
Combining Collaborative Filtering with
Personal Agents for Better Recommendations

Nathaniel Good, J. Ben Schafer, Joseph A. Konstan, Al Borchers,
Badrul Sarwar, Jon Herlocker, and John Riedl

GroupLens Research Project
Department of Computer Science and Engineering

University of Minnesota
Minneapolis, MN 55455

http://www.grouplens.org/

Abstract
Information filtering agents and collaborative filtering both
attempt to alleviate information overload by identifying
which items a user will find worthwhile. Information
filtering (IF) focuses on the analysis of item content and
the development of a personal user interest profile.
Collaborative filtering (CF) focuses on identification of
other users with similar tastes and the use of their opinions
to recommend items. Each technique has advantages and
limitations that suggest that the two could be beneficially
combined.
This paper shows that a CF framework can be used to
combine personal IF agents and the opinions of a
community of users to produce better recommendations
than either agents or users can produce alone. It also
shows that using CF to create a personal combination of a
set of agents produces better results than either individual
agents or other combination mechanisms. One key
implication of these results is that users can avoid having
to select among agents; they can use them all and let the
CF framework select the best ones for them.

Introduction

Recommender systems help individuals and communities
address the challenges of information overload.
Information filtering recommenders look at the syntactic
and semantic content of items to determine which are
likely to be of interest or value to a user. Collaborative
filtering recommenders use the opinions of other users to
predict the value of items for each user in the community.
For example, in the domain of movie selection, content
filtering would allow recommendation based on the
movie genre (horror, comedy, romance, etc.) and
cast/credits (Woody Allen, Steven Spielberg, Bette
Midler). Collaborative filtering, by contrast, might be

Copyright © 1999, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

completely unaware of genre and cast, but would know
that a group of like-minded people recommends "Hoop
Dreams" and suggests avoiding "Dumb and Dumber."
In this work, we examine collaborative filtering, personal
information filtering agents, and mechanisms for
combining them to produce a better recommender system.
The next section reviews existing approaches to
alleviating information overload, including a variety of
content-based and collaborative approaches, and presents
our model for how these approaches can be more
effective when combined. The following sections present
our experimental design and results. We conclude with
observations about the implications of these results.

Information Overload:
Problem and Approaches

Each day, more and more books, journal articles, web
pages, and movies are created. As each new piece of
information competes for our attention, we quickly
become overwhelmed and seek assistance in identifying
the most interesting, worthwhile, valuable, or entertaining
items on which we should expend our scarce money and
time. Historically, humans have adapted well to gluts of
information. Our senses are tuned to notice change and
the unusual. Our ability to communicate allows us to
collaboratively address large problems. And, we have
developed an astonishingly good ability to make quick
judgements—indeed, we often can judge a book by its
cover, an article by its title or abstract, or a movie by its
trailer or advertisement. Today we are also finding that it
is becoming easier and easier to produce and publish
content. As computers, communication, and the Internet
make it easier for anyone and everyone to speak to a large
audience, we find that even our well-developed filtering
skills may be inadequate.
In response to the challenge of information overload, we
have sought to develop useful recommender systems—
systems that people can use to quickly identify content

From: AAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

that will likely interest them. This project draws from
work in creating recommender systems for movies – film
fans tell the MovieLens system (movielens.umn.edu) how
much they like or dislike movies they've already seen, and
MovieLens recommends other movies they would likely
enjoy.
There are three different technologies that are commonly
used to address information overload challenges. Each
technology focuses primarily on a particular set of tasks
or questions. Information retrieval focuses on tasks
involving fulfilling ephemeral interest queries such as
finding the movies directed by Woody Allen.
Information filtering focuses on tasks involving
classifying streams of new content into categories, such as
finding any newly released movies directed by Steven
Spielberg (to consider watching) or any newly released
movies without an English-language soundtrack or
subtitles (to reject). Collaborative filtering focuses on
answering two questions:

• Which items (overall or from a set) should I view?

• How much will I like these particular items?

