
Model-based Support for Mutable Parametric Design Optimization

Ravi Kapadia and Gautam Biswas
Computer Science Department

Vanderbilt University
Nashville, TN 37235

email : ravi, biswas©vuse, vanderbilt, edu

Abstract

Traditional methods for parametric design optimiza-
tion assume that the relations between performance
criteria and design variables are known algebraic func-
tions with fixed coefficients. However, the relations
may be mutable, i.e., the functions and/or coefficients
may not be known explicitly because they depend on
input parameters and vary in different parts of the
design space. We present a model-based reasoning
methodology to support parametric, mutable, design
optimization. First, we derive event models to repre-
sent the effects of the system’s parameters on the ma-
terial that flows through it. Next, we use these models
to discover mutable relations between the system’s de-
sign variables and its optimization criteria. We then
present an algorithm that searches for "optimal" de-
signs by employing sensitivity analysis techniques on
the derived relations.

Introduction
Traditional methods for parametric multicriteria de-
sign optimization in Operations Research, e.g., (Steuer
1986) and Artificial Intelligence (see examples in (Tong
&; Sriram 1992)) assume that the relations between per-
formance criteria and design variables are known al-
gebraic functions with fixed coefficients. However, in
many real world applications, the relations may be mu-
table, i.e., the functions and/or coefficients may not be
known explicitly because they depend on input param-
eters and vary in different parts of the design space.

We employ model-based reasoning techniques to de-
velop a framework for parametric, mutable design op-
timization. Given a configuration of the system, we
are interested in tuning its design variables to optimize
desired objectives while meeting specified constraints.
We describe techniques that start from a valid design
solution and generate better solutions for the required
artifact. Our methodology first develops event models
that capture the effects of the system’s parameters on
the material that flows through it. Next, we use these
models to discover mutable relations between the sys-
tem’s design variables and its optimization objectives.

1Copyright ~)1999, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

Then, we employ sensitivity analysis based heuristic
techniques to determine directions and magnitudes of
change of design variables to generate better design so-
lutions.

Mutable design optimization
A parametric design optimization problem contains the
following elements. Optimization objectives, Ya, . . . , ym,
represent behavior and performance parameters that
must be optimized, e.g., speed of execution and man-
ufacturing cost. Design variables, vl,..., Vn, represent
system parameters that can be changed by the designer
to affect system performance and attain optimization
objectives. Design constraints, C1 , Cp, on design
variables and system behavior arise from domain prin-
ciples and serve to define valid designs. Optimization
relations describe how changes in design variables cause
changes in optimization criteria. In general, the relation
between each optimization objective yi and the design
variables Vl,..., vn, for a given input task I is defined
as: yi ~ Fi(I, vl,..., vn), where the relation operator
~e {=,<,>,<,>,~}.

The relation between yl and the design variables
vl ,v,, is invariant if Fi(I, Vl,... ,v~) = ~=1 cj
vj, and each cj is a constant. We refer to Yi as an invari-
ant optimization objective (Steuer 1986; Tong 8z Sriram
1992). When Fi(I, vl, ..., vn) = ~j=l fij(I, vl, . . . , v,),
vj, the relation between Yi and vl,...,vn, is muta-
ble since the coefficient of vj is dependent on I and
vl,...,v,. We refer to Yi as a mutable optimization
objective.

In this paper, we consider real world design problems
which combine both invariant and mutable optimiza-
tion objectives. In our applications, fij (I, Vl,..., vn) is
not a continuous function over the design space, i.e., it
varies at different points in the design space. Due to
the complex nature of the system, it is not practical to
express the function in the form of an analytic expres-
sion. Typically, it is possible to determine the function’s
value at a particular point in the design space through
simulation. We use model-based reasoning techniques
to determine each fij(I, vl,...,, Vn) for a specified in-
put task I and a given design solution.

From: AAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

image

she¢! ~ . . ~ slm¢l
in~ out

Figure 1: Reprographic machine

Reprographic machine

As a test bed for our design optimization methodol-
ogy, we use a digital reprographic machine (e.g., printer,
photocopier), which is a computer-controlled electrome-
chanical system that produces documents by manipu-
lating images and sheets of paper. Given a configu-
ration for this system, we are interested in tuning its
parameters so that the designed machine optimizes job
completion times and manufacturing cost, while meet-
ing specified design constraints.

