
Theory for Coordinating Concurrent Hierarchical Planning Agents
Using Summary Information

Bradley J. Clement and Edmund H. Durfee
University of Michigan
Ann Arbor, MI 48109

{bradc, durfee}@umich.edu

Abstract

Interacting agents that interleave planning, plan
coordination, and plan execution for hierarchical
plans (e.g. HTNs or procedures for PRS) should
reason about abstract plans and their concurrent
execution before they are fully refined. Poor de-
cisions made at abstract levels can lead to costly
backtracking or even failure. We claim that bet-
ter decisions require information at abstract lev-
els that summarizes the preconditions and effects
that must or may apply when a plan is refined.
Here we formally characterize concurrent hierar-
chical plans and a method for deriving summary
information for them, and we illustrate how sum-
mary conditions can be used to coordinate the
concurrent interactions of plans at different levels
of abstraction. The properties of summary con-
ditions and rules determining what interactions
can or might hold among asynchronously execut-
ing plans are proven to support the construction
of sound and complete coordination mechanisms
for concurrent hierarchical planning agents.

Introduction
The study of concurrent action in relation to plan-

ning (Georgeff 1984) has improved our understanding
of how agents can reason about their interactions in
order to avoid conflicts during concurrent plan execu-
tion. Conflicts can be avoided by reducing or eliminat-
ing interactions by localizing plan effects to particular
agents (Lansky 1990), and by merging the individual
plans of agents by introducing synchronization actions
(Georgeff 1983). In fact, planning and merging can
interleaved, such that agents can propose next-step ex-
tensions to their current plans and reconcile conflicts
before considering extensions for subsequent steps. By
formulating extensions in terms of constraints rather
than specific actions, a "least commitment" policy can
be retained (Ephrati & Rosenschein 1994).

For many applications, planning efficiency can be
enhanced by exploiting the hierarchical structure of

Copyright (~)1999, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

This work was supported in part by NSF (IRI-
9158473) and DARPA (F30602-98-2-0142).

planning operations. Rather than building a plan from
the beginning forward (or end backward), hierarchical
planners identify promising classes of long-term activ-
ities (abstract plans), and incrementally refine these
to eventually converge on specific actions. Planners
such as NOAH (Sacerdoti 1977) and NONLIN (Tate
1977) have this character, and are often considered in-
stances of a class of planners called Hierarchical Task
Network (HTN) planners. By exploiting the hierarchi-
cal task structure to focus search, HTN planners often
converge much more quickly to effective plans. They
are also becoming increasingly well understood (Erol,
Hendler, & Nan 1994).

Using HTN planning for concurrently-executing
agents is less well understood, however. If several HTN
planning agents are each generating their own plans,
how and when should these be merged? Certainly,
merging could wait until the plans were fully refined,
and techniques like those of Georgeff (mentioned pre-
viously) would work. But interleaving planning and
merging holds greater promise for identifying and re-
solving key conflicts as early in the process as possible
to try to avoid backtracking or failure. Such interleav-
ing, however, requires the ability to identify potential
conflicts among abstract plans.

Corkill (Corkill 1979) studied interleaved planning
and merging in a distributed version of the NOAH
planner. He recognized that, while most of the con-
ditions affected by an abstract plan operator might be
unknown until further refinement, those that deal with
the overall effects and preconditions that hold no mat-
ter how the operator is refined can be captured and
used to identify and resolve some conflicts, He recog-
nized that further choices of refinement or synchroniza-
tion choices at more abstract levels could lead to un-
resolvable conflicts at deeper levels, and backtracking
could be necessary. Our work is directed toward avoid-
ing such backtracking by improving how an abstract
plan operator represents all of the potential needs and
effects of all of its potential refinements.

Our motivation for doing this is not simply to make
interleaved planning and merging with HTNs more
efficient, but also to support another crucial use of
HTN concepts-specifically, flexible plan execution sys-
tems such as PRS (Georgeff & Lansky 1986), RAPS

From: AAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

(Firby 1989), etc., that similarly exploit hierarchical
plan spaces. Rather than refine abstract plan oper-
ators into a detailed end-to-end plan, however, these
systems interleave refinement with execution. By post-
poning refinement until absolutely necessary, such sys-
tems leave themselves flexibility to choose refinements
that best match current circumstances. However, this
means that refinement decisions at abstract levels are
made and acted upon before all of the detailed refine-
ments need be made. If such refinements at abstract
levels introduce unresolvable conflicts at detailed lev-
els, the system ultimately gets stuck part way through
a plan that cannot be completed. While backtrack-
ing is possible for HTN planning (since no actions are
taken until plans are completely formed), it might not
be possible when some (irreversible) plan steps have al-
ready been taken. It is therefore critical that the spec-
ifications of abstract plan operators be rich enough to
summarize all of the relevant refinements to anticipate
and avoid such conflicts. In this paper, we formally
characterize methods for deriving and exploiting such
rich summaries to support interleaved local planning,
coordination (plan merging), and execution.

Simple Example

This example illustrates the use of summary informa-
tion, explains some terminology, and further motivates
the formalism of a theory for concurrent hierarchical
plans (CHiPs) and summary information.