Each of these technologies has a role in producing an
effective recommender system.
Information retrieval (IR) systems focus on allowing
users to express queries to select items that match a topic
of interest to fulfill a particular information need. They
may index a collection of documents using either the full
text of the document or document abstracts. For non-
textual items such as movies, IR systems index genres,
keywords, actors, directors, etc. IR systems are generally
optimized for ephemeral interest queries, such as looking
up a topic in the library. (Belkin and Croft 1992) Internet
search engines are popular IR systems, and the Internet
Movie Database (www.imdb.com) provides extensive
support for IR queries on movies.
An IR front-end is useful in a recommender system both
as a mechanism for users to identify specific movies
about which they would like to express an opinion and for
narrowing the scope of recommendation. For example,
MovieLens allows users to specifically request
recommendations for newer movies, for movies released
in particular time periods, for particular movie genres
such as comedy and documentary, and for various
combinations of movie. Information retrieval techniques
are less valuable in the actual recommendation process,
since they capture no information about user preferences
other than the specific query. For that reason, we do not
consider IR further in this paper.
Information filtering (IF) systems require a profile of
user needs or preferences. The simplest systems require
the user to create this profile manually or with limited
assistance. Examples of these systems include: “kill
files” that are used to filter out advertising, e-mail
filtering software that sorts e-mail into categories based
on the sender, and new-product notification services that

request notification when a new book or album by a
favorite author or artist is released. More advanced IF
systems may build a profile by learning the user's
preferences. A wide range of agents including Maes'
agents for e-mail and Usenet news filtering (Maes 1995)
and Lieberman's Letizia (Lieberman 1997) employ
learning techniques to classify, dispose of, or recommend
documents based on the user's prior actions. Similarly,
Cohen's Ripper system has been used to classify e-mail
(Cohen 1996); alternative approaches use other learning
techniques and term frequency (Boone 1998)
Information filtering techniques have a central role in
recommender systems. IF techniques build a profile of
user preferences that is particularly valuable when a user
encounters new content that has not been rated before.
An avid Woody Allen fan doesn't need to wait for reviews
to decide to see a new Woody Allen film, and a person
who hates horror films can as quickly dismiss a new
horror film without regret. IF techniques also have an
important property that they do not depend on having
other users in the system, let alone users with similar
tastes. IF techniques can be effective, as we shall see, but
they suffer certain drawbacks, including requiring a
source of content information, and not providing much in
the way of serendipitous discovery; indeed, a Woody
Allen-seeking agent would likely never discover a non-
Woody Allen drama that just happens to appeal greatly to
most Woody Allen fans.
Collaborative filtering (CF) systems build a database of
user opinions of available items. They use the database to
find users whose opinions are similar (i.e., those that are
highly correlated) and make predictions of user opinion
on an item by combining the opinions of other like-
minded individuals. For example, if Sue and Jerry have
liked many of the same movies, and Sue liked Titanic,
which Jerry hasn't seen yet, then the system may
recommend Titanic to Jerry. While Tapestry (Goldberg et
al. 1992), the earliest CF system, required explicit user
action to retrieve and evaluate ratings, automatic CF
systems such as GroupLens (Resnick et al. 1994)
(Konstan et al. 1997) provide predictions with little or no
user effort. Later systems such as Ringo (Shardanand and
Maes 1995) and Bellcore's Video Recommender (Hill et
al. 1995) became widely used sources of advice on music
and movies respectively. More recently, a number of
systems have begun to use observational ratings; the
system infers user preferences from actions rather than
requiring the user to explicitly rate an item (Terveen et al.
1997). In the past year, a wide range of web sites have
begun to use CF recommendations in a diverse set of
domains including books, grocery products, art,
entertainment, and information.
Collaborative filtering techniques can be an important
part of a recommender system. One key advantage of CF
is that it does not consider the content of the items being

recommended. Rather than map users to items through
"content attributes" or "demographics," CF treats each
item and user individually. Accordingly, it becomes
possible to discover new items of interest simply because
other people liked them; it is also easier to provide good
recommendations even when the attributes of greatest
interest to users are unknown or hidden. For example,
many movie viewers may not want to see a particular
actor or genre so much as "a movie that makes me feel
good" or "a smart, funny movie." At the same time, CF's
dependence on human ratings can be a significant
drawback. For a CF system to work well, several users
must evaluate each item; even then, new items cannot be
recommended until some users have taken the time to
evaluate them. These limitations, often referred to as the
sparsity and first-rater problems, cause trouble for users
seeking obscure movies (since nobody may have rated
them) or advice on movies about to be released (since
nobody has had a chance to evaluate them).

