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Abstract

This paper presents an approach to model-based
diagnosis that first compiles a first-order system
description to a propositional representation, and
then solves the diagnostic problem as a linear pro-
gramming instance. Relevance reasoning is em-
ployed to isolate parts of the system that are re-
lated to certain observation types and to econom-
ically instantiate the theory, while methods from
operations research offer promising results to gen-
erate near-optimal diagnoses efficiently.

Introduction and Motivation
A central problem of model-based diagnosis is the com-
putational complexity of the underlying diagnostic rea-
soning task (see, e.g. Eiter and Gottlob (1995)). There-
fore, several researchers have proposed to preprocess a
given system description, mostly a propositional theory,
such that the ’compiled’ form can be processed more
efficiently (Williams & Nayak 1996; Darwiche 1998).
In many cases, however, it is more natural to describe
systems in a more expressive language, such as first-
order logic. In this paper, we will consider the case
where the system description is given as a first-order
Horn theory (without function symbols), and compile
this description to a propositional one. Techniques
from relevance reasoning (Levy, Fikes, ~ Sagiv 1997;
Schurz 1999) will be employed to keep the resulting
propositional theory within manageable size. More
specifically, relevance reasoning is used to filter out the
part of the system that is ’relevant’ for certain obser-
vation types, and to economically instantiate variables
by appropriate constants (usually denoting values of
system attributes). In this way, we may preserve the
compactness of first-order descriptions, and allow for
processing an efficient propositional theory. Thus we
qualify the notorious expressivity/efficiency tradeoff.

Given a propositional system description, we will use
the Networked Bubble Propagation (NBP) mechanism
(Ohsawa & Ishizuka 1997), a high-speed hypothetical
(’abductive’) reasoner, as the diagnostic engine. Fo-
cusing on most-probable (least-expensive) diagnoses 
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realized by assigning a numerical weight to each hy-
pothesis (possible system fault). The NBP mechanism
tries to find an optimal solution, i.e., a diagnosis with a
minimal sum of individual faults’ weights, and actually
generates a near-optimal solution in polynomial time
of approximately 0(n14), where n the number of hy-
potheses in the problem formulation. The efficiency of
the NBP mechanism relies on methods from the area of
0-1 integer linear programming.

Following a comprehensive step-by-step approach, we
show how a general definition of model-based diagno-
sis can be translated to a integer linear programming
problem. Although the possibility of such a translation
is not completely surprising, we are not aware of any
previous attempts in the literature. In the planning
field, however, Bylander (1997) shows how to translate
propositional STRIPS planning instances to linear pro-
gramming instances, and Williams and Nayak (1996)
recast their model-based configuration manager as a
combinatorial optimization problem.

The main contribution of this paper can be seen as
bringing together methods from the fields of deductive
databases and operations research. In particular, rele-
vance reasoning is employed to preprocess a given be-
havioral model encoded in first-order Horn logic, and
operations research methods allow to efficiently solve
diagnosis problems.

The rest of the paper is organized as follows. In the
following section, we explain some notions related to
model-based diagnosis. Then we introduce a general
framework for extracting information relevant to find-
ing diagnoses, relative to certain observation types and
the structure of the system. Moreover, we discuss a
sophisticated instantiation method based on relevance
reasoning. Next, we explain how hypothetical reasoning
problems (corresponding to diagnostic problems) can 
recast as problems of integer linear programming. We
also report on some preliminary experimental results
obtained in testing our approach. Finally, we discuss
related work and draw some conclusions.

Model-based Diagnosis
A diagnostic problem is characterized by a set of ob-
servations to be explained, given a behavioral model
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of some system (device). The behavioral model of 
system describes its normal and/or faulty behavior. A
solution to a diagnostic problem (a diagnosis for short)
is a set of hypotheses which, if assumed, would ’ex-
plain’ the observations. We adopt the general defini-
tion of a diagnostic problem proposed by Console and
Torasso (1991), which subsumes both abductive and
consistency-based definitions of diagnosis.

