
Fast Planning through Greedy Action Graphs *

Alfonso Gerevini and Ivan Serina
Dipartimento di Elettronica per l’Automazione

Universit£ di Brescia, via Branze 38, 25123 Brescia, Italy
{gerevini, serina}Oing, unibs, it

Abstract

Domain-independent planning is a notoriously hard
search problem. Several systematic search techniques
have been proposed in the context of various for-
malisms. However, despite their theoretical complete-
ness, in practice these algorithms are incomplete be-
cause for many problems the search space is too large
to be (even partially) explored.
In this paper we propose a new search method in
the context of Blum and Furst’s planning graph ap-
proach, which is based on local search. Local search
techniques are incomplete, but in practice they can
efficiently solve problems that are unsolvable for cur-
rent systematic search methods. We introduce three
heuristics to guide the local search (Walkplan, Tabu-
plan and T-Walkplan), and we propose two methods
for combining local and systematic search.
Our techniques are implemented in a system called
GPG, which can be used for both plan-generation
and plan-adaptation tasks. Experimental results show
that GPG can efficiently solve problems that are very
hard for current planners based on planning graphs.

Introduction
Domain-independent planning is a notoriously very
hard search problem. The large majority of the search
control techniques that have been proposed in the re-
cent literature rely on a systematic method that in
principle can examine the complete search space. How-
ever, despite their theoretical completeness, in prac-
tice these search algorithms are incomplete because for
many planning problems the search space is too large
to be (even partially) explored, and a plan cannot
found in reasonable time (if one exists).

Here we are concerned with an alternative search
method which is based on a local search scheme. This
method is formally incomplete, but in practice it can
efficiently solve problems that are very hard to solve
by more traditional systematic methods3

Though local search techniques have been applied
with success to many combinatorial problems, they

Copyright (~)1999, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

1Local search methods are incomplete in the sense that
they cannot detect that a search problem has no solution.

have only recently been applied to planning (Am-
bite & Knoblock 1997; Kantz & Selman 1998; 1996;
Serina & Gerevini 1998). In particular, Kautz and Sel-
man experimented the use of a stochastic local search
algorithm (Walksat) in the context of their "planning
as satisfiability" framework, showing that Walksat out-
performs more traditional systematic methods on sev-
eral problems (Kantz & Selman 1996).

In the first part of this paper we propose a new
method for local search in the context of the "planning
through planning graph analysis" approach (Blum
Furst 1995). We formulate the problem of generating
a plan as a search problem, where the elements of the
search space are particular subgraphs of the planning
graph representing partial plans. The operators for
moving from one search state to the next one are par-
ticular graph modification operations, corresponding
to adding (deleting) some actions to (from) the current
partial plan. The general search scheme is based on an
iterative improvement process, which, starting from an
initial subgraph of the planning graph, greedily im-
proves the "quality" of the current plan according to
some evaluation functions. Such functions measure the
cost of the graph modifications that are possible at any
step of the search. A final state of the search process
is any subgraph representing a valid complete plan.

We introduce three heuristics: Walkplan, Tabuplan,
and T-Walkplan. The first is inspired by the stochas-
tic local search techniques used by Walksat (Selman,
Kautz & Cohen 1994), while the second and the third
are based on different ways of using a tabu list storing
the most recent graph modifications performed.

In the second part of the paper we propose two meth-
ods for combining local and systematic search for plan-
ning graphs. The first is similar to the method used in
Kantz and Selman’s Blackbox for combining different
search algorithms, except that in our case we use the
same representation of the problem, while Blackbox
uses completely different representations. The second
method is based on the following idea. We use local
search for efficiently producing a plan which is almost
a solution, i.e., that possibly contains only a few flaws

From: AAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

(unsatisfied preconditions or exclusion relations involv-
ing actions in the plan), and then we use a particular
systematic search to "repair" such a plan and produce
a valid solution.

Our techniques are implemented in a system called
GPG (Greedy Planning Graph). Experimental results
show that GPG can efficiently solve problems that axe
hard for IPP (Koehler et al. 1997), Graphplan (Blum
& Furst 1995) and Blackbox (Kautz gz Selman 1999).