Suppose that two agents wish to go through a door-
way to another location, (row, column), as shown
in Figure 1. Agent A has a hierarchical plan, p, to
move from (0,0) to (0,4), and B also has a plan,
to move from (2,0) to (2,4), but they need to coordi-
nate their plans to avoid collision. Agent A could have
preprocessed plan p to derive its summary informa-
tion. The set of summary preconditions of p includes
all its preconditions and those of its subplans that must
be met external to p in order for p to execute suc-
cessfully: {At(A, O, 0), -~At(B, 1),-,At(B, 1, 0), ...,
-,At(B,O,4)}. The proposition At(A,O,O) is a must
condition because no matter how p is executed, the
condition must hold. -~At(B, 1, 0) is may because it
may be required depending on the path A takes. Like-
wise, the summary postconditions of p are its effects
and those of its subplans that are seen externally:
{At(A, 2, 0), -,At(A, O, 0), -~At(A, 1, 0)). The sum-
mary inconditions are any conditions that must hold
within the interval of time that the plan is executing
and can be must or may and always or sometimes.
An always condition is required to hold throughout the
duration of any execution of the plan. For example, a
must, always incondition ofp could be PowerOn(A)-
the power must always be on. At(A, 1, 0) is a may,
sometimes incondition of p because A may choose that
path and would only be there at some time. These con-
ditions and descriptors, such as must and always, pro-
vide the necessary information to reason about what

Figure 1: Agents A and B go through a doorway.

conditions must or may be achieved or clobbered when
ordering a set of plan executions.

Now suppose A sends B Psum, the summary in-
formation for p. Agent B can now reason about
the interactions of their plans based on their com-
bined summary information. For instance, based
only on the summary information, B can determine
that if p is restricted to execute before q, then
the plans can be executed (refined) in any way, or
CanAnyWay(b,p qs~m).1 So, B could tell A to go
ahead and start execution and to send back a mes-
sage when p is finished executing. However, B may
instead wish to overlap their plan executions for bet-
ter efficiency. Although CanAnyWay(o,ps~m,qs~m) is
not true, B could use the summary conditions to deter-
mine that there might be some way to overlap them,
or MightSomeWay(o,p~**m,q~m). Then, B could ask
A for the summary information of each ofp’s subplans,
reason about the interactions of lower level actions in
the same way, and find a way to synchronize the sub-
plans for a more fine-grained solution.

Consider another case where A and B plan to
move to the spot directly between them, (1,0), and
can choose from different routes. MightSomeWay(b,
p qs~m) would be false since the postconditions of
p must always clobber the preconditions of q. If we
wanted to describe a rule for determining whether two
actions can or might overlap, it is not obvious how
this should be done. The difficulty of composing such
rules stems from an imprecise specification of concur-
rent plan execution and the large space of potential
plans that have the same summary information. If the
MightSomeWay(o, ps qs,,m) rule is not specified in
a complete way, the agent may not determine that the
overlaps relation cannot hold until it has exhaustively
checked all synchronizations ofp and q’s primitive sub-
plans. As the number of subplans grows, this becomes
an intractable procedure (Vilain & Kautz 1986). Even
worse would be if, for the sake of trying to be com-
plete, a rule is specified in an unsound way leading
to a synchronization choice that causes failure. We
give an example of this in (Clement & Durfee 1999b),
where we also implement a hierarchical plan coordi-

1We will often abbreviate Allen’s thirteen temporal re-
lations (Allen 1983). Here, "b" is for the before relation.
"o" is for overlaps.

nation algorithm that uses summary information in
the manner described above. Our evaluations show
that coordinating at different levels of abstraction for
different cost scenarios results in better performance.
Thus, formalizing concurrent hierarchical plans, their
execution, and the derivation of summary conditions
is necessary to avoid costly, irreversible decisions made
during planning, plan execution, and coordination.

Overview

In the next section we describe the semantics of hierar-
chical plans and their concurrent execution to ground
our theory. The simple theory of action consistently
describes all temporal interactions among primitive or
hierarchical plans. We basically add a set of incon-
ditions to popular STRIPS-style plan representations
to reason about concurrent plan execution. In addi-
tion, we formalize traditional planning concepts, such
as clobbers and achieves, and reintroduce external con-
ditions (Tsuneto, Hendler, & Nan 1998) for reasoning
about CHiPs. We then describe the semantics of plan
summary information and a correct method for deriv-
ing it efficiently. This, in turn, is used to describe
the construction of sound and complete rules for de-
termining how plans can definitely or might possibly
be temporally related. The result is a theory for prov-
ing correct coordination and planning mechanisms.

A Model of Hierarchical Plans and

their Concurrent Execution

The original purpose of developing the following the-
ory was to provide, as simply as possible, a consistent
model of execution to generally reason about the con-
current interaction of hierarchical plans. However, we
also wanted the model to share important aspects of
plans used by PRSs, HTNs, Allen’s temporal plans,
and many STRIPS-style plan representations. As such,
this theory of action tries to distill appropriate aspects
of other theories, including (Allen & Koomen 1983),
(Georgeff 1984), and (Fagin et al. 1995).