Hybrid Recommender Systems
Several systems have tried to combine information
filtering and collaborative filtering techniques in an effort
to overcome the limitations of each. Fab (Balabanovic
and Shoham 1997) maintains user profiles of interest in
web pages using information filtering techniques, but uses
collaborative filtering techniques to identify profiles with
similar tastes. It then can recommend documents across
user profiles. (Basu, Hirsh, and Cohen 1998) trained the
Ripper machine learning system with a combination of
content data and training data in an effort to produce
better recommendations. Researchers
working in collaborative filtering have
proposed techniques for using IF profiles
as a fall-back, e.g., by requesting
predictions for a director or actor when
there is no information on the specific
movie, or by having dual systems and
using the IF profile when the CF system
cannot produce a high-quality
recommendation.
In earlier work, Sarwar, et al. (1998)
showed that a simple but consistent rating
agent, such as one that assesses the quality
of spelling in a Usenet news article, could
be a valuable participant in a collaborative
filtering community. In that work, they
showed how these filterbots—ratings
robots that participate as members of a
collaborative filtering system – helped
users who agreed with them by providing
more ratings upon which recommendations
could be made. For users who did not
agree with the filterbot, the CF framework
would notice a low preference correlation

and not make use of its ratings.
This work extends the filterbot concept in three key ways.
First, we use a more intelligent set of filterbots, including
learning agents that are personalized to an individual user.
Second, we apply this work to small communities,
including using CF to serve a single human user. Third,
we evaluate the simultaneous use of multiple filterbots.
In addition, we explore other combination mechanisms as
alternatives to CF. We demonstrate that CF is a useful
framework both for integrating agents and for combining
agents and humans.

Hypotheses and Experimental Design

In this paper, we systematically explore the value of
collaborative filtering, information filtering, and different
combinations of these techniques for creating an effective
personal recommendation system. Specifically, we look
at four key models as shown in figure 1:

• Pure collaborative filtering using the opinions of
other community members

• A single personalized "agent" – a machine learning
or syntactic filter

• A combination of many "agents"
• A combination of multiple agents and community

member opinions
The experimental design uses two tiers. First, where there
are several implementations for a particular model, we
evaluate them to find the model that provides the best
filtering. Second, we compare the best implementation

Individual
Agents Multiple

Agents

Agents
and Users
Combined

Collection
of Agents

Collection
of Users

User
Opinions

Only

Figure 1. Four models of recommender system. The models on the top use user
opinions while the models on the bottom use only IF agents. The models on the right
use multiple IF agents while the ones on the left use at most one agent. In each case,
the user receives personal recommendations.

from each model with the other implementations. These
are operationalized as four primary hypotheses below.

H1. The opinions of a community of users provide
better recommendations than a single
personalized agent.

H2. A personalized combination of several agents
provides better recommendations than a single
personalized agent.

H3. The opinions of a community of users provides
better recommendations than a personalized
combination of several agents.

H4. A personalized combination of several agents
and community opinions provides better
recommendations than either agents or user
opinions alone.

The context in which these hypotheses are tested is a
small, anonymous community of movie fans. The
combination of small size and non-textual content cause
disadvantages for both collaborative filtering and
information filtering; it provides a middle-ground
between the common contexts for collaborative filtering
(many users, little content information) and information
filtering (one user, much content information).

Data Set
The user ratings for this experiment were drawn from the
MovieLens system (http://movielens.umn.edu) which has
more than 3 million ratings from over 80,000 users. Fifty
users were selected at random from the set of users with
more than 120 movie ratings. For each user, three sets of
movies/ratings were selected at random without
replacement. The first set of 50 ratings, termed the
training set, was set aside for use in training the
personalized information filtering agents. The second set
of 50 ratings, termed the correlation set was used when
combining users, agents, or both together. The final set of
20 ratings served as the test set. In each experiment, the
test ratings of the target user were withheld and compared
against the recommendation value produced by the
system.

Metrics
Recommender systems researchers use several different
measures for the quality of recommendations produced.
Coverage metrics evaluate the number of items for
which the system could provide recommendations. In
many systems, coverage decreases as a function of
accuracy—the system can produce fewer accurate
recommendations or more inaccurate ones. Because our
information filtering systems provide total coverage, we
do not report coverage except as part of the analysis of the
standard CF system.

