
Two Dimensional Generalization in Information Extraction

Joyce Yue Chai
30 Saw Mill River Rd.

IBM T. J. Watson Research Center
Hawthorne, NY 10532

jchai@us.ibm.com

Alan W. Biermann
Computer Science Department

Duke University
Durham, NC 27708
awb@cs.duke.edu

Curry I. Guinn
3400 Cornwallis Rd.

Research Triangle Institute
RTP, NC 27709

cig@rti.org

Abstract

In a user-trained information extraction system,
the cost of creating the rules for information ex-
traction can be greatly reduced by maximizing the
effectiveness of user inputs. If the user specifies
one example of a desired extraction, our system
automatically tries a variety of generalizations of
this rule including generalizations of the terms and
permutations of the ordering of significant words.
Where modifications of the rules are successful,
those rules are incorporated into the extraction
set. The theory of such generalizations and a mea-
sure of their usefulness is described.

Introduction
Information extraction (IE) has become a promising
area since the advent of the DARPA Message Under-
standing Conferences (Cowie & Lehnert 1996). Given
the vast amount of information available today, suc-
cessful extraction of useful information has become in-
creasingly important. Most IE systems (MUC6 1995)
have used hand-crafted semantic resources for each ap-
plication domain. However, generation of this domain
specific knowledge (i.e., customization) unfortunately
requires highly expert computational linguists or devel-
opers and is also difficult, time consuming, and prone
to error. To address this problem, some researchers
have looked at techniques for automatically or semi-
automatically constructing lexicons or extraction rules
of annotated texts in the domain (Riloff 1993) (Riloff
1996) (Califf & Mooney 1997) (Soderland 1999).
of these techniques have applied machine learning ap-
proaches to learn rules based on texts with filled tem-
plates. Either pre-annotation of text is done by a hu-
man expert, or the rules are post-processed by a human
expert. To keep up with the vast amount of information
available for casual users, techniques oriented toward
non-experts are desired. By providing an easy training
environment to the casual user and by learning rules
from the user’s input instead of pre-annotated texts,
the cost of adapting a system to different domains can
be reduced.

Copyright @1999, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

In this paper, a new trainable information extraction
system is described (Chai 1998). In the new scenario,
any user, based on his or her interests, can train the sys-
tem on different domains. The system learns from the
training and automatically outputs the structure target
information. A major issue in learning rules concerns
the tradeoff between specific, unambiguous extraction
rules and the need for general rules that can be ap-
plied widely. The balance between those twin goals is
essential for good performance.

In building a trainable information extraction sys-
tem, the cost of creating the rules for information ex-
traction can be greatly reduced by maximizing the effec-
tiveness of user inputs. If the user specifies one example
of a desired extraction, our system automatically tries a
variety of generalizations of this rule including general-
izations of the terms and permutations of the ordering
of significant words. Where modifications of the rules
are successful, those rules are incorporated into the ex-
traction set. The theory of such generalizations and a
measure of their usefulness is given in this paper.

System Overview
Our Trainable InforMation Extraction System
(TIMES) includes four major subprocesses: Tokeniza-
tion, Lexical Processing, Partial Parsing, and Rule
Learning and Generalization (Bagga, Chai, & Biermann
1997). The general structure of TIMES is shown in Fig-
ure 1. The first stage of processing is carried out by
the Tokenizer which segments the input text into sen-
tences and words. Next, the Lexical Process acquires
lexical syntactic/semantic information for the words.
To achieve this, a Preprocessor is used for semantic
classification. The Preprocessor can identify special se-
mantic categories such as email and web addresses, file
and directory names, dates, times, and dollar amounts,
telephone numbers, zip codes, cities, states, countries,
names of companies, and many others. The syntac-
tic information is retrieved from the CELEX database1

and the semantic information is from WordNet (Miller

1CELEX was developed by several universities and insti-
tutions in the Netherlands, and is distributed by the Lin-
guistic Data Consortium.