In the simplified form of Fig. 1, the system prints
simplex (one-sided) and duplex (two-sided) sheets.
sheet enters the machine through an input port. An
image is transferred (or printed) to the sheet as
passes through the transfer component. A simplex
sheet passes through without inversion (i.e., it bypasses
inversion) on its way to the output port. A duplex
sheet is inverted, routed to the duplex transport along
the duplex loop, an image is transferred on the back
side of the sheet (transfer), and the sheet is inverted
again (inverter), before it is sent to the output port.
Parameters that affect desired optimization criteria in-
clude the transit times of the components, and the ca-
pacity of buffers at the input and output ports (Kapa-
din & Fromherz 1997). To generate a document or job
(i.e., an ordered sequence of simplex and duplex sheets),
the transportation and printing of sheets must satisfy
behavior constraints, for example, sheets must be ma-
nipulated such that they are available at the output in
the specified order, and they must not collide with each
other anywhere in the paper path.

State-of-the-art reprographic machines are equipped
with control software that determines optimal times to
schedule its operations (Kapadia ~ Fromherz 1997).
Table 1 shows an optimal schedule for the document
consisting of one simplex sheet followed by two du-
plex sheets, and then a simplex sheet (i.e., sl, d~, ds, s4)
which is completed in 12 time units. While generating
this schedule, we assumed the following parameter val-
ues: printing an image on to a sheet requires 1 unit
of time, inverting a sheet takes 2 units, transporting
a sheet along the duplex loop requires 3 units, and by-
passing inversion takes 1 unit. The job completion time
is a function of the system parameters and the sched-
ule for the job. For example, the arrival time of s4 at
the output in Table 1 is a function of component tran-
sit times and the sequence of events that preceded it.
There is no predefined optimization function that ap-
plies to all jobs; the function may be different for each
new job. Furthermore, with a different set of design pa-

Initial Design
Generation

initial~solution
Verification and

Simulation

~.~ valid ~ solution
/ I Modification

g?e~.~l~ [] Optimizatio~
somtlon I I RelationGenoration

~,’ ~ ’
II s~l~tio. [¢-~vlodficaton g to,]

Figure 2: Design optimization methodology

rameters, different schedules are possible for the same
job description. For example, if inverting a sheet takes
1 time unit, and bypassing inversion takes 3 units, the
optimal schedule for Sl, d2, d3, s4 introduces sheet d2 at
time 0, ds at time 1, Sl at time 2, and s4 at time 7, which
generates the complete job in 11 time units. Thus, opti-
mizing the behavior of the reprographic machine system
comprises a mutable optimization problem.

Design optimization methodology
Fig. 2 shows the architecture of our design optimization
methodology. Using design constraints, initial design
generation produces a valid, though usually not opti-
mal, initial solution (typically, one that has worked in
similar cases in the past). Simulation uses the system
model to generate system behavior for a given design
solution and specified input tasks chosen from the tar-
get workload. Verification checks that the solution and
its behavior satisfy specified design constraints. Mod-
ification encompasses multiple tasks. Optimization re-
lation generation maps each mutable optimization ob-
jective to system design variables for a particular de-
sign solution. Modification generation identifies a set
of modifications to a design solution that improve de-
sired objectives. Modification selection compares differ-
ent modifications and picks the most promising one to
generate the next design solution. Our methodology it-
erates through these tasks until it finds the best design
solution.
Parameterized system model. Component param-
eters model attributes of the system components that
affect the behaviors of interest. Consider a represen-
tative set of parameters for the reprographic machine
system shown in Fig. 1. kl is the transit time of the
transfer component, k2 is the transit time for inversion
of a duplex sheet, ks is the transit time for bypassing
inversion, and k4 is the transit time for transporting a
duplex sheet for a second printing. Our test bed is best
modeled as a discrete event system with discrete valued
parameters. In (Kapadia, Biswas, 8~ Fromherz 1997)
adapted the Environment Relationship (ER) net frame-
work of (Ghezzi et al. 1991) (an extension of basic
Petri nets, that incorporates time modeling) to repre-
sent our system model. Tokens represent material (e.g.,
sheets) and their attributes capture the material’s prop-
erties. A component is a collection of places and trail-