Statistical accuracy metrics evaluate the accuracy of a
filtering system by comparing the numerical prediction
values against user ratings for the items that have both
predictions and ratings. (Shardanand and Maes, 1995)
and (Sarwar et al, 1998) have both used mean absolute
error (MAE) to measure the performance of a prediction
engine. Other metrics used include root mean squared
error (Sarwar et al. 1998) and correlation between ratings
and predictions (Hill et al. 1995) (Konstan et al. 1997)
(Sarwar et al. 1998). Our experience has shown that these
metrics typically track each other closely. We have
chosen to report mean absolute error, therefore, because it
is the most commonly used and the easiest to interpret
directly.
Decision-support accuracy metrics evaluate how
effective a prediction engine is at helping a user select
high-quality items from the item set. These metrics are
based on the observation that, for the majority of users,
filtering is a binary operation – they will either view the
item, or they will not. If this is true, then whether an item
has a rating of 1.5 or 2.5 on a five-point scale is irrelevant
if the user only views items with a rating of 4 or higher.
The most common decision-support accuracy measures
are reversal rate, weighted errors, and ROC sensitivity.
Reversal rate is the frequency with which the system
makes recommendations that are extremely wrong. On a
five point scale, it is commonly defined as the percentage
of recommendations where the recommendation was off
by 3 points or more. Weighted error metrics give extra
weight to large errors that occur when the user has a
strong opinion about the item. For example, errors might
count double or more when the user considers the item a
favorite (5 out of 5). ROC sensitivity is a signal
processing measure of the decision making power of a
filtering system. Operationally, it is the area under the
receiver operating characteristic curve (ROC) – a curve
that plots the sensitivity vs. 1 - specificity of the test
(Swets 1988). Sensitivity refers to the probability of a
randomly selected good item being accepted by the filter.
Specificity is the probability of a randomly selected bad
item being rejected by the filter. Points on the ROC curve
represent trade-offs supported by the filter. A good filter
might allow the user to choose between receiving 90% of
the good items while accepting only 10% of the bad ones,
or receiving 95% of the good ones with 20% of the bad
ones. A random filter always accepts the same percentage
of the good and the bad items. The ROC sensitivity
ranges from 0 to 1 where 1 is perfect and 0.5 is random.
We use ROC sensitivity as our decision support accuracy
measure. To operationalize ROC, we must determine
which items are "good" and which are "bad." We use the
user's own rating, with a mapping that 4 and 5 are good
and 1,2, and 3 are bad. Our experience has shown that
this reflects user behavior on MovieLens. We found that
one user had no movies rated below 4; we eliminated that
user from the statistics compiled for each experiment.

Evaluating the hypotheses in the face of multiple
metrics can be a challenge. We considered it important to
consider both statistical and decision-support accuracy in
evaluating different recommender systems. When several
agents, for example, provide different but incomparable
trade-offs among the two metrics, we consider each one to
be a possible "best agent" and compare each of them
against the alternative recommender. We consider one
alternative to dominate another, however, if there is a
significant improvement in one metric and no significant
difference in the other.
Statistical significance is assessed for mean absolute
errors using the Wilcoxan test on paired errors.
Differences reported as significant are based on a
significance level of p<0.05. Statistical significance
assessment for ROC sensitivity is less clear;* from
experience we therefore assert that changes of 0.01 or
more are "meaningful" and smaller differences are "not
meaningful."

Experimental Components
Our hypotheses are based on four models of recommender
system:

• user opinions only,
• individual IF agents,
• combinations of IF agents, and

• combinations of IF agents and user opinions.
In this section, we describe the variety of implementations
of these models with an overview of how we constructed
each implementation. The effectiveness of each
implementation is reported in the results section.
User Opinions Only. Extensive research has already
been performed on the problem of generating
recommendations from a set of user opinions. Nearest-
neighbor collaborative filtering is already generally
accepted to be the most effective mechanism for
performing this task, and we therefore use it (Breese,
1998). In particular, we use the DBLens research
collaborative filtering engine developed by the
GroupLens Research project for exploration of
collaborative filtering algorithms. DBLens allows
experimenters to control several parameters that trade
among performance, coverage, and accuracy. For our
experiments, we set each of these to prefer maximum
coverage and to use all data regardless of performance.
The CF result set was computed for each user by loading
the correlation data set (50 ratings per user) into the
engine, then loading the test set (20 ratings per user) for
each user, and requesting a prediction for each test set

*There are statistical measures to compare ROC curves
themselves, but the measures that we have found for comparing
areas under the curve appear to overstate statistical significance.

movie for each user. DBLens has a control that allows us
to ignore a user's rating when making a prediction for that
user. The resulting 20 predictions per user were
compared against that user's ratings to produce error and
ROC statistics.
Individual IF Agents. Three types of IF agents, or
filterbots, were created and studied in this project:
DGBots, RipperBot, and a set of GenreBots.