From: AAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Training Phase Scanning Phase

(Lexical P’ grocessin ~Lcxical Proce.ssi’ ng)

~aTraininglnterfacel r
Word Sense [~--~ RuM Learning and GeneralizationJ

rget l,format,’on ,

~ ~L_

Automated Rule Creation Phase (Rule Application)

Figure 1: System Overview

1990). Following the Lexical Processing, a Partial
Parser, which is based on a set of finite-state rules,
is applied to produce a sequence of non-overlapping
phrases as output. It identifies noun phrases (NG), verb
phrases(VG) and prepositions (PG). The last word
each phrase is identified as its headword. The phrases,
together with their syntactic and semantic information
are used in Rule Learning and Generalization. Based
on the training examples, the system automatically ac-
quires and generalizes a set of rules for future use.

The system has three running modes which imple-
ment training, automated rule creation, and scanning,
respectively. In the training phase, the user is required
to train the system on sample documents based on
his/her interests. That is, the user specifically points
out the desired information in the text. Because the
WordNet hierarchy depends on word senses, in the
training phase, the system also requires some seman-
tic tagging by the user. This phase tends to use mini-
mum linguistic and domain knowledge so that it can be
used by the casual user. The rule creation phase builds
a set of useful rules, including both extraction rules
for information of interest and word sense disambigua-
tion (WSD) rules for sense identification. The scanning
phase applies the learned rules to any new body of text
in the domain.

The Training Phase TIMES provides a convenient
training interface for the user. Through this interface,
the user identifies the information of interest (i.e., the
target information). One issue in training is the trade-
off between the user’s effort and the system’s learning
cost. TIMES requires some minimum training from the
user. This training identifies the target information for
the training articles and assigns the correct sense to
the words if their senses are not used as sense one in
WordNet. (Sense one is the most frequently used sense
in WordNet. The training interface provides sense def-
initions so that the user would know which sense to

choose.) By default, the system will assign sense one to
the headwords if no other specific sense is given by the
user. If the user performs the minimum training, then
the system will learn the rules based on every phrase in
the training sentences, and the resulting learning cost
will be relatively high. If besides the minimum training,
the user decides to select the important phrases from
the training examples, then the rules can be learned
based only on the important phrases. Thus the train-
ing effort is increased, and the system learning cost
is reduced. Furthermore, if the user has sufficient ex-
pertise and decides to create rules for the system (the
rules could be generated from the training articles or
from the user’s own knowledge), then more training
effort is required and the system learning cost is fur-
ther reduced. In general, to make the system easily
and quickly adapted to a new domain, computational
linguists and domain experts can apply their expertise
if they prefer; casual users can provide the minimum
training and rely on the system learning ability.

For example, suppose the training sentence is "The
National Technology Group has a need for qualified In-
ventory Specialists to work at an RTP client site for
one month." The user of our system will employ the
interface to indicate the key target information in this
sentence which is to be extracted. The target infor-
mation is: companies which have job openings (use
COMPANY to represent this target), positions avail-
able (POSITION), locations of those positions (LOCA-
TION). Based on the user’s input, the system internally
generates a record as shown in Table 1. In this table,
the first column lists seven important phrases from the
sentence; the second column is the target information
specified by the user. If a phrase is identified as a type
of target information, then this phrase is called tar-
get phrase. For example, "The National Technology
Group," "qualified Inventory Specialist" and "an RTP
client site" are three target phrases. The third column
lists the specific semantic types classified by the Pre-
processor for each important phrase. The fourth col-
umn lists the headwords for the important phrases. If
a phrase can be identified as a special semantic type,
then the headword is the name for that semantic type;
otherwise, the headword is the last word in the phrase.
The fifth column lists the syntactic categories identi-
fied by the Partial Parser. The last column is the sense
number for the headwords. From the information in
Table 1, the system will create an initial template rule
as shown in Figure 2 for doing extraction.

Specific Rules In general, rules in the system are
pattern-action rules. The pattern, defined by the left
hand side (LHS) of a rule, is a conjunction (expressed
by A) of subsumption functions S(X, a, target(a)).
is instantiated by a new phrase when the rule is ap-
plied; a is the concept corresponding to the headword
of an important phrase in the training sentence; and
target(a) is the type of target information identified
for a. The action in the right hand side (RHS) of

important phrases target semantic type headword syntactic category sense
The National Technology Group COMPANY company~ype company NG 1

has none none has VG 1
a need none none need NG 1

for none none for PG 1
qualified Inventory Specialists POSITION none specialist NG 1

at none none at PG 1
an RTP client site LOCATION none site NG 1

Table 1: Internal Structure for a Training Example. NG represents noun phrases; VG represents verb phrases and
PG represents Prepositions

S(X1, {company}, COMPANY) A S(X2, {has}, none) A S(X3, {need}, none) A {for}, none)
AS(X5, {specialist}, POSITION) A S(X6, {at}, none) A S(XT, {site}, LOCATION)
---+ FS(X1, COMPANY), FS(Xs, POSITION), FS(XT, LOCATION)

Figure 2: Initial Template Rule/Most Specific Rule

rule, FS(X, target(a)) fills a template slot, or in other
words, assigns the type of target information target(a)
to the phrase X.