Definition 1 A diagnostic problem DP is a quadruple
DP = (T, I, CXT, OBS), such that
(1) T is behavioral model, i. e., a set of Horn clauses
of the form ~o(-Yn+l) ~_ ql(X1 A ... qn(Xn)" where
p_(Xn+I), ql(X1), ..., q,(Xn) are atomic formulas, 
Xi denotes the sequence of variables Xi,,,...,Xi,m~.
Each qi in the body (the RHS of the clause) denotes
either (i) a state that can be assumed as a hypothesis
(an abducible), or (ii) context conditions on which the
behavior of the system depends, such as ’inputs’ to a
device, or (iii) a state that can neither be observed nor
assumed (internal state). The atom p in the head (the
LHS of the clause) denotes either a state that can be
observed or measured and for which we want to find an
explanation, or an internal state.
(2) I is a set of inconsistency constraints, i.e., a set of
Horn clauses of the form "± ~ q1(~1) ^ ... A q,(2,)"
where each qi denotes a context condition or a hypoth-
esis, and the symbol J_ denotes the logical constant fal-
sum.

(3) CXT is a set of variable-free (ground) atoms 
denote context conditions (inputs).
(4) OBS is a set atoms that denote observations.
We require that T contains no cycles, i.e., a state must
not be a direct or indirect cause of itself. The class of
acyclic theories properly contains the class of so-called
’tree-structured’ theories (Stumptner & Wotawa 1997)
where each state can cause at most one other state.

The notion of’diagnosis’ will be explained by giving a
definition of a solution to a diagnostic problem. A diag-
nostic procedure allows to generate a solution to a diag-
nostic problem automatically. Since the diagnostic pro-
cedure will be implemented as a hypothetical reasoning
mechanism, we first reformulate a diagnostic problem
as a problem of hypothetical reasoning. We borrow the
reformulation suggested by Console and Torasso (1991).

Definition 2 Let DP = iT, I, CXT, OBS) be a di-
agnostic problem. A hypothetical reasoning problem
HRP corresponding to DP is a quadruple HRP =
(T, I, CXT, (0+, 0-)), such that

¯ 0+ C OBS;
¯ o- = {-~m(v~) : m(vD OBS, for each value viof

m different from vj }.

Here, O+ denotes the set of observations that have to
be covered by the solution; O- is the set of observations
that ’contradict’ (or ’conflict with’) the observations.

The following definition of a solution for a HRP prob-
lem is an extension of the definition given by Console
and Torasso (1991).

Definition 3 Let HRP = (T, [, CXT, (0 +, 0-)} be
a hypothetical reasoning problem, and 7{ a set of ab-
ducibles. A set H C 7t is a solution hypotheses set for
HRP if and only if

¯ for eachm60 +: T[3CXTUHF-m;

¯ TUCXTUHUO-!/±;

¯ ItJCXTUH(/_I_.

For convenience, we will sometimes call a solution hy-
potheses set simply a solution or explanation. The sec-
ond condition in the definition is called consistency con-
straint in (Console ~ Torasso 1991). We also account
for the case where certain solution sets are not admis-
sible, by means of so-called inconsistency constraints
(third condition). This condition is not present in (Con-
sole & Torasso 1991).

Reformation by Relevance Reasoning

In the off-line reformation (or compilation) phase, the
first-order system description is first partitioned into
subtheories, possibly indexed with an observation type.
Next, clauses that cannot contribute to the solution of
any query, also called strongly irrelevant clauses, are
removed from the subtheory (Schurz 1999). Finally,
the query-tree idea is employed to obtain exactly the
set of ground clauses relevant to a query type (Levy,
Fikes, & Sagiv 1997).