Component Place in Time
ER net 0 1 2 3 4 5 6 7 8 9 10 11 12

Input Pl d2 d3 Sl d2 d3 84

Transfer P2 d2 d3 Sl d2 d3 84
Inverter P3 d2 d3 Sl d2 d3 S4
Transport P4 d2 d3
Output P5 81 d2 d3 84

Table 1: Optimal printing sequence for document sl, d2, da, s4

: ...:...:.....:.: :.:.......:.........
i!; b~ass ! i
i’:’"p .. transfer: P2 :: ~’]-~L : PJ ~:

in ut ~

i~e~il i

~ inverter t2 ~ t6

Figure 3: Reprographic machine model with EFt nets

sitions. Places correspond to input and output ports.
Transitions correspond to functions that the component
performs and associated actions describe its behavior,
i.e., how the function transforms the material flowing
through the component. Component parameters are
properties associated with transitions and places in an
ER Net. For example, in Fig. 3 which shows a system
level model for the reprographic machine of Fig. 1, the
inverter component is modeled by transitions t2 and tu,
places p~ and P3, and ks and ks represent the transit
times for the invert and bypass operations, respectively.
The ER net model is used to simulate the behavior of
the system as shown in Table 1 and to develop parame-
terized optimization relations between design variables
and optimization objectives.
Design constraints. In this paper, we present two
classes of design constraints. Domain constraints de-
fine valid designs by constraining the domains of de-
sign variables. Cost constraints capture our intuition
that associated with each decision is a price that must
be paid to implement that decision. Other classes of
constraints, including behavior and performance con-
straints, are covered in (Kapadia 1999). We present
examples of domain and cost constraints later in the
paper.
Objectives. A system should be designed and eval-
uated with respect to its expected use. For instance,
a printer used mainly for books and magazines will re-
quire a different set of parameters from another used for
printing short reports and office memos. We assume
that a target workload, J = {J1,J2,...,Jj}, which is
composed of a finite set of the most likely jobs in the
user’s workplace, captures the intended user’s workload
characteristics. An objective is to develop a design solu-
tion that optimizes the performance of the system with

respect to this workload, where the performance of a
design solution on a job is measured in terms of the
job completion time (jct). In the examples that follow,
we assume J -- {{81, d2, d3, s4}, {sl, d2, d3, s4, ds, d6}}1,

and our objective is to minimize job completion time for
each job in J. Simultaneously, the designer may choose
to minimize manufacturing cost (Cost).
Design solution. A design solution is an assignment
of values to design variables. A valid design solution is
one that meets design constraints, while an optimal de-
sign solution is a valid solution which optimizes desired
objectives. However, a design solution that optimizes
one set of jobs may not produce good solutions for oth-
ers, and the objectives of minimizing cost and maximiz-
ing performance are often in conflict with each other.
Thus, there may be no single design solution that opti-
mizes all objectives. A non-inferior design solution is a
valid solution with the property that there is no other
known valid solution that will yield an improvement in
one criterion without causing a degradation in at least
one other criterion. Our methodology develops non-
inferior design solutions which are accepted or rejected
based on the designer’s preferences. We allow designers
to articulate their preferences either prior to the gener-
ation of design solutions, after the generation of design
solutions, or progressively, i.e., during the optimization
process (similar to (Mollaghasemi & Evans 1994)).
Design optimization algorithm. Our design opti-
mization methodology is implemented as a hill climbing
algorithm as follows.

1. Generate mutable optimization relations for a given
design solution from the ER net model and input
task descriptions. This may require simulation
of system behavior one or more times, e.g.,
for each job in the target workload:

(a) simulate its behavior;
(b) generate a relation between the job’s compl-
etion time and the system’s design variables.

2. Generate a set of modifications that lead to better
performance on the objectives.

3. If there is no valid modification, stop.
4. Otherwise, select the "best" modification and

apply it to the existing solution.

ZA simplifying assumption in this paper is that each
job in the target workload has equal priority. (Kapadia &~
Fromherz 1997), describe techniques for dealing with jobs
with different priorities.

x y implies that y ~ x + z /~ 1

Figure 4: Event model for Table 1

5. Modifying the parameters of a design solution cha-
nges the mutable optimization relations. Determ-
ining a new relation may require simulation, whi-
ch is computationally expensive and we want to
avoid it unless it is necessary. Thus, repeat
steps 1 to 4 with the following changes.
(a) Before step l(a) check if simulation is required

to generate the new relation. If yes, perform
l(a), otherwise skip it for that objective.