The subsumption function S(X, a, target(a)) essen-
tially looks for subsumption of concepts. It returns true
if the headword of X is subsumed to the concept a. If
all subsumption functions return true, then the RHS ac-
tions will take place to extract X as a type target(a).
In the following sections, the subsumption function will
be referred to as a rule entity.

For example, the initial template rule (i.e., the most
specific rule) in Figure 2 says that if a pattern of phrases
X1, X2, ..., X7 is found in a sentence such that the head-
word of X1 is subsumed by (or equal to) company, the
headword of the second phrase)(2 is subsumed by has,
and so on, then one has found the useful fact that X1 is
a COMPANY, X5 is a POSITION and X7 is a LOCA-
TION. (In the most specific rule, the headwords of im-
portant phrases are used directly as a in subsumption
functions. They are referred to as specific concepts.)
Apparently, the initial template rule is very specific and
has tremendous limitations. Since the occurrence of the
exact same pattern rarely happens in the unseen data,
the initial template rule is not very useful. We need to
generalize these specific rules.

Rule Generalization

The above sections have shown how the initial template
rule is created from a user input. Now we address the
issue of how such rules are generalized. In fact, they
are generalized by a two dimensional model which is
a combination of syntactic (horizontal) and semantic
(vertical) generalization.

Syntactic Generalization

From our early experiments, we noticed that the op-
timum number of entities required in the rules varied
for different types of target information. In the job ad-
vertisement domain, when a token is classified as the

dollar amount semantic type, it is the target salary in-
formation 95% of the time. A rule with one rule entity
suffices. Rules with more entities are too specific and
will lower the performance. For example, in Figure 2,
by removing the second, the fourth, the sixth, and the
seventh entity, the most specific rule becomes two rules
with three entities in Figure 3. Since two target phrases
remain and in our convention, each generalized rule only
corresponds to one target phrase, two rules are neces-
sary to capture two types of target information. When
these two rules are applied for unseen data, the first one
will extract the target information COMPANYand the
second one will extract POSITION. On the other hand,
since the number of constraints on the LHS are reduced,
more target information will be identified. By this ob-
servation, removing entities from specific rules results
in syntactically generalized rules.

~rthermore, syntactic generalization is also aimed
at tackling paraphrase problems. For example, by re-
ordering entities in the rule generated from the train-
ing sentence "Fox head Joe Smith ...", it can further
process new sentence portions such as "Joe Smith, the
head of Fox,", "The head of Fox, Joe Smith,...",
"Joe Smith, Fox head,..." etc. This type of syntactic
generalization is optional in the system. This technique
is especially useful when the original specific rules are
generated from the user’s knowledge.

Therefore, syntactic generalization is designed to
learn the appropriate number of entities, and the order
of entities in a rule. By reordering and removing rule
entities, syntactic generalization is achieved. More pre-
cisely, syntactic generalization is attained by a combi-
nation function and a permutation function. The com-
bination function selects a subset of rule entities in the
most specific rule to form new rules. The permutation
function re-orders rule entities to form new rules.

Combination Function If a training sentence has
n important phrases, then there are n corresponding

1. S(X1, {company}, COMPANY) A S(X2, {need}, none) A S(X3, {specialist}, POSITION)
---+ FS(X1, COMPANY)
2. S(X1, {company}, COMPANY) A S(X2, {need}, none) A S(X3, {specialist}, POSITION)
---+ FS(Xs, POSITION)

Figure 3: An Example of Syntactically Generalized Rules

1. S(X1, {need}, none) A S(X2, {specialist}, POSITION) A S(X3, {company}, COMPANY)
FS(Xs, COMPANY)

2. S(X1, {need}, none) A S(X2, {specialist}, POSITION) A S(Xs, {company}, COMPANY)
---+ FS(X2, POSITION)

Figure 4: An Example of Permutation Rules

rule entities, el, ...,en (each ei is a subsumption func-
tion). The combination function selects k rule entities
and form the LHS of the rule as e~1 A e~2.. A ei~ (the
order of the entities is the same as the order of the cor-
responding phrases in the training sentences). At least
one of k entities corresponds to a target phrase. If i
(1 < i < k) entities are created from i target phrases,
then i rules will be generated. These rules have the
same LHS and different RHS, with each corresponding
to one type of target information. Rules created by
the combination function are named combination rules.
For example, in Figure 3, k = 3 and i = 2, therefore,
two rules are necessary to identify two different types
of target information.