Theory Factorizing

For the case of tree-structured systems, the idea of the-
ory factorizing is to split a theory T into disjoint sub-
theories T1 .... , T, such that no clause C in a given sub-
theory Ti resolves with some clause D from a different
subtheory Tj. This means that the search space for a
given atomic query type p(X) can be restricted to a sin-
gle subtheory Ti. The theory factorizing algorithm is
described in (Prendinger 8~ Ishizuka 1999) and can 
summarized as follows: (i) if a clause C does not resolve
with any independent subset of the already generated
partition, then {C} is added as a new element of the
partition; (ii) if C resolves with independent subsets
7)1, ..-,/)k in the partition, then those subsets and 
form a new element of the partition while the old ele-
ments 7)1, ...,Ok get cancelled. Theory factorizing has
to be applied only once, and can be done in polynomial
time. Note that factorizing is an application of the for-
mal notion of independence (Lang 8z Marquis 1998).

In the more general case of acyclic theories, factor-
izing is performed by means of an algorithm that com-
putes all clauses that are ’reachable’ from a query type.
Informally, a clause C is reachable from a query type
p(X) if there exists some path from p(X) to the 
of C. The set of clauses reachable from p(.~) is de-
noted by Tp. It is important to note that in either case,
factorizing can be done by only considering the query
types such as p()(), i.e., independent of particular 
stantiations such as p(a) or p(b).



Theory Simplification

A given (independent) theory may still contain strongly
irrelevant clauses. This is the case when a clause C con-
tains an atom in bd(C) that does not resolve with the
head of any other clause. C is called a failing clause.
Theory simplification removes failing clauses from the
initial theory T, obtaining the simplified theory T~.

The simplification process is repeated until no failing
clauses are detected. Note that clauses having hypothe-
ses h E 7i in their body are not deleted, since hypothe-
ses may contribute to a proof (if they are assumed).
In addition to remove strongly irrelevant clauses, the-
ory simplification can be utilized to detect unspecified
context conditions in a behavioral model. A situation
where a subquery does not resolve with a fact indicates
that some input to a device has not been declared in
the model.

Theory Instantiation

In the last phase of the reformation process, the theory
is actually instantiated. By employing the query-tree
idea (Levy, Fikes, & Sagiv 1997), we obtain exactly the
set of ground clauses relevant to a query type, together
with all instantiations of the query type that have a so-
lution w.r.t, the theory. A query-tree is a compact rep-
resentation of a search tree for first-order Horn theories
and has the form of an AND-OR tree with goal-nodes
and rule-nodes (Levy, Fikes, & Sagiv 1997). Since 
do not allow for recursion in clauses, our construction of
the query tree is simpler than the original one in (Levy,
Fikes, & Sagiv 1997). On the other hand, we allow that
some leaves of the query-tree are uninstantiated. Those
typically denote hypotheses (abducibles).

Example 1 Consider the following theory T where the
atom with predicate h denotes a hypothesis.

(r, ) p(X, Y) ~ ql(X, Y) ̂  q2(X, 
(r2) ql(X,Y) e-rX(X,V) Ah(X,Y).
(r~) q2(X, Y) ~ r2(X, 
(r,) q2(X, Y) ~- r3(X, 
(f,) rl(a,b). (f~) rl(,,~).
(f3) r2(a,b). (f4) r2(c,d). (fs) 

The query tree algorithm consists of two phases (a more
detailed description is given in (Levy, Fikes, & Sagiv
1997)). In the bottom-up phase, a set of adorned pred-
icates and rules is generated. An adorned predicate pC
is a predicate p with constraint c on its arguments. The
adorned rules are the rules of the theory with predicates
replaced by adorned predicates. We start with the base
predicates of the theory, i.e., the predicates of facts and
hypotheses. For instance, the adorned predicate rl c is
obtained by completion: rl(X,Y) ~ (X = a A 
b) V (X = a ^ Y = c). For convenience, the adorn-
ment of rl is written as c(X, Y) = {(a, b), a, c)}. L et
U be the set of all constants appearing in the theory.
Then the adornment of the (uninstantiated) hypothesis
h is {(X, Y): (X, Y) E U2}. The adornments of predi-
cates in head atoms of rules are generated by projecting
the adornments of predicates in body atoms onto the