CHiPs

A concurrent hierarchical plan p is a tuple (pre, in,
post, type, subplans, order), pre(p), in(p), and post(p)
are sets of literals (v or -~v for some propositional vari-
able v) representing the preconditions, inconditions,
and postconditions defined for plan p.2 The type of
plan p, type(p), has a value of either primitive, and,
or or. An and plan is a non-primitive plan that is
accomplished by carrying out all of its subplans. An
or plan is a non-primitive plan that is accomplished
by carrying out one of its subplans. So, subplans is
a set of plans, and a primitive plan’s subplans is the
empty set. order(p) is only defined for an and plan

2Functions such as pre(p) are used for referential con-
venience throughout this paper. Here, pre and pre(p) are
the same, and pre(p) is read as "the preconditions of p."

p and is a set of temporal relations (Allen 1983) over
pairs of subplans that together are consistent; for ex-
ample, be f ore(pi, pj) and be f ore(pj, pi could not both
be in order. Plans left unordered with respect to each
other are interpreted to potentially execute in concur-
rently. For the example in Figure 1, A’s highest level
plan p is the tuple ({}, {}, {}, and, {ml, m2, m3},
{before(m1, m2), before(m2, m3)}). Here, ml, m2,
and m3 correspond to p’s subplans for moving to (1,1),
(1,3), and (0,4) respectively. There are no conditions
defined because p can rely on the conditions defined
for the primitive plans for moving between grid loca-
tions. The primitive plan for moving agent A from
(1,3) to (0,3)is the tuple ({At(A, 1,3)}, {At(A, 1,3),
-~At(S, 1, 3), ~At(B, O, 3)}, {At(A, O, 3), -~At(A, 1, 3),
-~At(B, O, 3), ~At(B, 1, 3)}, primitive, {}, {}).

We also require postconditions to specify whether
the inconditions change or not. This helps simplify
the notion of inconditions as conditions that hold only
during plan execution whether because they are caused
by the action or because they are necessary conditions
for successful execution. H a plan’s postconditions did
not specify the truth values of the inconditions’ vari-
ables at the end of execution, then it is not intuitive
how those values should be determined in the presence
of concurrently executing plans. By requiring postcon-
ditions to specify such values, we resolve all ambiguity
and simplify state transitions (described in the section
below on Histories and Runs).

The decomposition of a CHiP is in the same style
as that of an HTN as described by Erol et al. (Erol,
Hendler, & Nan 1994). An and plan is a task network,
and an or plan is an extra construct representing a set
of all tasks that accomplish the same goal or compound
task. Tasks in a network are subplans of the plan cor-
responding to the network. High-level effects (Erol,
Hendler, & Nan 1994) are simply the postconditions
of a non-primitive CHIP. CHiPs can also represent a
variety of interesting procedures executable by PRSs.

Executions

We recursively describe an execution of a plan as an in-
stance of a decomposition and ordering of its subplans’
executions. This helps us reason about the outcomes
of different ways to execute a group of plans, describe
state transitions, and formalize other terms.

The possible executions of a plan p is the set $(p).
An execution of p, e e $(p), is a triple (d,t~,t$). ts(e)
and t$(e) are positive, non-zero real numbers repre-
senting the start and finish times of execution e, and
t8 < tf. die) is a set of subplan executions represent-
ing the decomposition of plan p under this execution
e. Specifically, if p is an and plan, then it contains
one execution from each of the subplans; if it is an or
plan, then it contains only one execution of one of the
subplans; and it is empty if it is primitive. In ad-
dition, for all subplan executions, e~ E d, ts(eI) and
tf(g) must be consistent with the relations specified

in order(p). Also, the first subplan(s) to start must
start at the same time as p, ts(eI) = ts(e); and the last
subplan(s) to finish must finish at the same time as the
p, t$(e~) = tl(c). An execution for agent A’s top-level
plan p (described previously in the section on CHiPs)
would be some e E $(5o). e might be ({el, e2, e~}, 4.0,
10.0) where el E E(mi), e2 E C(m2), e3 E $(m3),
e begins at time 4.0 and ends at time 10.0. el also
starts at 4.0, and e~ ends at 10.0.

The subexecutions of an execution e, sometimes re-
ferred to as subex(e), is defined recursively as the set of
subplan executions in e’s decomposition unioned with
their subexecutions. For agent A, subex(e) = {el, e2,
e3} U 8ubeX(Cl) U 8ubex(e2) U 8ubex(v3). For conve-
nience, we say that a condition of a plan with an exe-
cution in the set containing e and e’s subexecutions is
a condition of e. So, if A executes its top-level plan,
since -,At(B, 1, 2) is an incondition of the primitive for
A to move from (1,1) to (1,2), it is also an incondition
of the primitive’s execution, e2, and e.

Histories and Runs

We describe hypothetical possible worlds, called his-
tories, so that we can determine what happens in all
worlds, some, or none. We then can describe how the
state transforms according to a particular history. A
state of the world, s, is a truth assignment to a set of
propositions, each representing an aspect of the envi-
ronment. We treat a state as the set of true proposi-
tional variables.