Permutation Function The permutation function
generates new rules by permuting rule entities in the
combination rules. This function creates rules for pro-
cessing paraphrases. Rules created by the permutation
function are named permutation rules. For example, the
permutation function can generate rules in Figure 4 by
re-ordering rule entities in Figure 3. While rules in Fig-
ure 3 are created based on the sentence "The National
Technology Group has a need for qualified Inventory
Specialist", the permutation rules can process a para-
phrased sentence such as "There is a need for a Inven-
tory Specialist at the National Technology Group."

Semantic Generalization

Syntactic generalization deals with the number and the
order of the rule entities. However, each rule entity is
still very specific. For a rule entity SiX’ a, target(a)),
semantic generalization is designed to replace a with
a more general concept. Thus it will cover more se-
mantically related instances. We use a generic lexical
semantic resource, WordNet, for lexical semantic infor-
mation (Chai & Biermann 1997b).

Concepts in WordNet A concept is defined in
WordNet as a set of synonyms (synset). For a word
the corresponding concept in WordNet is represented
by {w, wl ,w,}, where each wi is a synonym of w.
Given a word w, its part-of-speech, and sense number,

the system can locate a unique corresponding concept
in the WordNet hierarchy if w exists in WordNet. For
a word, especially a proper noun, if the Preprocessor
can identify it as a special semantic type expressed in
a concept in WordNet, then a virtual link is created
to make the concept of this special noun as the hy-
ponym of that semantic type. For example, "IBM" is
not in WordNet, however, it is categorized as a kind
of {company}. The system first creates the concept of
"IBM" as {IBM}, then creates a virtual link between
{IBM} and {company}. For any other word w, if it is
not in WordNet, and it is not identified as any semantic
type, then the concept of w is {w} and is virtually put
into WordNet, with no hierarchical structure. There-
fore, every headword of an important phrase should
have a corresponding concept in WordNet.

Let a be a concept in WordNet. The hypernym hi-
erarchical structure provides a path for locating the su-
perordinate concept of a, and it eventually leads to the
most general concept above a. (WordNet is an acyclic
structure, which suggests that a synset might have more
than one hypernym. However, this situation doesn’t
happen often. In case it happens, the system selects
the first hypernym path.)

Therefore, semantic generalization acquires the gen-
eralization for each rule entity by replacing the specific
concept with a WordNet concept (Chai & Biermann
1997a). For example, rules in Figure 3 could be gener-
alized to rules in Figure 5.

Two Dimensional Generalization

The two-dimensional generalization model is a combi-
nation of semantic (vertical) generalization and syntac-
tic (horizontal) generalization. Our method applies
brute force algorithm, which performs semantic gener-
alization on top of syntactically generalized rules gen-
erated from the training set, then apply those rules on
the training set again. Based on the training examples
and a threshold, the system selects useful rules.

The relevancy_rate rel(r~) for rule r~ is defined as the
percentage of the correct information extracted by the
r~. A threshold is predefined to control the process. If

1. S(X1, (group, ...}, COMPANY) A S(X2, (need, ...}, none) A S(X3, (professional~ ...}, POSITION)
--~ FS(X1, COMPANY)

2. S(X1, (organization, ...}, COMPANY) A S(X2, (need, ...}, none) A S(X3, (engineer, ...}, POSITION)
FS(X3, POSITION)

Figure 5: An Example of Semantically Generalized Rules

rel(ri) is greater or equal to the threshold, then ri will
be put in the rule base for future use.

The procedure of generating generalized rules is the
following:
¯ Predefine N, the maximum number of entities al-

lowed in the rule.
¯ For each target phrase in the training sentence, based

on the important phrases in the sentence, generate all
combinations rules with number of entities from one
to N, as well as their permutation rules.