Figure 1: Query-tree for Example 1. The label for each
goal-node g is l(g) = {(a, b)}. For simphcity, labels of ride
nodes are omitted. Note that expanding node q2(X, Y) with
rule r4 would result in an inconsistent label.

head variables. For instance, the adornment of ql is
{Ca, b), a, c)}. T he bottom-up phase terminates when
no new adornments are generated. In Example 1, the
following further predicate adornments are generated:
{Ca, b), (e, d)} for r2, {(b, d)} for r3, a, b), (e, d), (b , d)
for q2, and {(a, b)} for 

In the top-down phase, the predicate adornment of
the query type is ’pushed down’ to the base predicates.
Starting with the node of the adorned query type qC,
we construct the query-tree such that each node g of
a predicate p has a label l(g). Initially the goal-node
l(g)~ = qC is created (see Fig. 1). A goal-node g for 
predicate q~h can be unified with adorned rules r of the
form q~(X,~+l) e-- cAp~(X1) A...Ap~"(X,). If l(g) 
is satisfiable, a rule-node g~ is created as a child of g,
with l(g~) = l(g) A c its label. For every bodyatom
p~i in r, the rule-node l(g~) has a child goal-node whose
label is the projection of l(g~) onto -Xi. The top-down
construction halts, since nodes of base predicates and
nodes with unsatisfiable label, denoted by l(_l_), are not
expanded. As shown in (Levy, Fikes, & Sagiv 1997),
the complexity of building the query-tree is linear in the
number of rules and possibly exponential in the arity of
predicates.

Interestingly, instantiation of the theory is simply a
by-product of the top-down construction of the query-
tree: if l(g~) is the label of a rule r in the query-tree, the
propositional version of r is obtained by performing all
unifications appearing l(g~). As a result, the following
propositional KB is obtained for Example 1.
(r~) p(a,b) ~-- ql(a,b) Aq2(a,b).
(r~) ql(a,b) +-- rl(a,b) Ah(a,b).
(r~) q2(a,b) r2(a,b).
(f~) rl(a,b). (f~) r2(a,b).

It is a consequence of the construction of the query-
tree that p(a, b) is the only instance of the query type
p(X, Y) with a solution (given that h(a, b) is assumed).

As output of the reformation process, we ob-
tain either independent propositional theories (tree-
structured systems), or propositional theories indexed
with query types (acyclic systems). It is important 
note that rather than creating specialized theories for
specific observations, we extract the relevant part for a
set of observations (denoted by query types).



Diagnosis as Linear Programming
In this section, we show how hypothetical reasoning
problems (HRPs) corresponding to diagnostic problems
(DPs) can be solved by integer linear programming
problems (LPPs). First, we describe the translation
from HRP to a problem of integer linear programming.
Next, the notion of ’best explanation’ is explicated
within the framework of linear programming. Finally,
we briefly describe the mechanism of Networked Bubble
Propagation (NBP), an efficient hypothetical reasoning
method for computing near-optimal solutions.

From Diagnosis to Integer Linear
Programming

An integer linear programming problem (LPP) is de-
fined by a set of variables, a set of linear constraints,
and an objective function. The set of linear constraints
consists of linear inequalities and equalities, and the
objective function is a linear function on the variables.
A solution for LPP is called feasible if it satisfies the
constraints, and it is called optimal if it is feasible and
maximizes (or minimizes) the objective function.