Although this paper focuses on plan-generation, we
also give some preliminary experimental results show-
ing that our approach can be very efficient for solving
plan-adaptation tasks as well. Fast plan-adaptation is
important, for example, during plan execution, when
the failure of some planned action, or the acquisition of
new information affecting the world description or the
goals of the plan, can make the current plan invalid.

In the rest of the paper, we first briefly introduce
the planning graph approach; then we present our lo-
cal search techniques and the methods for combining
systematic and local search; finally, we present experi-
mental results and give our conclusions.

Planning Graphs
A planning graph is a directed acyclic levelled graph
with two kinds of nodes and three kinds of edges. The
levels alternate between a fact level, containing fact
nodes, and an action level containing action nodes. A
fact node represents a proposition corresponding to a
precondition of one or more operators instantiated at
time step t (actions at time step t), or to an effect
one or more actions at time step t- 1. The fact nodes of
level 0 represents the positive facts of the initial state of
the planning problem.2 The last level is a proposition
level containing the fact nodes corresponding to the
goals of the planning problem.

In the following we indicate with [u] the proposition
(action) represented by the fact node (action node)
The edges in a planning graph connect action nodes
and fact nodes. In particular, an action node a of level
i is connected by:

¯ precondition edges to the fact nodes of level i rep-
resenting the preconditions of [a],

¯ add-edges to the fact nodes of level i+1 representing
the positive effects of [a],

¯ delete-edges to the fact nodes of level i + 1 repre-
senting the negative effects of [a].

Two action nodes of a certain level are mutually ex-
clusive if no valid plan can contain both the corre-
sponding actions. Similarly, two fact nodes axe mu-
tually exclusive if no valid plan can make both the
corresponding propositions true.

Two proposition nodes p and q in a proposition level
are marked as exclusive if each action node a having

2Planning graphs adopt the closed world assumption.

Lev. 0

Lev. 1 ~

Goals ~

Figure 1: An action subgraph (bold nodes and edges) and
a solution subgraph of a planning graph. The problem goals
are clea~_a, arm_empty, on_c_b and clear_c.

an add-edge to p is marked as exclusive of each action
node b having an add-edge to q. In the last level of a
planning graph there is no pair of mutually exclusive
nodes representing goals.

An action node a of level i can be in a "valid sub-
graph" of the planning graph (a subgraph representing
a valid plan) only if all its precondition nodes are sup-
ported, and a is not involved in any mutual exclusion
relation with other action nodes of the subgraph. We
say that a fact node q of level i representing a propo-
sition [q] is supported in a subgraph G~ of a planning
graph G if either (a) in ~ t here i s an action n ode at
level i - 1 representing an action with (positive) effect
[q], or (b) i = 0 (i.e., [q] is in the initial state).

Given a planning problem io and a planning graph
~, a solution (plan) for 7) is a subgraph G~ of G such
that (1) all the precondition nodes of actions in G~ are
supported, (2) every goal node is supported, and (3)
there are no mutual exclusion relations between action
nodes of GI.

Local Search for Planning Graphs
Our local search method for a planning graph G of a
given problem 7) is a process that, starting from an ini-
tial subgraph G~ of ~ (a partial plan for P), transforms
G~ into a solution of 7) through the iterative applica-
tion of some graph modifications that greedily improve
the "quality" of the current partial plan. Each modifi-
cation is either an extension of the subgraph to include

a new action node of G, or a reduction of the subgraph
to remove an action node (and the relevant edges).

Adding an action node to the subgraph corresponds
to adding an action to the partial plan represented
by the subgraph (analogously for removing an action
node). At any step of the search process the set of
actions that can be added or removed is determined
by the constraint violations that are present in the
current subgraph of G. Such violations correspond to

¯ mutual exclusion relations involving action nodes in
the current subgraph;

¯ unsupported facts, which are either preconditions of
actions in the current partial plan, or goal nodes in
the last level of the graph.