A history, h, is a tuple (E, st). E is a set of plan
executions including those of all plans and subplans
executed by all agents, and st is the initial state of the
world before any plan is begun. So, a history h is a
hypothetical world that begins with s1 as the initial
state and where only executions in E(h) occur.

A run, r, is a function mapping time to states. It
gives a complete description of how the state of the
world evolves over time. We take time to range over
the positive real numbers, r(t) denotes the state of the
world at time t in run r. So, a condition is met at
time t if the condition is a non-negated propositional
variable v, and v E r(t) or if the condition is a negated
propositional variable -~v, and v ~_ r(t).

For each history h there is exactly one run, r(h)3,

that specifies the state transitions caused by the plan
executions in E(h). The interpretation of a history by
its run is defined as follows. The world is in the initial
state at time zero: r(h)(O) = st(h). In the smallest
interval after any point where one or more executions
start and before any other start or end of an execution,
the state is updated by adding all non-negated incon-
ditions of the plans and then removing all negated in-
conditions. Similarly, at the point where one or more
executions finish, the state is updated by adding all

aFor convenience, we now treat r as a function mapping
histories to runs, so r(h)(t) is a mapping of a history and
a time to a state.

non-negated postconditions of the plans and then re-
moving all negated postconditions. Lastly, if no exe-
cution of a plan begins or ends between two points in
time, then the state must be the same at those points.
First order logic sentences for these axioms are speci-
fied in a larger report (Clement & Durfee 1999a).

Now we can define what it means for a plan to exe-
cute successfully. An execution e = (d, ts, tf) succeeds
in h if and only if the plan’s preconditions are met at
t,; the inconditions are met throughout the interval
(t~,tf); the postconditions are met at tf; and all exe-
cutions in e’s decomposition are in E(h) and succeed.
Otherwise, c fails. So, in a history h where agent A
successfully executes a plan (as described previously in
the section on Executions) to traverse the room, E(h)
= {e} U subex(e), and all conditions of all plans with
executions in E(h) are met at the appropriate times.
Given the example primitive conditions in the section
on CHiPs and the axioms just described for state tran-
sitions, if agent B happened to start moving into A’s
target location, (0,4), at the same time as A, then ei-
ther A’s primitive plan execution CA finishes before B’s
and the -,At(A, O, 4) incondition of B’s primitive exe-
cution eB is not met (clobbered) at tf(eA); eB finishes
before eA and similarly clobbers eA’S incondition; or
they both finish simultaneously clobbering each oth-
ers’ At(A/B, O, 4) postconditions. If eA fails, then e3
and the top-level execution e must also fail.

Asserting, Clobbering, and Achieving

In conventional planning, we often speak of clobber-
ing and achieving preconditions of plans (Weld 1994).
In CHiPs, these notions are slightly different since in-
conditions can clobber and be clobbered, as seen in
the previous section. Formalizing these concepts helps
prove properties of summary conditions. However, it
will be convenient to define first what it means to as-
sert a condition.

An execution e of plan p is said to assert a condition
g at time t in a history h if and only if g is aa incondition
of p, t is in the smallest interval beginning after ts(e)
and ending before a following start or finish time of
any execution in E(h), and g is satisfied by r(h)(t); or
g is a postcondition of p, t -- tl(e), and g is satisfied by
r(t). So, asserting a condition only causes it to hold if
the condition was not previously met. Otherwise, the
condition was already satisfied and the action requiring
it did not really cause it.

A precondition g of plaa pl is [clobbered, achieved]4 in
el (an execution of pl) by e2 (an execution of plan
at time t if and only if e2 asserts [gl, g] at t; g ~ --e~;
and e2 is the last execution to assert g or g~ before
or at ts(el). An [incondition, postcondition] g of plan
Pl is clobbered in el by e2 at time t if and only if e~.
asserts g’ at t; g ~:~ --g’; and [t~(el) < t < tf(el),

4We use braces [] as a shorthand when defining similar
terms and procedures. For example, saying "[a, b] implies
[c, d]" means a implies c, and b implies d.

t = t I (el)]. Achieving inconditions and postconditions
does not make sense for this formalism, so it is not
defined. In the previous section when eA finished first
and asserted At(A, O, 4), it clobbered the incondition
-~At(A, O, 4) of B’s primitive plan in es at t$(eA).

External Conditions

As recognized in (Tsuneto, Hendler, 8z Nau 1998), ex-
ternal conditions are important for reasoning about po-
tential refinements of abstract plans. Although the ba-
sic idea is the same, we define them a little differently
and call them external preconditions to differentiate
them from other conditions we call external postcondi-
tions. Intuitively, an external precondition of a group
of partially ordered plans is a precondition of one of
the plans that is not achieved by another in the group
and must be met external to the group. External post-
conditions, similarly, are those that are not undone by
plans in the group and are net effects of the group.