Let V denote the union of the set of all propositional
variables occurring in T U I U CXT and {_1_}. Then )2 is
the set of variables indexed by V, i.e., )2 = {xp : p E V}.
The set )2 has the following distinguished subsets: (i)
)2o+ C )2 is the set of variables denoting symptoms; (ii)
)20- C )2 is the set of variables denoting observations
that conflict with symptoms; (iii))2n C 12 is the 
of hypothesis variables; (iv))2CXT C )2 is the set of
variables denoting context conditions; and (v) x± E 
is the variable associated with _l_.

Clauses in the behavioral model T are assumed to
have one of the following forms, depending on whether
the bodies of clauses in T are AND-related or oR-
related. The heads of clauses with AND-related and
on-related bodies are called AND-nodes and oR-nodes,
respectively: (AND) p 6- ql A ... A q,, or (oa) 
ql, ..., P 6-- qm. If the body of an oa-node p is a conjunc-
tion of propositional variables qk,1A ... A qk,nk, an aux-
iliary propositional variable qk,o is invented such that
p 6- qk,o and qk,o 6- qk,1A ... A qk,nk. For convenience,
we define a successor set Sp for each p 6 V as follows:
Sp = {q : q occurs in an AND-related or oft-related body
in clauses with head p}. ISpl is the cardinality of Sp.

The following translation is similar to the one given
by Santos (1994).

Definition 4 Let HRP = (71, I, CXT, (0+, 0-)} be 
hypothetical reasoning problem. An integer linear pro-
gramming problem (LPP) corresponding to HRP is a
pair LPP = ()2,I), where )2 is a set of variables and 
is a finite set of linear inequalities and equalities on P.
(1) Clauses with AND-related and on-related bodies are
translated to linear inequalities as follows:

¯ Let p be an AND-node with successor set Sp.

~p<_xq(qCSp),y" Xq- ISpl+ 1_< ~p
qESp

¯ Let p be an oR-node with successor set Sp.

E Xq > Xp, Xp > Xq (q 6 Sp)
qESp

(2) Inconsistency constraints ie 6 I of the form "_L 
Pl A ... A 19, " are a special cases of clauses with AND-
related body because their head is the constant l, where
x± = O. Therefore, we only need a single linear inequal-
ity

~p - IS±l+ 1 _< 0
p6Sj.

(3) In general, for each xp 6 )2, xp is either 0 or 1. 
particular, (i) for each Xp 6 No+, we add the equation
Xp = 1, i.e., a given observation p must be assigned the
value true; (ii) for each xp 6 12o-, we add the equation
Xp = O, thereby assigning observations that contradict
symptoms the value false; (iii) for each Xq 6 )2CXT, 
variable associated with a context atom q, we add the
equation Xq = 1, saying that the conditions expressed
by contextual data hold.

By way of example, we show how the second condition
guarantees that the inconsistency constraints are satis-
fied. Since _L is (always) assigned false, some p in S±
must be false. Take the ic _l_ 6- hi A h2 A h3 and as-
sume that each of the hypothesis is assigned the value
true (each of the hypothesis is assumed). Then we have
1 + 1 + 1 - 3 + 1 < 0, i.e., 1 < 0, which violates the
constraint.

Definition 5 A variable assignment for LPP = ()2,:~}
is a function ¢ from )2 to {0,1}. ¢ is a 0-1 solution
for LPP if ¢ satisfies all the constraints in I. A 0-1
solution hypotheses set HO_1 for LPP consists of all
xp 6 P~t which are assigned 1 in the 0-1 solution for
LPP.

Not surprisingly, the following theorem of Santos
(1994) can be extended to problems including incon-
sistency constraints.

Theorem 1 H is a solution hypotheses set for HRP if
and only if HO_1 is a 0-1 solution hypotheses set for
LPP.

Optimal 0-1 Solutions
In cost-based hypothetical reasoning, each hypothesis
has an associated numerical weight, and the weight of
an solution hypotheses set is simply the sum of the
weights associated with hypotheses in the set (Santos
1994; Ohsawa &; Ishizuka 1997). A solution hypotheses
set is optimal if the sum is minimal.