¯ For every rule, generate all possible semantically gen-
eralized rules by replacing each entity with a more
general entity with different degree of generalization.

¯ Apply all rules to the training set. Based on the
training examples, compute relevancy_rate for each
rule.

¯ Select rules with relevancy_rate above the defined
threshold. If two rules rl and r2 both have n entities,
and if each entity of rl corresponds to a more general
or the same concept as that of r2, then the system
will choose rl for future use if tel(r1) is greater than
or equal to the threshold and eliminate r2.

¯ Sort the rules with the same number of entities to
avoid rule repetition.

By following this procedure, the system will gener-
ate a set of useful rules that are both syntactically and
semantically generalized. Those rules will be applied
to unseen documents. First, the system applies rules
with N number of entities to the unseen sentence. If
some matches are found, the system identifies the tar-
get information as that which is extracted by the most
rules and then processes the next sentence. If there is no
match, the system applies rules with fewer entities until
either there are some matches or all the rules (including
those with one entity) have been applied. By doing so,
the system will first achieve the highest precision and
then gradually increase recall without too much cost in
precision. (Precision is the percentage of target infor-
mation extracted by the system which is correct; recall
is the percentage of target information from the text
which is correctly extracted by the system.)

Experiments
Our experiments were conducted based on the domain
of triangle.jobs newsgroup. Eight types of target infor-
mation were extracted.
¯ COMPANY (COM.): The name of the company

which has job openings.

¯ POSITION (POS.): The name of the available posi-
tion.

¯ SALARY (SAL.): The salary, stipend, compensation
information.

¯ LOCATION (LOC.): The state/city where the job
located.

¯ EXPERIENCE (EXP.): Years of experience.

* CONTACT (CON.): The phone number or email ad-
dress for contact.

¯ SKILLS (SKI.): The specific skills required, such
programming languages, operating systems, etc.

¯ BENEFITS (BEN.): The benefits provided by the
company, such as health, dental insurance,., etc.

There were 24 articles for training and 40 articles
for testing. These 64 articles were randomly selected.
Training articles were grouped to three training sets.
The first training set contained 8 articles; the second
contained 16 articles including ones in the first set; the
third training set consisted of all 24 articles. In all of
the experiments, the relevancy_rate threshold was set to
0.8 unless specified otherwise. In addition to precision
and recall, the F-measure was also computed, which is
a combination of precision and recall (Sundheim 1992).

Syntactic Generalization
The first experiment tested the impact of pure syntactic
generalization. The system only generated combination
rules and permutation rules without semantic general-
ization. Table 2 shows that rules with pure syntactic
generalization (represented by "a//") achieve better per-
formance (in terms of F-measure) than those rules with
one, two or three fixed number of entities.

one ent. two ent. three ent. all
precision 80.0% 67.4% 67.8% 66.3%

recall 39:8% 54.2% 30.9% 63.9%
F-meas. 53.2% 60.1% 42.5% 65.1%

Table 2: Effect of Rules on All Target Information
from Syntactic Generalization

In particular, different types of target information
require different numbers of entities in the rules. As
shown in Table 3, for the both target information COM-
PANY and EXPERIENCE, no rule with one entity was
learned from the training set. For the target infor-
mation SALARY, the rules with one entity performed
much better (in terms of F-measure) than those with

hmax 0 1 2 3 4 5 no bound
¯ precision 97.3% 96.5% 96.6% 96.3% 94.0% 92.7% 92.7%

recall 76.8% 77.1% 78.3% 79.2% 80.7% 81.3% 81.3%
F-measure 85.8% 85.7% 86.5% 86.9% 86.8% 86.8% 86.6%

Table 4: Training Set Performance with Respect to Limit of Semantic Generalization

hr’n, ax 0 1 2 3 4 5 no bound
precision 76.0% 71.0% 59.7% 52.9% 47.1% 44.2% 42.2%

recall 64.6% 67.5% 71.8% 73.3% 74.0% 74.3% 75.8%
F-measure 69.8% 69.2% 65.2% 61.4% 57.6% 55.4% 54.2%

Table 5: Testing Set Performance with Respect to Limit of Semantic Generalization