(b) Before step 2, check if the new design solution
is inferior to the best known solution. If yes, st-
op. Otherwise, make it the best known solution.

In this paper, we focus on steps 1 and 2 of this algo-
rithm.

Generating optimization relations

The relationship between a mutable optimization ob-
jective y/, the input task I, and the design variables
vi,...,vn, is: Yi ~)-~y=l fij(I, vl,...,va) * vj. Gener-
ating a mutable optimization relation requires building
an event model (that reflects the mutability of fij) from
an ER net behavior simulation for a given design solu-
tion and document description (as shown in Table 1).
An event model is a directed acyclic graph where each
vertex represents an event (informally, an event is the
arrival of a token in a place in the ER net system model)
and a directed edge between two vertices represents a
precedence relation between the corresponding events.

Fig. 4 shows the event model for the events depicted
in Table 1. Formally, t(r)~ denotes the event that the
i th token (i.e., sheet) arrives in place j on its th pass
through the machine. Edges in the event model corre-
spond to temporal constraints among events in the ER
net model of Fig. 3 as explained below (see (Kapadia
1999) for details).
¯ There is an edge for every firing of a transition in
the generation of the system’s behavior. The transit
time associated with the transition is represented by
the weight along the corresponding edge in the event
model, e.g., Fig. 4 shows an edge t(1) 1 -+ t(1)~ with
weight kl which represents transition tl which prints
an image to a sheet (where t(1) 1 is tlle event that en-

ables tl and t(1)~ is the result of firing tl).
* Sheets arrive at the output (Ps) in the specified order,
e.g., Sl must arrive before d2 at the output. Thus, we
have the following order constraints: Vi = 1,..., n, r =
1,2: t(r)~ < t(r)~+l. Each order constraint is repre-
sented by a dotted edge with a weight of I (since there
must be a separation of at least one unit of time between
the arrival of two successive sheets at the output).
* There must be no collisions in any place in the ma-
chine, so two or more sheets cannot be present in
the same place at the same time. Thus, we have
the following resource allocation constraints: Vx, y =
1 ,n,p,q = 1,2 : ifx ~5 y, t(p){ ~ t(q) j. In a

known, valid sequence of events, t(p)Ji > (<)t(q) j. The
dotted edge t(p) j -+ t(q)Jk indicates that event t(p) j pre-
cedes t(q){.. The weight of the edge is the largest transit
time (w) of all the transitions for which place j is
input, since tokens must arrive at least w units apart
in j to avoid a collision after the firing of any transition
enabled by the tokens in j.

We get relations between design variables and opti-
mization criteria as follows. First, we substitute param-
eter values for the edges in the event model. Then, we
use a topological sort to get the critical path which es-
tablishes a lower bound on the time that must be spent
to execute the job. For the example of Fig. 4, we get:
t(1): --+ t(1).2 --> t(1)~ --+ t(1). 4 --+ t(2)1 --+ t(2)22 --+
t(2)~ --+ t(2): --+ t(2): --+ t(1):. Finally, we
lower bound on the job completion time by symbolically
summing the parameters along the critical path, e.g.,
job completion time for J1, jet1 > 2 . kl + 3 * k2 + k4. To
extract better performance from the system, we must
direct our efforts at "minimizing" this relation.

Each job’s event model may have a different struc-
ture and, therefore, it may have a different critical
path leading to a different optimization relation. For
example, job J2 = sl, d~, dz, s4, ds, d6, which is com-
pleted in 21 time units has the optimization relation:
jct2 > B* kl +6*k2+ 2*k4.

When the designer modifies the parameters of a de-
sign solution, event models (and their optimization rela-
tions) may change, as stated in step 5 of our design opti-
mization algorithm. If the structure of an event model
remains the same (i.e., the set of vertices and edges
is identical, but only some weights on the edges are
changed) it requires updating the weights of the edges
and then performing a topological sort to discover a
new optimization relation. Otherwise, it is necessary to
derive a new event model by simulating system behav-
ior. (Kapadia 1999) describes the use of strong domain
knowledge to predict when the structure of an event
model may change with alterations to a design solution
necessitating the simulation of system behavior.