Doppelganger Bots (DGBots) are personalized bots that
create profiles of user preferences and generate
predictions using IR/IF techniques (specifically, a
modified TFIDF, (Salton and Buckley 1987) based upon
the content features of each movie. We created three
DGBots, one that used only cast data, one that used only
descriptive keywords, and one that used both. These data
were found at the Internet Movie Database
(http://www.imdb.com/). Each DGBot was implemented
similarly, so we will describe the keyword DGBot here.
To produce personal recommendations for movies, the
keyword DGBot followed five steps:

1. Create an IDF vector that represents the relative
scarcity of each keyword in the movie set.

2. Create a term frequency vector for each movie
indicating which keywords occur.

3. Build a user profile of weights associated with
each term

4. Produce a score for each movie based on the user
weights.

5. Rank order the movies and divide into
recommendation bands.

The IDF vector is created using the following formula for
the value associated with each keyword:

N is the total number of movies and O is the number of
movies for which that keyword is used.
We modified traditional TFIDF by counting each
keyword as either occurring (1) or not occurring (0) in
any given movie. Accordingly, the TF vector for a movie
is produced by inserting a 1 for each keyword and 0
elsewhere.
Building the user profile requires a balanced set of user
ratings, so we subtract 3 from each rating to transform
them to a -2 to +2 scale. For each movie in the 50-rating
training set, we produce a keyword preference vector that
is the product of the transformed rating, the movie's TF
vector, and the IDF vector. We then normalize the
keyword preference vector to length 1. The mean of the
user's 50 keyword preference vectors is the user profile.
The DGBot produces ratings for all movies at once. For
each movie, it computes the dot product of the user

)(log2 O

N
idf =

profile vector and the TF vector. Those scores are then
ranked and broken into rating levels with a distribution
matching the MovieLens overall rating distribution. The
top 21% of movies received a rating of 5, the next 34% a
rating of 4, the next 28% a 3, the next 12% a 2, and the
bottom 5% a 1. While each user has a separate user
profile vector and set of recommendations, the TF and
IDF vectors could be re-used from user to user.
RipperBot was created using Ripper, an inductive logic
program created by William Cohen (Cohen, 1995). We
found that Ripper performed best when trained on a set of
data limited to genre identifiers and the 200 most frequent
keywords. Ripper also works best when asked to make
binary decisions, so for each user we trained four Ripper
instances, tuned to distinguish between 5/4321, 54/321,
543/21, and 5432/1 respectively. Each instance was
trained on the 50-rating training set along with the
identifiers and keywords for those 50 movies. After
training, we asked each instance to classify the entire set
of movies and summed the number of Ripper instances
that indicated the higher value and added one to create a
recommendation value.
Ripper requires substantial tuning; we experimented with
several parameters and also relied on advice from (Basu
Hirsh and Cohen, 1998). In particular, we adjusted
default settings to allow negative tests in set value
attributes and experimented by varying the loss ratio. We
found a loss ration of 1.9 to give us the best results.
The GenreBots consisted of 19 simple bots that rated
each movie a 5 if the movie matched the bot's genre and a
3 otherwise. For example, Toy Story, which is a
children’s animated comedy would receive a 5 from the
ChildrensBot, the AnimatedBot and the ComedyBot, and
a 3 from each of the remaining bots. Genre data was
obtained from IMDB.
A Mega-GenreBot was created for each user. This was
done by using linear regression and training the bot on
each user’s training set. A user’s known rating was
treated as a dependent variable of the 19 individual
GenreBots. The regression coefficients formed an
equation that could then be used to generate predictions
for each other movie from the genre identifiers.
Combinations of IF Agents. We identified four different
strategies for combining agents: selecting one agent for
each person, averaging the agents together, using
regression to create a personal combination, and using CF
to create a personal combination. For all but the first of
these, we found it valuable to create two combinations:
one that used all 19 GenreBots and one that used the
Mega-GenreBot. Adding the 3 DGBots and RipperBot,
we refer to these as 23-agent and 5-agent versions,
respectively.
BestBot. The best agent per user was selected by testing
each bot on the correlation data set (50 ratings) and
selecting the bot with the lowest MAE. BestBot then