Fact meas. one two three all
entity entities entries

COM. P 0% 76.5% 75.0% 65.9%
R 0% 68.4% 71.1% 76.3%
F 0% 72.2% 73.0% 70.7%

POS. P 94.3% 71.9% 64.3% 76.4%
R 51.6% 35.9% 14.1% 60.9%
F 66.7% 47.9% 23.1% 67.8%

SAL. P 91.7% 84.6% 100% 88.9%
R 68.8% 34.4% 12.5% 75.0%
F 78.6% 48.9% 28.1% 81.4%

LOC. P 16.7% 33.7% 37.2% 32.0%
R 2.7% 41.1% 21.9% 42.5%
F 4.6% 37.0% 27.6% 36.5%

EXP. P 0% 54.8% 53.6% 48.6%
R 0% 54.8% 48.4% 54.8%
F 0% 54.8% 50.9% 51.5%

CON. P 97.6% 87.3% 91.7% 88.4%
R 51.9% 71.4% 14.3% 79.2%
F 67.8% 78.6% 24.7% 83.7%

SKI. P 74.1% 75.0% 76.4% 71.7%
R 61.3% 64.4% 41.7% 70.0%
F 67.1% 69.3% 54.0% 70.8%

BEN. P 90.0% 93.3% 100% 94.1%
R 22.5% 35.0% 25.0% 40.0%
F 36.0% 50.9% 40.0% 56.1%

Table 3: Effect of Rules on Target Information from
Syntactic Generalization, where P is precision,
R is recall, and F is F-measure.

two entities or three entities. For the target informa-
tion LOCATION, the rules with two entities performed
better than those of one entity and three entities. For
the target information COMPANY, the rules with three
entities perform the best. Thus, for different types of
information, the best extraction requires different num-
bers of entities in the rules. However, the appropriate
number of entities for each type of information is not
known in advance. If applying rules with the fixed num-
ber of entities, a less than optimal number of entities
will cause a significant loss in the performance. By ap-

plying our approach, for each type of information, the
performance is either better (as in the SALARY row),
or slightly worse (as in the COMPANY row). The over-
all performance of the application algorithm is better
than that achieved by the rules with the fixed number
of entities.

Two Dimensional Generalization

When the semantic generalization is added to the
model, the evaluation of the effectiveness of WordNet
becomes important. In this experiment, the system
generated rules both syntactically and semantically. In
those rules, some entities were only generalized to in-
clude the synonyms of the specific concept from the
training sentence; some were generalized to direct hy-
pernyms (one level above the specific concept in the
conceptual hierarchy), and some were generalized to
various higher degrees. The question is, even though
the rules have been learned from the training exam-
ples, are they reliable? Do we need to put some upper
bound on the generalization degree for the entities in
order to achieve good performance? To answer that,
we used hmax as the limit for the degree of general-
ization for each entity. We modified the rules to only
generalize each entity to hmax level above the specific
concept in WordNet hierarchy. We applied those rules
(the threshold was 1.0) with different limitations on se-
mantic generalization to the 24 training documents and
40 testing documents.

As in Table 4, for the training set, with no upper
bound on semantic generalization degree in the rules,
the system had an overall 86.6% F-measure, with very
high (92.7%) precision. When the various limits
the generalization degree were applied, the performance
was still about the same. This indicated that the rules
were indeed learned from the training examples, and
these rules sufficiently represented the training exam-
ples.

We then applied the same set of rules on the testing
data. As shown in Table 5, without an upper bound on
the semantic generalization, the system only achieved
an F-measure of 54.2%. However, when the upper
bound on the degree of generalization was hmax = O,

which only generalized the entities to include the syn-
onyms of the specific concepts, the overall performance
was about 70%. The results indicated further restric-
tion on the semantic generalization degree could en-
hance the performance. WordNet hypernyms are use-
ful in achieving high recall, but with a high cost in
precision. WordNet synonyms and direct hypernyms
are particularly useful in balancing the tradeoff between
precision and recall and thus improving the overall per-
formance.