Modification generation

Given a design solution, modification generation iden-
tifies a set of variables that must be changed and the
direction and magnitude of change for each variable in

this set to bring about desired improvement in the op-
timization objectives. We use the sensitivity of an op-
timization objective’s lower bound to changes in design
variables (e.g., incrementing k4 by 1 increases the lower
bound for jct2 by 1, but incrementing k2 by 1 increases
it by 6) to determine suitable parameter modifications.

The following example illustrates our approach. We
assume that the initial design solution is kl = 1, k~ = 2,
k3 = 1, and k4 :-- 3. We have the following mutable op-
timization relations: jctl > 2 * kl + 3 * k2 + k4, and
jct2 > 3 * kl + 6 * k2 + 2 * k4. The following invariant re-
lation: Cost = 65-5*kl-3*k2-3*kz-2*k4, indicates
that lowering transit times increases manufacturing cost
and that the cost is more sensitive to changes in some
design variables than others. The constant 65 repre-
sents fixed manufacturing costs. We assume the fol-
lowing domain constraints: kl E {1, 2}, k2 E {1,2, 3},
k3 E {1,2, 3}, and k4 E {2, 3, 4, 5}. (See (gapadia 1999)
for details on cost and domain constraints.)

We extend the sensitivity analysis method of (Biswas,
Kapadia, & Yu 1997) for qualitative, steady state di-
agnosis to identify parameter modifications for design
optimization. Let Y = {yl,y2,...,Ym} be the set of
optimization criteria and V = {vl,v2,...,v,~} be the
set of design variables. We have optimization relations
between V and Y. A high level description for our mod-
ification generation algorithm is presented below.
(1) Establish a qualitative (+,-,0) relationship
tween each optimization criterion (Yi) and each design
variable (vj) by determining the sensitivity of Yi with
respect to vj. This is obtained by taking the partial
derivative cgyi/cgvj,Vi, j, e.g., OjcQ/Ok2 = 3. The rela-
tionship is + (-) if an increase in vj causes an increase
(decrease) in Yi and 0 if vj has no effect on Yi.
(2) Choose an appropriate direction of change for each
Yi. If Yi is to be maximized (minimized), increase Yi,
i.e., Yi+ (decrease Yi, i.e., Yi-).
(3) Express the relation between yi and V as a Conjunc-
tive Normal Form (CNF) expression, e.g., (a) Cost- +--
(kl+) V (k2+) V (k3-t-) V (k4+), jcQ-~ (kl -)
(k2-) V (k4-), and jct2 - e- (kl-) V (k ~-) V (k
The logical formulas represent cause-effect relations be-
tween optimization criteria and design variables, e.g.,
from relation (a) we see that decreasing kl, k2, or
reduces jet1.
(4) Find a satisfying assignment to the CNF formula
Yl Ay2A. ̄ .Aym. While this problem is inherently expo-
nential, CNF satisfiability algorithms like GSAT (Rus-
sell & Norvig, 1995) have been reported to solve large
problems in reasonable times. In our example, the fol-
lowing satisfying assignments form a set of qualitative
modifications: (k,+) A (k2-), (kl+) A (k4-),
(k~+),(~l-) ^ (k~+),(kl-) ^ (k~+),(k~+)
(k4-), (k~-) ̂ (k~+), (k2-) ̂ (k4+), (k~+)
(5) Assign magnitudes to the design variables in the set
of qualitative modifications that satisfy the following
difference relations:
Ay1 = Av1 , o_YA. _~_ Av 2 , O-Y^. A- . AVn * O-y^"

OVl ¢9U2 ~ ’ ’ OVa ’

Ay2 AV1 * 0__~ _~_ AV2 * Oy2 ..{_ . Av n , Oy2

= OVl Or2 " " O~Ju ’ " " " ’