In diagnostic reasoning, it is often desirable to obtain
an optimal solution or best explanation; a fault can be
said to have low weight if the fault is easy to repair,
or even, a fault with low weight is more probable (de
Kleer 1991). The idea to concentrate on the preferred
(more probable, less expensive) diagnoses is also known
as focusing (e.g. Freitag and Friedrich (1992)). To 
ture the notion of optimal solution (or best explanation)



formally, we define a function w from 7/ to the set of
natural numbers. Given an integer linear programming
problem, the objective function being minimized is as
follows:

hEk’7~

Definition 6 An optimal 0-1 solution hypotheses set
for LPP is a 0-1 solution hypotheses set (for LPP) that
minimizes ~Y~ LPP.

The cost-based variant of hypothetical reasoning has
great potential for incorporating notions of uncertain
reasoning such as probability. In the case where all
hypotheses are uniformly assigned a default weight, an
optimal solution corresponds to a minimal diagnosis.

Networked Bubble Propagation (NBP)

In practice, it is more advantageous (in terms of ef-
ficiency) to search for a near-optimal solution rather
than for the optimal one. NBP is a method for cost-
based hypothetical reasoning that can be used to com-
pute near-optimal diagnoses (Ohsawa & Ishizuka 1997).
The search mechanism draws inspiration from 0-1 lin-
ear integer programming and improves the behavior of
the so-called ’pivot and complement’ method, which
is known to find a near-optimal solution close to the
optimal solution in polynomial time. NBP can find a
near-optimal solution in polynomial time of approxi-
mately O(n1"4), where n is the number of hypotheses
in the problem formulation (for details, see (Ohsawa
Ishizuka 1997)).

Preliminary Empirical Evaluation

The reformation methods are implemented in Sicstus
Prolog, the NBP method is implemented in C. For the
experiments we use a Sun Ultra 2 workstation with 320
MB memory. Running times exclude the time needed
for reformation. For example, the relevant part of a the-
ory consisting of 1000 clauses can be extracted in about
4 seconds. Our results should be seen as preliminary,
more experiments are planned.

Acyclic first-order Horn theories. In the first ex-
periment we show the efficiency gain of relevance rea-
soning (factorizing and simplificationt). It involves
first-order Horn theories from 40 up to 1000 rules with
a fixed percentage of hypotheses (about 30~0) and in-
tegrity constraints (about 20%) and few facts. The the-
ory of Ex. # 1 is systematically expanded to theories of
larger size. Fig. 2 shows the inference time as a function
of the number of hypotheses before and after reforma-
tion by relevance reasoning. In both cases, the same
solution sets H are generated, each corresponding to a
minimal explanation. Results are obtained by averag-
ing over three different query types. The results show

IThe speedup effect of the instantiation technique has
not been tested in our experiments (see Levy et al. (1997)
for a related empirical evaluation).

IEx. # I # hypotheses time (sec)
before ref. ] after ref. before ref. I after ref.

1 13 6 0.02 0.01
2 39 17 0.08 0.04
3 78 33 0.21 0.07
4 156 67 0.63 0.16
5 312 129 2.14 0.46

Figure 2: Comparision for first-order Horn theories.

that the reformed theories can be processed more ef-
ficiently, usually in excess of a factor of 3. The best
speedup factor was 196, for a query type where 98% of
the hypotheses are irrelevant.

Medical diagnosis. The second experiment is in-
tended to show the efficiency of the NBP method as a
diagnostic procedure. It involves a propositional theory
from the medical domain and reM-world patient cases,
first used by Ng and Mooney (1992) to vMidate their ab-
ductive system ACCEL. The behavioral model consists
of 648 rules of the form "e +-- c", where e a symptom
type and c refers to one of 25 damaged brain areas. Ng
and Mooney (1992) consider 50 patient cases of an av-
erage of 8.56 symptoms, where ACCEL computed all
minimal diagnoses in an average of 2.4 seconds per case
(with an average of 4.6 diagnoses per case). We consider
the first 25 cases (average of 8.64 symptoms). The NBP
method finds a near-optimal diagnosis in an average of
0.06 seconds per case, where the near-optimal diagno-
sis corresponds to one of the minimal diagnoses. When
using the factorized model, we could not measure any
speedup effect, although on average, 83% of the rules
were strongly irrelevant to the query types. This can
be explained by the fact that the number of hypotheses
is only slightly decreased. Note that simplification does
not apply here since all leaves are hypotheses.