used the ratings generated by that bot for the test data set
to produce statistics for evaluation.
Agent Average. The average combination was produced
by taking the arithmetic mean of the 5 or 23 agent
recommendations, respectively.
Regression. We used linear regression to produce a “best
fit” combination for a given user. To do this we used the
predictions on the correlation sets for the 23 and 5 agents
respectively as the independent variables and the known
user’s rating as the dependent variable. Using the
resultant weights, we could generate predictions for the
movies in the test sets by creating linear combinations of
the agents' recommendations.
CF Combination. We used the DBLens CF engine to
create a CF combination of agents. For this purpose, we
loaded all ratings from the 5 or 23 agents into the engine,
along with the user's 50 ratings from the correlation set.
We generated predictions for the user's 20 test movies.
The ratings database was cleared after each user. The
parameters used were the same as for the simple CF case.
Combination of Users and IF Agents. Because user
ratings were incomplete, and because CF with 23 agents
proved to be the most effective combination of IF agents,
we used CF to combine the 23 agents and all 50 users.
The method is identical to the CF combination of agents
except that we also loaded the ratings for the other 49
users. Again, the database was cleared after each user.

Results

8H1: Collaborative Filtering better than Single Agents
We hypothesized that collaborative filtering using the
opinions of the 50-user community would provide better
results than any individual agent. To compare these, we
first identified the best individual agent. We evaluated
the three DGBots, RipperBot, the 19 individual
genreBots, and the personalized Mega-GenreBot (see
table 1). Of these, only RipperBot, Mega-GenreBot, and
the DGBot that used both cast and keywords were not
dominated by other agents. RipperBot had the highest
accuracy (lowest MAE) by far, but low ROC sensitivity
(poor decision support). The combined DGBot has the

Table 1. Individual Bots vs. CF of Users

Bot or Method MAE ROC
ActionBot 1.0755 0.4925

AdventureBot 1.0653 0.5148

AnimationBot 1.0612 0.5017

ChildrensBot 1.0346 0.5155

ComedyBot 1.2652 0.4767

CrimeBot 1.1000 0.5006

DocumntryBot 1.0918 0.4927

DramaBot 1.0591 0.5151

FamilyBot 1.0489 0.5161

Film-NoirBot 1.0959 0.4924

HorrorBot 1.0632 0.5066

MusicalBot 1.0673 0.5182

MysteryBot 1.0734 0.5114

Bot or Method MAE ROC
RomanceBot 1.0897 0.4931

Sci-FiBot 1.0714 0.5026

ThrillerBot 1.0897 0.4815

UnknownBot 1.0816 0.4922

WarBot 1.0428 0.5187

WesternBot 1.0673 0.5078

DGBot Cast 1.2775 0.5673

DGBot Kwd 1.1397 0.5706

DGBot Comb. 1.1428 0.5771

MegaGnrBot 0.9578 0.5742

RipperBot 0.8336 0.5236

CF of Users 0.9354 0.5788

highest ROC sensitivity, but relatively low accuracy. The
Mega-GenreBot has the second-best accuracy and second-
best decision-support. We compare these three against
the results of collaborative filtering using user opinions.
Collaborative filtering is significantly less accurate than
RipperBot, but has a meaningfully higher ROC sensitivity
value. In effect, while RipperBot avoids making large
errors, it performs little better than random at helping
people find good movies and avoid bad ones. If accuracy
were paramount, H1 would be rejected.
Collaborative filtering is significantly more accurate than
the combined DGBot and has comparable ROC
sensitivity. While both approaches provide comparable
support for decision-making, on average the DGBot is
more than 20% less accurate. If decision-support were
paramount, H1 would be accepted.
The Mega-GenreBot is slightly worse than collaborative
filtering of user opinions on both MAE and ROC, but the
differences were not statistically significant. We would
consider Mega-GenreBot to be a good pragmatic
substitute for user-based collaborative filtering for a small
community. Furthermore, the collaborative filtering
result was only able to provide coverage of 83% (other
desired recommendations could not be made due to a lack
of ratings for those movies).
Accordingly, overall we reject H1. A more accurate
alternative exists (RipperBot), and comparably accurate
and valuable alternatives exist without the problem of
reduced coverage.

4H2: Many Agents better than Just One
We hypothesized that combining several agents would
yield better results than any single personalized agent. In
testing H1, we found that for single agents, RipperBot had
the best accuracy value (MAE), DGBot Combo had the
best decision support value (ROC) and the Mega-
GenreBot was competitive with both values. In table 2
we compare these values to those obtained from the seven
methods of combining the agents – regression, agent
average, collaborative filtering of a single user and its
bots, and manually selecting the “best bot.”