Formally, an external precondition g of an interval
(tl, t2) in history h is a precondition of a plan p with
some execution e E E(h) for which tl <_ ts(e) < t2,
and g is neither achieved nor clobbered by an execu-
tion at a time t where tl <_ t <_ ts(e). An external
precondition of an execution e = (d, ts, ti) is an exter-
nal precondition of an interval (ta, t2) in some history
where tl _< ts; t$ <_ t2; and there are no other plan exe-
cutions other than the subexecutions of e. An external
precondition of a plan p is an external precondition of
any of p’s executions. It is called a must precondition
if it is an external precondition of all executions; oth-
erwise it is called a may precondition. At(A, 0, 0) is
an external precondition of agent A’s top-level plan p
(Figure 1) since no subplan in p’s hierarchy achieves
At(A, O, 0). At(A, 1,1) is not an external precondition
of p because it is achieved internally by the execution
of subplan ml (described in the section on CHiPs).

Similarly, an external postcondition g of an interval
(tl, t2) in h is a postcondition of a plan p with some
execution e E E(h) for which tl _< tI(e) <_ t2; is
asserted by e; and g is not clobbered by any execu-
tion at a time t where t$ (e) < t <_ t2. External post-
conditions of executions and plans can be defined in
the same way as external preconditions. At(A, O, 4) is
an external postcondition of agent A’s top-level plan
p since no subplan in p’s hierarchy cancels the effect.
At(A, 1, 3), an external postcondition of m2 is not an
external postcondition of p because it is cancelled in-
ternally by the execution of subplan m3 when it later
asserts -~At(A, 1, 3).

Plan Summary Information

With the previous formalisms, we can now define sum-
mary information and describe a method for comput-
ing it for non-primitive plans. The summary infor-
mation for a plan p is p~m. Its syntax is given as
a tuple (pre in posts~m), whose members are
sets of summary conditions. The summary [pre, post]

conditions of p, ~rresum(p), postsum(p)], contain the
external [pre, post] conditions of p. The summary in-
conditions of p, in~u,,(p), contain all conditions that
must hold within some execution of p for it to be sue-
cessful. A condition c in one of these sets is a tuple
(g, existence, timing), g(c) is a literal. The existence
of c can be must or may. If existence(c) = must, then
c is called a must condition because g holds for every
successful plan execution (g must hold). For conve-
nience we usually write must(c), is a maycondition
(may(c) is true) if there is at least one plan execution
where ~(c) must hold. The timing of c can take the
values always, sometimes, first, last. timing(c) is
always for c E insu,~ if g(c) is an in-condition that
must hold throughout the execution of p (g holds al-
ways); otherwise, timing(c) = sometimes meaning
g(c) holds at one point, at least, within an execu-
tion of p. The timing is first for c E pres~m if g(c)
holds at the beginning of an execution of p; otherwise,
timing = sometimes. Similarly, timing is last for
e E posts~m if g(C) holds at the end of an execution
p; otherwise, it is sometimes. Although existence and
timing syntactically only take one value, semantically
must(c) ~ may(c), and always(c) ~ sometimes(c).
See the Introduction for an example of summary con-
ditions derived for an abstract plan.

Deriving Summary Conditions

The method for deriving the summary conditions of a
plan p is recursive. First, summary information must
be derived for each of p’s subplans, and then the fol-
lowing procedure derives p’s summary conditions from
those of its subplans and its own sets of conditions.
This procedure only apply to plans whose expansion is
finite and which have the downward solution property.
This is the property where every or plan in the hierar-
chy can be refined successfully through one or more of
its subplans.

Summary conditions for primitives and non-primitives
¯ First, for each literal g in pre(p), in(p), and post(p),

a condition c with literal g to the respective set of sum-
mary conditions for plan p. existence(c) is must, and
timing(c) is first, always, or last if ~ is a pre-, in-, or
postcondition respectively.

Summary [pre, post] conditions for and plan
¯ Add a condition c to the summary [pre, post] conditions

of and plan p for each summary [pre, post] condition e’ of
p’s subplans that is not [must-achieved, must-undone]5
by another of p’s subplans, setting e(c) = g(c’).8

¯ Set existence(c) = must if ~(c) is a [pre, post] condi-
tion of p or is the literal of a must summary [pre, post]

5See (Clement & Durfee 1999a) and the proof ending
this section about how to determine must-achieved, may-
achieved, must-undone, and may-undone.

~To resolve ambiguity with set membership, we say that
any two summary conditions, c and c’ axe equal if e(e)
g(e’) and they belong to the same set of summary conditions
for some plan.

condition in a subplan of p that is not [may-achieved,
may-undone] by any other subplans. Otherwise, set
existence(c) = may.

¯ Set timing(c) = [first, last] if e(c) is a [pre, post] con-
dition of p or the literal of a [first, last] summary [pre,
post] condition of a [least, greatest] temporally ordered
subplan (i.e. no others are constrained by order(p) to
[begin before, end after] it). Otherwise, set timing(c)
sometimes.

Summary [pre, post] conditions for or plan
¯ Add a condition c to the summary [pre, post] conditions

of or plan p for each summary [pre, post] condition c~ in
p’s subplans, setting e(c) = e(d).

¯ Set existence(c) = must if t~(c) is a [pre, post] condition
of p or a must summary [pre, post] condition of all of p’s
subplans. Otherwise, set existence(c) = may.