Aym : AVl * ~ A- Av2 * Oy~ -t- . Avn * Oy~Or1 Ovz " " Ov~ "
In our example, we have the following relations:
ACost = -5 * Akl - 3 * Ak2 - 3 * Ak3 - 2 * Ak4,
A jet1 = Akl + 3 * Ak2 + 1 * Ak4,
A jet2 -: 3 * Akl + 6 * Ak2 + 2 * Ak4.
In general, we cannot directly solve these equations to
generate magnitudes for design variable modifications
because we do not know values of Ayl (Vi = 1,..., m)
and there may be no closed-form solution to this sys-
tem of equations. Instead, we analyze each candidate to
determine the magnitudes of modification for its vari-
ables as follows. A variable in a modification is labeled
free if there is no optimization criterion which is ad-
versely affected by its direction of change, otherwise
it is bound. Then, we use the following heuristics to
determine optimal parameter magnitude changes. To
each free element, greedily assign the largest magni-
tude of change consistent with domain constraints to
maximize its beneficial effects on optimization criteria.
To each bound element, assign the smallest incremental
change consistent with its constraints. This minimizes
its adverse effects on the optimization objectives. For
example, in modification candidate (k2-) A (k3-4-),
is bound (since k2- increases Cost) so we assign it the
smallest increment, i.e., Ak2 = --1, while k3 is free, so
we assign it the largest increment, i.e., Ak3 ---- 2.
(6) If the modification pushes a variable outside its
range as defined by its domain constraint, the resulting
design solution is invalid. Eliminate any modifications
that result in invalid solutions by checking domain con-
straints.
(7) Finally, eliminate inferior modifications. For exam-
ple, (k3+) A (k4-) with Ak3 = 2, Ak4 = -1 has
following effect on optimization objectives: ACost =
-4, Ajctl = -1, Ajct2 = -2 while (k2+) A (k4-)
Ak2 = 1, Ak4 = -1 affects the optimization criteria
as follows: ^Cost = -1,Ajctl = 1,Ajct2 = 4. Since
(k3+) A (k4-) is better than (ku+) A (k4-) every
criterion, the latter is an inferior modification and can
be eliminated. We are developing strategies that in-
corporate designer’s preferences to discriminate among
multiple non-inferior modifications.

Interactive design navigation

We have built a modeling and design optimization pro-
totype tool in the language CLP(fd) (a constraint logic
programming language over finite domains) to model
systems using El% Nets, and generate and optimize their
designs. The designer and our tool may collaborate to
exploit their different strengths. The user provides the
system with an initial design solution which is valid but
non-optimal. The design tool simulates system behav-
ior for this solution, discovers mutable optimization re-
lations, and applies sensitivity analysis techniques to
identify suitable modifications. The user may guide
the tool to explore the more promising regions of the
design solution space by choosing which modifications

I. Design: ki=1,
k2=2, k3=1. k4=3

Performance:
Jct1=12, jet2=21, cost=45

0ptimizetion relations:
jctl >=

2*kl + 3"k2 + l’k4
jct2 >=

3*kl + 6"k2 + 2"k4
cost =

65-5"k1-3*k2-3*k]-2*k4

~odl flcat lon I:
dec k2 by I, inc k3 by 2

! changes jctl by -3,
~ct2 by -6,¢ost by -3

~odi fication 2:
dec k4 by i, inc k3 by 2

Ichanges jctl by -I,
L jct2 by -2,cost by -4

12

2. Design: k1=1, k2=l, k3=3, k4=3

Performance: jct i=11, jct2=15, cost=42
Optimization relations:

jctl >= 2*kl + 2"k2 + ltk3 + l’k4
jct2 >= 4*kl + 2"k2 l’k3 l’k4

cost = 65 -5"kl -3"k2 -3"k3 -2"k4
MOdlfication I: dec k3 by l,inc k4 by I
changes jctl by 0,jet2 by 0,cost by 1
Modification 2: inc kl by 1,dec k4 by I
changes ~ctl by l,jc~2 by 3.cost by -3

3. Design: kl=2, k2=l. k3=3, k4=2

Performance: jct1=17, jct2=25, cost=39
Optimization relations:
jctl >= 4*kl + 2"k3 + l’k4
jct2 >= 6*kl + 2"k2 + 2"k3 ÷ 2tk4
cost = 65 -5tkt -3"k2 -3"k3 -2"k4

Figure 5: Interactively navigating the design space

to apply and which performance criteria to optimize.
A trace of the tool’s navigation of the design space is
shown in Fig. 5. In the initial solution state, the user
chooses modification 1 to generate the second solution.
Next, he chooses modification 2 to generate the third
solution. Having examined three states the user may
choose solution 2, i.e., kl = 1, k2 = 1, k3 = 3, k4 -- 3
with performance jctl = 11, jct2 = 15, cost = 42 which
is non-inferior in the space of known design solutions
(but not necessarily non-inferior in the context of all
solutions).