training articles 8 16 24
precision 61.5% 66.7% 66.3%

recall 48.8% 61.8% 63.9%
F-measure 54.4% 64.2% 65.1%

Table 6: Performance vs. Training Effort from
Syntactic Generalization

training articles 8 16 24
precision 68.8% 70.2% 71.0%

recall 59.8% 65.2% 67.5%
F-measure 64.0% 68.0% 69.2%

Table 7: Performance vs. Training Effort from
Two Dimensional Generalization

We compared the experimental results from rules
with pure syntactic generalization and the rules with
two dimensional generalization (with a limit of hmax =
1 on the semantic generalization). As shown in Table
and Table 7, when the training set is small, the se-
mantic generalization can be particularly helpful. The
F-measure increased about 10% when the training set
only had eight articles. The F-measure for training 16
articles is about the same as that from training 24 ar-
ticles. Thus no more training is necessary. This result
implies that for the two-dimensional rule generalization
approach, there is a performance upper bound in this
domain. If we would like to break this upper bound,
generalizing only concepts and orders of the rules may
not be enough. We should approach other strategies
for generalization. For example, verb forms could be
generalized to verb nominalization forms.

The semantic generalization can be particularly effec-
tive for extracting certain types of information. Com-
paring Table 3 and Table 8, we can see that the se-
mantic generalization is especially useful for extracting
both LOCATION and BENEFITS facts. The perfor-
mance was improved about 30% in F-measure for those
two facts.

Discussion

Automated rule learning from examples can also be
found in other systems such as AutoSlog (Riloff 1993),
PALKA (Kim & Moldovan 1993), RAPIER (Califf
Mooney 1997) and WHISK (Soderland 1999). AutoSlog

Fact meas. one two three all
entity entity entity

COM. P 0% 71.8% 71.4% 67.4%
R 0% 75.7% 81.1% 83.8%
F 0% 73.7% 75.9% 74.7%

POS. P 94.3% 69.8% 57.1% 72.3%
R 51.6% 46.9% 25.0% 53.1%
F 66.7% 56.1% 34.8% 61.2%

SAL. P 92.0% 84.6% 100% 88.5%
R 71.9% 34.4% 12.5% 71.9%
F 80.7% 48.9% 22.2% 80.2%

LOC. P 25.0% 63.3% 66.7% 59.4%
R 1.4% 78.1% 63.0% 78.1%
F 2.7% 69.9% 64.8% 67.5%

EXP. P 0% 42.9% 51.4% 40.4%
R 0% 54.5% 57.6% 57.6%
F 0% 48.0% 54.3% 47.5%

CON. P 83.3% 86.4% 78.6% 81.8%
R 51.9% 74.0% 14.3% 81.8%
F 64.0% 79.7% 27.1% 81.8%

SKI. P 33.3% 66.9% 67.9% 63.0%
R 1.9% 71.4% 57.8% 70.8%
F 3.59% 69.1% 62.4% 66.7%

BEN. P 95.8% 95.7% 100% 96.8%
R 57.5% 55.0% 42.5% 75.0%
F 71.9% 69.9% 60.0% 84.5%

Table 8: Effect of Rules on Target Information
from Two Dimensional Generalization

uses heuristics to create rules from the examples and
then requires the human expert to accept or reject the
rules. PALKA applies a conceptual hierarchy to con-
trol the generalization or specification of the target slot.
RAPIER uses inductive logic programming to learn the
patterns that characterizes slot-fillers and their context.
WHISK learns the rules by starting with a seed exam-
ple and then selectively adding terms that appear in
the seed example to a rule.

TIMES differentiates itself in the sense that it learns
rules by interleaving syntactic generalization and se-
mantic generalization. It automatically decides the
number, the order and the generalization/specification
of constraints. It learns these three aspects in each
rule while other systems concentrate on one or two as-
pects. Furthermore, most of those systems focus on
the improvement of performance by refining learning
techniques in an environment of large databases of ex-
amples. TIMES is designed to provide a paradigm
where rule learning makes it possible to build an IE
system based on minimum training by a casual user.
Indeed, TIMES emphasizes the usability to the casual
user. When a large amount of pre-annotated informa-
tion is not available and when the user is not expe-
rienced enough to tag the information, how does one
make an IE system effective based on minimum train-
ing? In our experiments, we intentionally chose a small
training set since for a casual user, large amount of

training is difficult. The experimental results suggest
that the two dimensional generalization obtains reason-
able performance while the effort and time involved in
the training is dramatically reduced.