Discussion and Conclusion

In this paper, we describe a new approach for gener-
ating diagnoses for observations. The diagnostic task
is performed in two successive phases: in the off-line
phase a first-order behavioral model is compiled to a
propositional representation, in the on-line phase inte-
ger linear programming is employed to generate a near-
optimM solution to the diagnostic problem. Note that
our reformation procedures are equivalence-preserving
w.r.t, query types. The procedures are guaranteed not
to slow down inference and preserve all solutions.

Our notion of ’reformation’ differs from other com-
pilation methods found in the diagnosis literature. For
instance, Williams and Nayak (1996) generate all prime
implicants of (propositional) transition models; Dar-
wiche (1998) compiles a propositional system descrip-
tion into a sentence called consequence that has good
computational properties. By contrast, we introduce an
effective way to produce a compact propositional theory
from a given first-order model. In this respect, our ap-



proach shares intuitions with the ’first-order planning as
(propositional) satisfiability’ framework of Kautz and
Selman (1996).

Similar to the work of de Kleer (1991), focusing is
integrated to the diagnostic engine (the NBP mecha-
nism), by associating costs to individual hypotheses,
and not part of the compilation (Darwiche 1998). Fre-
itag and Friedrich (1992) discuss an approach to focus-
ing that confines search to the smallest submodel which
is independent of the remaining behavioral model. For
the class of tree-structured systems, their notion of
smallest independent submodel corresponds to the sub-
theories listed in the partition of a factorized model.

Recently, there is growing interest in developing di-
agnosing systems that deal with behavioral models ex-
hibiting a particular structure, such as tree-structured
systems (Stumptner 8z Wotawa 1997; Darwiche 1998).
It is shown both theoretically (Darwiche 1998) and ex-
perimentally (Stumptner & Wotawa 1997) that tree-
structured systems allow for significantly faster infer-
ence than acyclic systems. The experiments in (Oh-
sawn 8z Ishizuka 1997) re-enforce those findings with
the NBP method. We have shown that structure is also
important from a reformation point of view. Factoriz-
ing tree-structured systems has to be done only once,
whereas for acyclic systems, the relevant part has to be
determined for each (combination of) query type(s).

This paper is part of ongoing work on reformation-
based diagnosis. In the near future, we want to test
our approach on more diverse first-order Horn theories,
and compare our results to competing approaches (e.g.,
de Kleer (1991), Darwiche (1998)). We try to provide
formal guarantees on performance.

A major problem of current NBP is that it does
not scale well if the width of on-related nodes is high.
Hence we plan to employ another hypothetical reasoner
which scales better than the NBP method. Ishizuka
and Matsuo (1998) developed the so-called ’slide-down
and lift-up’ (SL) method that employs both linear and
non-linear programming techniques to solve hypothet-
ical reasoning problems. Although the SL method is
slightly slower than the NBP method, it is attractive in
terms of memory requirements and scalability.

In any case, reformation methods seem to be prime
candidates for improving scalability. In (Prendinger
Ishizuka 1999) we describe further reformation meth-
ods that allow to ’shrink’ the propositional theory
by orders-of-magnitude. So-called variable elimination
procedures allow to reduce the number of different vari-
ables in a clause, which becomes crucial when the clause
is to be instantiated by constants. The methods devel-
oped in that paper also allow to handle (certain forms
of) recursive Horn theories.
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