Discussion
This paper presents a mutable optimization problem
and describes model-based reasoning techniques to ad-
dress different aspects of this problem. We present a
model-based reasoning approach to discover mutable
optimization relations and a sensitivity analysis algo-
rithm that uses the mutable relations to optimize mul-
tiple conflicting performance objectives. We apply our
methods to optimize a real system’s dynamic perfor-
mance parameters. The techniques described in this
paper are part of an overall methodology to address
system-level design optimization where the components
of the system may belong to different domains (Kapadia
1999).

(Kapadia &; Fromherz 1997) address dynamic design
optimization using constraint satisfaction techniques
but their search process is only slightly better than
exhaustive search. Our heuristic modification gener-
ation algorithm explores fewer solutions in the design
space. (Goel &; Chandrasekaran 1989), have also used
model-based reasoning to effectively navigate the de-
sign space. They represent interactions in the form of
directed, acyclic causal graphs that are created a pri-
ori by system designers. Our event models, which are
generated dynamically, are more similar to the work of
(Williams 1990), who develops a network of interactions
by envisioning the behavior of the system from a model
of its components and their interconnections.

Representing an event model as a graph structure

will allow us to apply a number of well known algo-
rithms for analyzing system behavior (e.g., maximum
flow, shortest path) which may support other forms of
optimization (e.g., capacity optimization). Our design
optimization algorithm is sensitive to the initial solu-
tion: if the initial solution is in a good region of the
design space, optimal or near optimal solutions will be
found; otherwise, it is likely to get trapped in a local
optimum. We must formalize our techniques for detect-
ing changes to optimization relations with alterations in
design solutions without resorting to simulation. Pre-
liminary results for our methodology are promising but
extensive testing and empirical evaluation is required.
We will study sealability issues by considering a larger
and more diverse target workload and a larger set of
component parameters. We anticipate that some form
of problem decomposition may be required to overcome
the increase in time complexity as the number of opti-
mization criteria rise for a larger workload.
Acknowledgements. We thank Markus Fromherz for
helping us refine the ideas presented in this paper.

References

Biswas, G.; Kapadia, 1%.; and Yu, X. 1997. Com-
bined qualitative-quantitative diagnosis of continuous
valued systems. IEEE Trans. on Systems, Man, and
Cybernetics 167-185.

Ghezzi, C.; Mandrioli, D.; Morasca, S.; and Pezze,
M. 1991. A unified high-level petri net formalism for
time critical systems. IEEE Trans. on Software Engg.
160-172.

Goel, A., and Chandrasekaran, B. 1989. Functional
representation of designs and redesign problem solv-
ing. In Proc. of AAAI-89, 1388-1394.
Kapadia, R., and Fromherz, M. 1997. Design op-
timization with uncertain application knowledge. In
Proc. of the Tenth Intl. Conf. IEA/AIE-97, 421-430.
Kapadia, R.; Biswas, G.; and Fromherz, M. 1997.
Hybrid modeling for smart system design. In Proc.
Tenth Intl. FLAIRS, 111-115.
Kapadia, R. 1999. Model-based support for system-
level mutable parametric design optimization. Techni-
cal Report TR-99-02, CS Dept. Vanderbilt University,
Nashville TN 37235.
Mollaghasemi, M., and Evans, G. 1994. A unified
high-level petri net formalism for time critical sys-
tems. IEEE Trans. on Systems, Man, and Cybernetics.
1407-1411.
Steuer, R. 1986. Multiple Criteria Optimization: The-
ory, Computation, and Application. John Wiley &;
Sons.
Tong, C., and Sriram, D. 1992. Artificial Intelligence
in Engg. Design. Vol. L Academic Press Inc.

Williams, B. 1990. Interaction-based invention: De-
signing novel devices from first principles. In Proc.
AAAI-90, 349-356.