Collaborative filtering using all 23 (CF23) agents is
clearly the best combination method, with a significant
accuracy advantage over all of the other combinations and
similar or better ROC values. CF23 provides both MAE
and ROC advantages over both the Mega-GenreBot and
the DGBot Combo.
The remaining interesting comparison is between CF23
and RipperBot. We conclude that CF23 is better because

there was no significant difference in MAE, and the ROC
value for CF23 was dramatically better than for
RipperBot. Accordingly we accept H2. We also observe
that H2 depended on using collaborative filtering
technology; no other combination method was close to
dominating RipperBot's accuracy.

8H3: CF of Users better than Combination of Agents
At this stage, it is clear that we must reject H3. Table 3
summarizes the results, but we recognize that
collaborative filtering with a group of 50 users is indeed
not as accurate or valuable as we had hypothesized.

4H4: Agents and Users Together is best overall
We hypothesized that the combination of the opinions of
a community of users and the personalized agents for a
given user will provide that user with better results than
either users alone or agents alone. From both H2 and H3
we found that collaborative filtering of a single user and
that user’s 23 agents provides the best accuracy and
decision support of all agent-only or user-only methods
tested. Table 4 shows a small, but statistically significant
improvement in accuracy resulting from including the
other users in the collaborative filtering mix. ROC also
improves, but not by a meaningful amount.

Accordingly, we accept H4 and find that a mixed
collaborative filtering solution that uses users and agents
does indeed provide the best overall results.

Discussion

The most important results we found were the value of
combining agents with CF and of combining agents and
users with CF. In essence, these results suggest that an
effective mechanism for producing high-quality
recommendations is to throw in any available data and
allow the CF engine to sort out which information is
useful to each user. In effect, it becomes less important to
invent a brilliant agent, instead we can simply invent a
collection of useful ones. We should point out that these
experiments tested the quality of the resulting
recommender system, not the performance or economics
of such a system. Current CF recommendation engines
cannot efficiently handle “users” who rate all items and
re-rate them frequently as they "learn." To take
advantage of learning agents, these engines must be
redesigned to accommodate "users" with dynamic rating
habits. We are examining several different CF engine

Table 3. CF of Users vs. Combined Bots

Bot or Method MAE ROC
CF (users only) 0.9354 0.5788

Bot or Method MAE ROC
CF 1 usr, 23 bts 0.8343 0.6118

Table 4. CF of Users and Bots vs. Combined Bots

Bot or Method MAE ROC
CF 50 usr, 23 bt 0.8303 0.6168

Bot or Method MAE ROC
CF 1 usr, 23 bts 0.8343 0.6118

Table 2. Individual Bots vs. Combined Bots

Bot or Method MAE ROC

5 agent regress 0.8610 0.6030

23 agent regress 0.9729 0.5676

5 agent avg. 0.8990 0.6114

23 agent avg. 0.9579 0.5760

Best Bot 0.8714 0.5173

Bot or Method MAE ROC
RipperBot 0.8336 0.5236

MegaGenreBot 0.9578 0.5742

DG Combo Bot 1.1428 0.5771

CF 1 usr, 5 bots 0.9682 0.6071

CF 1 usr, 23 bts 0.8343 0.6118

designs that could efficiently use filterbots.
We were also pleased, though somewhat surprised, to find
that CF outperformed linear regression as a combining
mechanism for agents. While linear regression should
provide an optimal linear fit, it appears that CF's non-
optimal mechanism actually does a better job avoiding
overfitting the data when the number of columns
approaches the number of rows. CF also has the
advantage of functioning on incomplete (and indeed very
sparse) data sets, suggesting that it retains its value as a
useful combination tool whenever human or agents are
unlikely to rate each item.
We were surprised by several of the results that we'd
found, and sought to explain them. Foremost, we clearly
overestimated the value of collaborative filtering for a
small community of 50 users. In retrospect, our
expectations may have been built from our own positive
experiences when starting CF systems with a small group
of researchers and friends. Those successes may have
been due in part to close ties among the users; we often
had seen the same movies and many had similar tastes.
Using real users resulted in real diversity which may
explain the lower, and more realistic, value. Future work
should both incorporate larger user sets (other
experiments have consistently shown MAE values in the
range of 0.71-0.73 and ROC sensitivity values near 0.72
for MovieLens communities with thousands of users) and
look explicitly at closer-knit communities to see whether
a smaller but more homogeneous community would have
greater benefits from collaborative filtering.
We also were surprised by the results we achieved using
Ripper. We were impressed by its accuracy, after
extensive tuning, but dismayed by how close to random it
was in distinguishing good from bad movies. We are still
uncertain as to why RipperBot performs as it does, and
believe further work is needed to understand why it
behaves as it does and whether it would be possible to
train it to perform differently.
In the future, we plan to examine further combinations of
users and agents in recommender systems. In particular,
we are interested in developing a combined community
where large numbers of users and agents co-exist. One
question we hope to answer is whether users who agree
with each other would also benefit from the opinions of
each other's trained agents.