More precisely, the search space is formed by the action
subgraphs of the planning graph G, where an action
subgraph of g is defined in the following way:

Definition 1 An action subgraph .4 of a planning
graph ~ is a subgraph of ~ such that if a is an action
node of ~ in A, then the fact nodes of G corresponding
to the preconditions and positive effects of [a] are also
in A, together with the edges off connecting them to a.

A solution subgraph (a final state of the search space)
is defined in the following way:

Definition 2 A solution subgraph of a planning
graph ~ is an action subgraph As containing the goal
nodes of G and such that
¯ all the goal nodes and fact nodes corresponding to

preconditions of actions in As are supported;

¯ there is no mutual exclusion relation between action
nodes.

The first part of Figure 1 shows a simple exam-
ple of an action subgraph A. The actions p±ckup_b
and unstack_c_a of level 0 are mutually exclusive, and
therefore they can not be both present in any solution
subgraph. Note that the goal node clear_a is not sup-
ported in A and does not belong to .4, even though
it must belong to all solution subgraphs. The second
part of Figure 1 gives a solution subgraph.

Our general scheme for searching a solution graph
consists of two main steps. The first step is an initial-
ization of the search in which we construct an initial
action subgraph. The second step is a local search
process in the space of all the action subgraphs, start-
ing from the initial action subgraph. In the context
of local search for CSP, the initialization phase is an
important step which can significantly affect the per-
formance of the search phase (Minton et al. 1992). In
our context we can generate an initial action subgraph
in several ways. Two possibilities that we have con-
sidered in our experiments are: (1) a randomly gener-
ated action-subgraph; (2) an action-subgraph where all
precondition facts and goal facts are supported (but in

which there may be some violated mutual exclusion re-
lations). These kinds of initialization can be performed
in linear time in the size of the graph G.

The search phase is performed in the following way.
A constraint violation in the current action subgraph
is randomly chosen. If it is an unsupported fact node,
then in order to eliminate this constraint violation, we
can either add an action node that supports it, or we
can remove an action node which is connected to that
fact node by a precondition edge. If the constraint cho-
sen is an exclusion relation, then we can remove one of
the action nodes of the exclusion relation. Note that
the elimination of an action node can remove several
constraint violations (i.e., all those corresponding to
the set of exclusion relations involving the action node
eliminated). On the other hand, the addition of an
action node can introduce several new constraint vio-
lations. Also, when we add (remove) an action node
to satisfy a constraint, we also add (remove) all the
edges connecting the action node with the correspond-
ing precondition and effect nodes in the planning graph
- this ensures that each change to the current action
subgraph is another action subgraph.

The decision of how to deal with a constraint vio-
lation can be guided by a general objective function,
which is defined in the following way:

Definition 3 Given the partial plan ~r represented by
an action subgraph .A, the general objective func-
tion f(~) of lr is defined as:

f(~) ~ g(A) -F ~ me(a, ~4) -t- p(a,
aE~4

where a is an action in ~4, me(a,,4) is the number
action nodes in A which are mutually exclusive with a,
p(a, ,4) is the number of precondition facts of a which
are not supported, and g(.A) is the number of goal nodes
in .4 which are not supported.

It is easy to see that the value of this objective func-
tion is zero for any valid plan of a given planning prob-
lem. This function can be used in the search process
at each search step to discriminate between different
possible graph modifications, and to choose one which
minimizes the objective function.

Local search heuristics

The use of the general objective function to guide the
local search might be effective for some planning prob-
lems, but it has the drawback that it can lead to local
minima from which the search can not escape. For this
reason, instead of using the general objective function
we use an action cost function F. This function de-
fines the cost of inserting (F~) and of removing (Fr)

an action [a] in the partial plan r represented by the
current action subgraph ~4. F([a], ~) is defined in the
following way:

F([a], lr)i = o~i. p(a, fit) q- i. me(a, fit) -t - .. /i. unsup(a, fi
F([a], lr) r = a~. p(a, A) + fir. me(a, fit) ~ . sup(a, fit),

where me(a, fit) and p(a, fit) are defined as in Definition
3, unsup(a, fit) is the number of unsupported precondi-
tion facts in fit that become supported by adding a to
fit, and sup(a, fit) is the number of supported precondi-
tion facts in fit that become unsupported by removing
a from fit.