¯ Set timing(c) = [first, last] if ~(c) is a [pre, post] con-
dition of p or the literal of a [first, last] summary [pre,
post] condition in a subplan. Otherwise, set timing(c)
sometimes.

Summary inconditions for and plan
¯ Add a condition c to the summary inconditions of and

plan p for each c’ in C defined as the set of summary in-
conditions of p’s subplans unioned with the set of sum-
mary preconditions of the subplans that are not first
in a least temporally ordered subplan and with the set
of summary postconditions of the subplans that are not
last in a greatest temporally ordered subplan, and set
~(c) = ~(e’).

¯ Set existence(c) ---- must if ~(c) is an incondition of p
a literal of a must summary condition c’ E C, as defined
above. Otherwise, set existence(c) = may.

¯ Set timing(c) = always if ~(e) is an incondition of
or a literal in an always summary incondition in every
subplan of p. Otherwise, set timing(c) = sometimes.

Summary inconditions for or plan
¯ Add a condition c to the summary inconditions of or plan

p for for each summary incondition c’ in p’s subplans,
setting ~(c) -= ~(c~).

¯ Set existence(c) =- must if g(c) is an incondition of
or a must summary incondition of all of p’s subplans.
Otherwise, set existence(c) = may.

¯ Set timing(c) = always if g(c) is an incondition of p
an always summary incondition of all of p’s subplans.
Otherwise, set timing(c) = sometimes.

Consider deriving the summary conditions of m2
from its two primitive subplans (as introduced in the
section on CHiPs). Suppose pl is the primitive subplan
for moving agent A from (1,1) to (1,2), and p2 moves
from (1,2) to (1,3). First, the summary conditions
the primitives must be derived. These are simply the
conditions already defined for the primitives according
to the first step of the procedure, m2 has no condi-
tions defined for itself, so all will come from pl and
p2. Since m2 is an and plan, its only summary precon-
dition is At(A, 1,1) from pl because pl must achieve
p2’s only precondition At(A, 1, 2). At(A, 1,1) is a must
summary condition because it is a must summary pre-
condition in Pl, and no other subplan (p2) may achieve
At(A, 1, 1). At(A, 1, 1) is also first because it is a first
summary precondition of pl, and pl precedes p2.

The procedure above ensures that external condi-
tions are captured by summary conditions and must,
always, first, and last have their intended meanings.
The actual proof of these properties is all-inclusive
since the truth of each property depends on those of
others. However, we give a proof of one (assuming
the others) to illustrate how we verify these proper-
ties using the language developed in this paper. The
full proof is given in an extended report (Clement
Durfee 1999a). These results ease the proofs of sound-
ness and completeness for inference rules determining
how CHiPs can definitely or potentially interact so that
good planning and coordination decisions can be made
at various levels within and among plan hierarchies.

Theorem The set of external preconditions for a plan
is equivalent to the set of all literals in the plan’s sum-
mary preconditions.

Proof by induction over the maximum subplan depth.
The base case is a primitive plan p (subplan depth
zero). The summary preconditions include a condition
for every precondition of p, which must be an external
precondition of p, so this case is satisfied. Assume that
the theorem is true for all plans of maximum depth

k. Any plan p of maximum depth k ÷ 1 must have
subplans with maximum depths < k. It is not diffi-
cult to show that the external preconditions of p must
be the preconditions of p and those external precon-
ditions (call them pre~) of p’s subplans that are not
must-achieved (achieved in all executions) by another
subplan of p.

By the inductive hypothesis, the external conditions
of the subplans are captured in their summary con-
ditions, and the existence and timing information to-
gether with the order ofp’s subplans can be used to de-
termine whether some external precondition of a sub-
plan is must-achieved. Table 1 shows this by describing
for all cases the constraints on order(p) where g(c’)
p’ is must-achieved by p". If we did not assume the
downward solution property, then we would addition-
ally need to make sure that no other plan could clobber
g(d) after p" asserts the condition. Hence, the external
preconditions in pre~ that are not must-achieved are
exactly those determined in the rule for determining
the summary preconditions of an and plan. Therefore,
the external conditions of p are exactly those described
as the summary preconditions of p in the procedure de-
scribed above. []

Complexity

The procedure for deriving summary conditions works
by basically propagating the conditions from the prim-
itives up the hierarchy to the most abstract plans. Be-
cause the conditions of any non-primitive plan depend
only on those of its immediate subplans, deriving sum-
mary conditions can be done quickly. Given that an
agent has an instantiated plan hierarchy with n non-
primitive plans, each of which have b subplans and
c conditions in each of their summary pre-, in-, and

ctl E c’ E p" must-achieve e’
postsum (p°l) prenum(pt) VeI E £(p~),

mUStTF [last

must first e" E g(p’)
? ? ? false
? ? ? ti(e") < t.(e’)

c’" E irtsum(p")
must always must lirst

F ? ? ? false
? F ? ? false

T T ? F ts(e") < ts(e’)A
ty(e’) <_ tf(e’)

? T t~(~") < t,(e’) < tt(~")

Table 1: Ordering constraints necessary for subplan p"
to must-achieve c’ E pves.m of subplan p’. "?" means
that the constraints hold for both truth values, false
means that there are no ordering constraints guaran-
teeing that p’ is achieved by p".

postconditions, deriving the summary conditions of the
non-primitive plans can be bounded by O(nb2c2) op-
erations. This comes from the worst case in which all
plans are and plans requiring the procedure to test
each of c conditions in each of b subplans to see if they
are achieved/clobbered by any those same conditions
in any of the same subplans for each of the n and plans.
However, n = O(bd) for hierarchies of depth d, so the
complexity of the procedure for deriving summary con-
ditions is more simply O(n(log2n)c2).