Most information extraction systems are created
based on hand-crafted domain specific knowledge. This
is because the lexical semantic definitions given by the
generic resources sometimes cannot meet the actual
needs of the specific domain. No use is made of existing
general lexical semantic resources by any of the MUC
systems. NYU’s MUC-4 system (Grishman, Macleod,
& Sterling 1992) made some attempt at using WordNet
for semantic classification. However, they ran into the
problem of automated sense disambiguation because
the WordNet hierarchy is sense dependent. As a re-
sult, they gave up using WordNet. TIMES attempts
to integrate WordNet with WSD techniques (Chai
Biermann 1999). The use of WordNet hypernyms in
the two-dimensional generalization could raise the re-
call performance from 65% to 76% (see Table 5) at the
cost of precision. However, we found that the Word-
Net synonyms and the direct hypernyms are particu-
larly useful in balancing the tradeoff between the preci-
sion and recall. The use of WordNet enhanced overall
performance by 5%. Despite the typographical errors,
incorrect grammars and rare abbreviations in the free
text collection which make information extraction more
difficult, in this domain, the two-dimensional general-
ization model based on both syntactic generalization
and semantic generalization achieved about 69% (see
Table 7) F-measure in overall performance.

Conclusion

This paper presents the basic machinery for creating an
efficient synthesizer of information extraction systems.
The user can start with a basic system and an extrac-
tion problem in mind and create the rules necessary to
do the extraction from hand-entered examples. If the
problem is no more difficult than the domain described
here, then only eight to sixteen example articles must
be hand-processed to obtain F-measure in the 60-70
percent range. With a well designed GUI, these exam-
pies can be done in just a few minutes each, and the
total user investment will be approximately two hours.
The result will be a set of rules that have numbers of
entities, orderings of the entities, and levels of gener-
alization automatically specialized to optimally extract
each fact of interest from a large database.

Acknowledgements

We would like to thank Amit Bagga for developing To-
kenizer and Preprocessor. We would also like to thank
Jerry Hobbs for providing us with the finite state rules
for the Partial Parser. This work was supported in part
by an IBM Fellowship.

References
Bagga, A.; Chai, J.; and Biermann, A. 1997. The
role of WordNet in the creation of a trainable message
understanding system. Proceedings of Ninth Confer-
ence on Innovative Applications of Artificial Intelli-
gence (IAAI-97).
Califf, M., and Mooney, R. 1997. Relational learn-
ing of pattern-match rules for information extraction.
Proceedings of Computational Language Learning’gT.

Chai, J., and Biermann, A. 1997a. Corpus based sta-
tistical generalization tree in rule optimization. Pro-
ceedings of Fifth Workshop on Very Large Corpora
(WVLC-5).
Chai, J., and Biermann, A. 1997b. A WordNet based
rule generalization engine for meaning extraction. Lec-
ture Notes in Artificial Intelligence (1325): Founda-
tions of Intelligent Systems.

Chai, J., and Biermann, A. 1999. The use of word
sense disambignation in an information extraction sys-
tem. Proceedings of Eleventh Conference on Innova-
tive Applications of Artificial Intelligence (IAAI-99).
Chai, J. 1998. Learning and Generalization in the
Creation of Information Extraction Systems. Ph.D.
Dissertation, Department of Computer Science, Duke
University.

Cowie, J., and Lehnert, W. 1996. Information extrac-
tion. Communications of A CM.
Grishman, R.; Macleod, C.; and Sterling, J. 1992.
New York University Proteus System: MUC-4 test re-
sults and analysis. Proceedings of the Fourth Message
Understanding Conference.
Kim, J., and Moldovan, D. 1993. Acquisition of se-
mantic patterns for information extraction from cor-
pora. Proceedings of the Ninth IEEE Conference on
Artificial Intelligence for Applications.

Miller, G. 1990. WordNet: An on-line lexical database.
International Journal of Lexicography.

MUC6. 1995. Proceedings of the Sixth Message Un-
derstanding Conference.

Pdloff, E. 1993. Automatically constructing a dictio-
nary for information extraction tasks. Proceedings of
the Eleventh National Conference on Artificial Intelli-
gence.
Riloff, E. 1996. An empirical study of automated
dictionary construction for information extraction in
three domains. AI Journal.
Soderland, S. 1999. Learning information extrac-
tion rules for semi-structured and free text. Machine
Learning Journal Special Issues on Natural Language
Learning.

Sundheim, B. 1992. Overview of the fourth message
understanding evaluation and conference. Proceedings
of Fourth Message Understanding Conference (MUC-
4).