By appropriately setting the values of the coefficients
a,/~ and ? we can implement various heuristic meth-
ods aimed at making the search less susceptible to lo-
cal minima by being "less committed" to following the
gradient of the general objective function. Their values
have to satisfy the following constraints:

c~~>0, fli>0,7 ~_0, ~r_<0, fir_<0,7r>0.

Note that the positive coefficients of F (~/,fl~ and
7r) determine an increment in F which is related to
an increment of the number of constraint violations.
Analogously, the non-positive coefficients of F (~r,/~r
and .),i) determine a decrement in F which is related
to a decrement of the number of constraint violations.

In the following we describe three simple search
heuristics, and in the last part of the paper we will
present some preliminary experimental results ob-
tained by using these heuristics. The genera/search
procedure at each step randomly picks a constraint
violation s and considers the costs of the action dele-
tions/insertions which resolve s. The action subgraphs
that can be obtained by performing the modifications
corresponding to such action deletions/insertions con-
stitute the neighborhood N(s, fit) of s, where fit is the
current action subgraph. The following heuristics can
be used to choose the next action subgraph among
those in N(s, fit).

Walkplan
Walkplan uses a random walk strategy similar to the
strategy used in Walksat (Selman, Kautz & Cohen
1994). Given a constraint violation s, in order to decide
which of the action subgraphs in N(s, fit) to choose,
Walkplan uses a greedy bias that tends to minimize
the number of new constraint violations that are intro-
duced by the graph modification. Since this bias can
easily lead the algorithm to local minima from which
the search cannot escape, it is not always applied.

In particular, if there is a modification that does
not introduce new constraint violations, then the cor-
responding action subgraph in N(s, fit) is chosen as the
next action subgraph. Otherwise, with probability p
one of the subgraphs in N(s,.A) is chosen randomly,
and with probability 1 -p the next action subgraph is
chosen according to minimum value of the action cost
function.

Walkplan can be implemented by setting the ~,
and 7 coefficients to values satisfying the following con-

straints: ai,[3 i > 0,7i = 0 and ar, fl ~ = 0,7r > 0.

Tabuplan
Tabuplan uses a tabu list (Glover & Laguna 1993;
Glover, Taillard, & de Werra 1993) which is a spe-
cial short term memory of actions inserted or removed.
A simple strategy of using the tabu list that we have
tested in our experiments consists of preventing the
deletion (insertion) of an action just introduced (re-
moved) for the next k search steps, where k is the
length of the tabu list.

At each step of the search, from the current ac-
tion subgraph Tabuplan chooses as next subgraph the
"best" subgraph in N(s, fit) which can be generated by
adding or removing an action that is not in the tabu
list. The length k of the tabu list is a parameter that is
set at the beginning of the search, but that could also
be dynamically modified during the search (Glover
Laguna 1993).

T-Walkplan
This heuristic uses a tabu list simply for increasing the
cost of certain graph modifications, instead of prevent-
ing them as in Tabuplan. More precisely, when we
evaluate the cost of adding or removing an action [a]
which is in the tabu list, the action cost F([a],Tr)
incremented by 6. (k - j), where 6 is a small quantity
(e.g.O.1), k is the length of the tabu list, and j is the
position of [a] in the tabu list.3

Combining local and systematic search
As the experimental results presented in the next sec-
tion show, local search techniques can efficiently solve
several problems that are very hard to solve for IPP
or Graphplan. On the other hand, as general planning
algorithms they have the drawback that they cannot
detect when a valid plan does not exist in a planning
graph with a predefined number of levels. (Hence they
cannot determine when the planning graph should be
extended.) Furthermore, we observed that some prob-
lems that are very easy to solve for the systematic
search as implemented in IPP, are harder for our lo-
cat search techniques (though they are still solvable in
a few seconds, and our main interest concerns prob-
lems that are very hard for current planners based on
planning graphs).

Motivated by these considerations, we have devel-
oped a simple method for automatically increasing the
size of a planning graph, as well as two methods for

3We assume that the tabu list is managed according to
a first-in-first-out discipline.