Soundness and Completeness of
Determining Temporal Relations

With the properties of summary information proven,
we can safely reason about the interactions of plans
without information about their subplans. Based on
the existence and timing information carried by sum-
mary conditions, we can determine what relations
can or might hold between CHiPs without search-
ing their subplans. In many coordination tasks, if it
could be determined that certain temporal relations
can hold among plans no matter how they are decom-
posed (CanAnyWay) or that certain relations can-
not hold for any decomposition (-~MightSomeWay),
then coordination decisions can be made at abstract
levels without entering a potentially costly search for
valid plan merges. Here we prove the soundness and
completeness of rules determining CanAnyWay and
MightSomeWay relations based on summary infor-
mation. The use of these rules is illustrated in the
Introduction and explored further in (Clement & Dur-
fee 1999b). For convenience, we will abbreviate Can
to C, Any to A, Way to W, and so on.

Informally, [CAW(tel, p qs~m), MSW(rel,
p q~=,,)] says that the temporal relation tel [can,
might] hold for any CHiPs p and q whose summary
information is P~um and qsum for [any way, some way]
that p and q may be executed. We formally describe
these relations by explaining what soundness and com-
pleteness mean for rules to determine them.

Let us define AW(P, st) to mean that in any history

h with initial conditions sz and where E(h) includes
an execution of each plan in set P as well as its subex-
ecutions, all executions succeed. Also, let [AW(rel,
p, q), SW(rel, p, q)] be true iff for [any, some] his-
tory h where AW({p}, st(h)) and AW({q}, sz(h))
are true, and E(h) includes executions of p and q and
their subexecutions satisfying relation tel, all execu-
tions succeed. So, a rule for determining [CAW(rel,
p q,,,m), MSW(rel, p qsum)] is sound if when-
ever the rule returns true, [AW(rel, p, q), SW(rel,
p, q)] is true for [all pairs, some pair] of plans whose
summary information is p~=,~ and q~=m. The rule is
complete if whenever [AW(rel, p, q), SW(rel, p, q)] is
true for [all, some pair of] plans p and q with summary
conditions Psum and qs=m, the rule also returns true.

Now we state the rules for determining overlaps.
CAW(o,p~=m, qs~m) returns true iff there is no cp and
ca such that g(cp) ~ -~g(Cq) and either cp E insum(P)
and Cq E presum(q) U in~=m(q) or cp E postsum(P)
and Cq E in~=m(q). MSW(o,p q~=m) returns true
iff there is no cp and Cq such that g(Cp) ¢, -g(Cq);
must(cp) and must(eq) is true; the timing of cp
and ca is either first, always, or last; and either
Cp E in~m(p) and Cq E prelim(q)U ins~m(q) or
Cp E posts~m(p) and Cq E in (q). Note that for
conditions in each of the pre-, in-, and postconditions
of p and q, in the worst case each condition in one plan
must be compared with each in another plan, so the
complexity of determining CAW and MSW is O(n2).
Now we will show that the above rules are both sound
and complete. The proofs of rules for other temporal
relations are no more difficult than this one and can
be done constructively in the same style.
Theorem CAW(o, p q~=m) and MSW(o, p
qs=m) are sound and complete.
Proof Since we assume AW({p}, sz) and AW({q},
st), the only way executions of p or q could fail is if
condition in one is clobbered by the other. However,
a condition is clobbered only by the assertion of the
negation of its literal. Thus, the presence of conditions
involving the propositional variable v cannot clobber or
achieve conditions involving the propositional variable
v’ if v ~ v’. In addition, all cases of execution failure
can be broken down into inconditions of some execu-
tion e clobbering conditions that must be met in the in-
terval (ts(e), t I (e)) and postconditions of some execu-
tion e clobbering conditions at or after t$(e). With this
established it is not difficult to show that the only pairs
of interacting sets where clobbering occurs for the over-
laps relation include (in~,, (p), pre~,~ (q)), (in~,,
in~=,~(q)), and (post~=m(p), ins,m(q)). And, because
the clobbering of a single literal causes execution fail-
ure, we can describe all histories in terms of the pres-
ence and absence of summary conditions based on a
single propositional variable.