Acknowledgements

Funding for this research was provided by the National
Science Foundation under grants IIS 9613960, IIS
9734442, and DGE 9554517. Support was also provided
by Net Perceptions Inc. We would also like to thank
members of the GroupLens research team, especially
Hannu Huhdanpaa for developing the initial testbed.

References
Balabanovic, M., and Shoham, Y. 1997. Fab: Content-Based,
Collaborative Recommendation. Communications of the ACM
40(3):66-72.
Basu C., Hirsh H., and Cohen, W.W. 1998. Using Social and
Content-Based Information in Recommendation. In Proceedings
of the AAAI-98,:AAAI Press.
Belkin, N., and Croft, B.W. 1992. Information Filtering and
Information Retrieval: Two Sides of the Same Coin?.
Communications of the ACM 35(12):29-38.
Boone, G. 1998. Concept Features in Re:Agent, an Intelligent
Email Agent. In The Second International Conference on
Autonomous Agents, 141-148, Minneapolis/St. Paul, MN:ACM.
Breese, J. Heckerman, D., and Kadie, C. 1998. Empirical
Analysis of Predictive Algorithms for Collaborative Filtering. In
Proceedings of the Fourteenth Conference on Uncertainty in
Artificial Intelligence, Madison, WI.
Cohen, W.W. 1996. Learning Rules that Classify E-mail. In
Proceeding of the AAAI Spring Symposium on Machine
Learning in Information Access,: AAAI Press.
Cohen, W.W. 1995. Fast Effective Rule Induction. In
Proceedings of the Twelfth International Conference on
Machine Learning, Lake Tahoe, CA.:AAAI Press.
Goldberg, D., Nichols, D., Oki, B.M. and Terry, D. 1992. Using
Collaborative Filtering to Weave an Information Tapestry.
Communications of the ACM 35(12):61-70.
Hill, W., Stead, L., Rosenstein, M., and Furnas, G., 1995.
Recommending and Evaluating Choices in a Virtual Community
of Use. In Proceedings of ACM CHI’95, 194-201. Denver, CO.:
ACM.
Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon,
L.R., and Riedl, J. 1997Applying Collaborative Filtering to
Usenet News. Communications of the ACM 40(3):77-87.
Lieberman, H., 1997. Autonomous Interface Agents. In
Proceedings of ACM CHI 97,67-74,:ACM
Maes, P. 1995. Agents that Reduce Work and Information
Overload. In Readings in Human-Computer Interaction, Toward
the Year 2000, :Morgan Kauffman.
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P. and Riedl,
J. 1994. GroupLens: An Open Architecture for Collaborative
Filtering of Netnews. In Proceedings of 1994 Conference on
Computer Supported Collaborative Work, 175-186.: ACM.
Salton, G., Buckley, C. 1987. Term Weighting Approaches in
Automatic Text Retrieval., Technical Report, Dept. of Computer
Science, Cornell Univ.
Sarwar, B.M., Konstan, J.A., Borchers, A., Herlocker, J.L.,
Miller, B.N., and Riedl, J. 1998. Using Filtering Agents to
Improve Prediction Quality in the Grouplens Research
Collaborative Filtering System. In Proceedings of CSCW '98,
Seattle, WA.: ACM.
Shardanand, U., and Maes, P. 1995. Social Information
Filtering: Algorithms for Automating “Word of Mouth”. In
Proceedings of ACM CHI ’95,. Denver, CO.: ACM.
Swets, J.A. 1988. Measuring the Accuracy of Diagnostic
Systems. Science 240:1285-1289.
Terveen, L., Hill, W., Amento, B., McDonald, D., Creter J.
1997. PHOAKS: A System for Sharing Recommendations.
Communications of the ACM 40(3):59-62.