4In our current implementation the search from
goal-level to init-level at step 5 is initially restricted
by limiting the possible number of levels in the (re)planning
graph to 3. This number is automatically increased by 2
each time the replanning window is increased by 1 level.

ADJUST-PLAN
Input: A plan 7) containing some flaws and a CPU-time

limit max-adjust-time.
Output: Either a correct plan or fail.

1. Identify the set F of levels in P containing a flaw; If F is
empty, then return ~o;

2. Let i be a level in F and remove i from F;

3. If i is the last level of P, then set init-level to i - 1
and goal-level to i, otherwise set init-level to i and
goal-level to i + 1;

4. While CPU-time _< max-adjust-time
5. Systematically replan using as initial facts

F(init-level) and as goals G(goal-level), where
F(init-level) is the set of facts that are true at level
init-level, and G(goal-level) is the set of precon-
ditions of the actions in 7) at level goal-level (in-
cluding the no-ops);

6. If there is no plan from F(init-level)
G(goal-level), or a search limit is exceeded, then
decrease init-level or increase goal-level (i.e., we
enlarge the replanning window), otherwise insert the
(sub)plan found into P and goto 4

7. Return fail.

Figure 2: Description of the algorithm used by GPG for
adjusting a plan generated by the local search.

combining our local search techniques with IPP’s sys-
tematic search. These methods are implemented in a
planner called GPG (Greedy Planning Graph).5

Like IPP, GPG starts searching when the construc-
tion of the planning graph has reached a level in which
all the fact goals of the problem are present and are
not mutually exclusive. When used in a purely local-
search mode, if after a certain number of search steps
a solution has not been found, GPG extends the plan-
ning graph by adding a level to it, and a new search
on the extended graph is performed.6

The first method for combining local and systematic
search borrows from Kantz and Selman’s Blackbox the
idea of combining different search algorithms in a serial
way. In particular, we alternate systematic and local
search in the following way. First we search the plan-
ning graph using a systematic method as in Graphplan
or IPP until either (a) a solution is found, (b) the prob-
lem is proved to be unsolvable, or (c) a predefined CPU
time limit is exceeded (this limit can be modified by
the user). If the CPU-time has been exceeded, then
we activate a local search on the planning graph using
our local search techniques, which has the same ter-
mination conditions as the systematic search, except
that the problem cannot be proved to be unsolvable.

SGPG is written in C and it uses IPP’s data struc-
tures. IPP is available at http://www.informatik.uni-
freiburg/~,koehler/ipp.html.

6GPG has a default value for this search limit, which is
increased each time the graph is extended. The user can
change its value, as well as its increment when the graph is
extended.

If the local search also does not find a solution within
a certain CPU-time limit, then we extend the planning
graph by adding a new level to it, and we repeat the
process.

The second method exploits the fact that often when
the local search does not find a solution in a reason-
able amount of time, it comes "very close" to it, pro-
ducing action subgraphs representing plans that are
quasi-solutions, and that can be adjusted to become
a solution by making a limited number of changes to
them. A quasi-solution is an almost correct plan, i.e., a
plan P which contains a few unsatisfied preconditions
or exclusion relations involving actions in the plan.

This method consists of two phases. In the first
phase we search for a quasi-solution of the planning
problem using local search (the number of levels in the
graph is automatically increased after a certain number
of search steps). The second phase identifies the flaws
that are present in P, and tries to "repair" them by
running ADJUST-PLAN, an algorithm performing sys-
tematic search (see Figure 2).

ADJUST-PLAN first identifies the levels of P which
contain a pair of mutually exclusive actions or an ac-
tion with some unachieved precondition(s). Then
processes these levels in the following way. If level
i contains a flaw, then it tries to repair it by re-
planning from time level ± to level i + 1 using sys-
tematic search. If there exists no plan or a certain
search limit is exceeded, then the replanning window
is enlarged (e.g., we replan from i - 1 to i + 1).4

The process is iterated until a (sub)plan is found,
the search has reached a predefined CPU-time limit
(max-adjust-time). The idea is that if P contains
some flaw that cannot be repaired by limited (system-
atic) replanning, then ADJUST-PLAN returns fail, and
the local search is executed again to provide another
plan that may be easier to repair/ When a subplan is
found, it is appropriately inserted into P.