This is done for the overlaps relation in Table 2.
Here, we give all instances of these interacting sets and
claim that the listed truth values for CAW and MSW

A = i (p) A = i (p) A = postsum(p~
B = prenum(q) B = insure(q) B = ir~sum(q)

CAW MSI~ GAW IMSW CAW MSW
T T T [T T T
T T T [T T T
T T T I T T T

F F
F T
F T
F T
F T
F T
F T
F T

F I F F F
F l T F T
F I T F T
F I T F T
F I T F T
F l T F T
F I T F T
F { T F T

Table 2: Truth values of CanAnyWay(o,p,q) and
MightSomeWay(o,p,q) for all interactions of condi-
tions, g and -~e are literals of summary conditions in
sets A and B. The condition is must if m = T, first
for f = T, last for l = T, and always for a = T.

are correct for the space of plan pairs (p, q) that elicit
the instances represented by each row. The literal £
in the first two columns represents any literal that ap-
pears in any condition of the set in whose column it
appears. For example, row 4 for the interaction of
(ins~m(p), pre (q)) is interpreted as the case where
there is a literal that appears in both sets, and its
negation also appears in just insure(p). IF, T] in the
[CAW, MSW] column means that [not all histories,
there is at least one history] with only the executions
and subexecutions of [any, some] pair of plans whose
summary conditions have literals appearing this way
are such that all executions succeed. Thus, [CAW(o,
p qsum), MSW(o, p q~um)] is true iff there
are no summary conditions matching cases in the table
where there is an F entry in a [CAW, MSW] column.

The validity of most entries in Table 2 is simple to
verify. In row 1 either there is no condition to be clob-
bered or no condition to clobber it, so all executions
must succeed. In row 3 unless the conditions are all
must and either first, always, or last (row 3a), there
is always a history containing the executions of some
plans where the two conflicting conditions are not re-
quired to be met at the same time, and MSW is true.
Because rules defined for CAW(o, p q~m) and
MSW(o, p qs~m) return true whenever the table
has a T entry, they are complete. And because the
table has a T entry for every case in which the rules
return true, the rules are sound. [:3

Conclusions and Future Work

Coordination and planning for hierarchical plans of-
ten involve the refinement of abstract plans into more
detail. However, the cost of backtracking or making ir-
reversible commitments makes it critical that the spec-
ification of abstract plan operators be rich enough to
anticipate and avoid costly planning/execution deci-
sions. We have addressed this directly by offering a
formalism for describing concurrent hierarchical plan

execution and methods for deriving summary condi-
tions and determining legal plan interactions in a sound
and complete fashion. This provides a foundation
upon which provably correct coordination and plan-
ning mechanisms can be built. In prior work that
motivates and validates this formalism, we describe a
general algorithm for merging hierarchical plans using
summary information, a specific implementation, and
a preliminary evaluation of the approach (Clement
Durfee 1999b). Future work includes relaxing assump-
tions, such as the downward solution property, investi-
gating other types of plan summary information, and
constructing sound and complete algorithms for con-
current hierarchical planning and for interleaving plan-
ning, plan coordination, and plan execution.

References
Allen, J. F., and Koomen, J. A. 1983. Planning using a
temporal world model. In Proc. IJCAI, 741-747.
Allen, J. F. 1983. Maintaining knowledge about temporal
intervals. Communications of the A CM 26(11):832-843.
Clement, B., and Durfee, E. 1999a. Theory for
coordinating concurrent hierarchical planning agents.
http://www.eecs.umich.edu/-bradc/papers/aaai99.
Clement, B., and Durfee, E. 1999b. Top-down search for
coordinating the hierarchical plans of multiple agents. In
Proc. Intl. Conf. Autonomous Agents.
Corkill, D. 1979. Heirarchical planning in a distributed
environment. In Proc. IJCAI, 168-175.
Ephrati, E., and Rosenschein, J. 1994. Divide and conquer
in multi-agent planning. In Proe. AAAI, 375-380.
Erol, K.; Hendler, J.; and Nau, D. 1994. Semantics for
hierarchical task-network planning. Technical Report CS-
TR-3239, University of Maryland.
Fagin, R.; Halpern, J.; Moses, Y:; and Vardi, M. 1995.
Reasoning about knowledge. MIT Press.
Firby, J. 1989. Adaptive Execution in Complex Dynamic
Domains. Ph.D. Dissertation, Yale University.
Georgeff, M. P., and Lansky, A. 1986. Procedural knowl-
edge. Proe. IEEE 74(10):1383-1398.
Georgeff, M. P. 1983. Communication and interaction in
multiagent planning. In Proc. AAAI, 125-129.
Georgeff, M. P. 1984. A theory of action for multiagent
planning. In Proc. AAAI, 121-125.
Lansky, A. 1990. Localized search for controlling auto-
mated reasoning. In Proc. DARPA Workshop on Innov.
Approaches to Planning, Scheduling and Control, 115-125.
Sacerdoti, E. D. 1977. A structure for plans and behavior.
Elsevier-North Holland.
Tare, A. 1977. Generating project networks. In Proc.
IJCAI, 888-893.
Tsuneto, R.; Hendler, J.; and Nau, D. 1998. Analyzing
external conditions to improve the efficiency of htn plan-
ning. In Proc. AAAI, 913-920.
Vilain, and Kautz, H. 1986. Constraint propagation algo-
rithms for temporal reasoning. In Proc. AAAI, 377-382.
Weld, D. 1994. An introduction to least commitment
planning. AI Magazine 15(4):27-61.

