G. 1992. Reasoning with Diagrams Only. In
(Narayanan 1992).

Gelernter, H. 1959. Realization of a Geometry Theorem
Proving Machine. In Proceedings of an International
Conference on Information Processing, 273-282. UNESCO
House. (also in [Feigenbaum & Feldman 1963]).

Larkin, J. and Simon, H. 1987. Why a Diagram is
(Sometimes) Worth Ten Thousand Words. Cognitive
Science 11, 65-99.

Narayanan, N. editor 1992. Working Notes of AAAI
Spring Symposium on Reasoning with Diagrammatic
Representations.

Serra, J. 1982. Image analysis and Mathematical
Morphology, Vol. 1. Academic Press.

Serra, J. 1988. Image analysis and Mathematical
Morphology, Vol. 2. Academic Press.