At step 6 of ADJUST-PLAN the replanning win-
dow can be increased going either backward in time
(i.e., init-level is decreased), forward in time (i.e.,
goal-level is increased), or both.s The introduction
of any subplan found at step 5 does not invalidate the

7GPG has a default max-adjust-time that can be mod-
ified by the user. In principle, if max-adjust-time were
set to sufficiently high values, then ADJUST-PLAN could in-
crease the replanning window to reach the original initial
and goal levels of the planning graph. This would deter-
mine a complete systematic search, that however we would
like to avoid. Also, note that in our current implementa-
tion of ADJUST-PLAN, during replanning the actions of P
that are present in the replanning window are ignored (a
new local planning graph is constructed).

SNote that when the replanning window is increased by
moving the goal state forward, keeping the same initial
state, we can use the memoization of unachieved subgoals
to prune the search as indicated in (Blum & Furst 1995;
Koehler et al. 1997).

rest of the plan. On the contrary, such a subplan may
be useful for achieving unachieved preconditions that
are present at levels later than the level that started
the process at step 2. Note also that since we are cur-
rently considering STRIPS-like domains, step 1 can be
accomplished in polynomial time by doing a simulation
of P. Similarly, the facts that are (necessarily) true
any level can be determined in polynomial time.

As the experimental results presented in the next
section show, this method often leads to a solution very
efficiently. However, such a solution is not guaranteed
to be optimal with respect to the number of time steps
that are present in the solution. For this reason, when
ADJUST-PLAN finds a solution, we attempt to optimize
the adjusted plan, trying to produce a more compact
plan (however, for lack of space we omit the description
of this process).

On the other hand, it should be noticed that the
plans obtained by IPP or Graphplan from a planning
graph with the minimum number of levels are not guar-
anteed to be optimal in terms of the number of actions
involved, which is an important feature of the quality
of a plan. The experimental results in the next sec-
tion show that GPG can generate plans with a lower
number of actions than the number of actions in plans
generated by IPP. Thus, in this sense, in general the
quality of the plans obtained with our method is no
worse than the quality of the plans obtained with IPP
or Graphplan.

Finally, note that the two methods for combining
local and systematic search can be merged into a single
method, which iteratively performs systematic search,
local search and plan-adjustment.

Experimental results

In order to test the effectiveness of local search tech-
niques, we have been conducting three kind of exper-
iments. The first is aimed at testing the efficiency of
local search in a planning graph with the (predeter-
mined) minimum number of levels that are sufficient
to solve the problem. The second is aimed at testing
the combination of local search and plan-adjustment
described in the previous section, in which the number
of levels in the planning graph is not predetermined.
The third concerns the use of our techniques for the
task of repairing a precomputed plan in order to cope
with some changes in the initial state or in the goal
state. Preliminary results from these experiments con-
cern the following domains: Rocket, Logistics, Grip-
per, Blocks-world, Tyre-world, TSP, Fridge-world and
Monkey-world.9

9The formalization of these domains and of the relative
problems is available as part of the IPP package. For the
blocks world we used the formalization with four operator:
pick_up, put_down, stack and unstack.

Table I gives the results of the first kind of exper-
iments, which was conducted on a Sun Ultra 1 with
128 Mbytes. The CPU-times for the local search tech-
niques are averages over 20 runs. The table includes
the CPU-time required by IPP and by Blackbox (us-
ing only Walksat for the search) for solving each of the
problems considered. Each run of our methods consists
of 10 tries, and each try consists of (a) an initialization
phase, in which an initial action subgraph is gener-
ated; (b) a search phase with a default search limit
500,000 steps (graph modifications),l°

The first part of the table concerns some problems
that are hard to solve for IPP, but that can be effi-
ciently solved using local search methods. In particu-
lar, our techniques were very efficient for Rocket and
Logistics, where the local search methods were up to
more than four orders of magnitude faster than the
systematic search of IPP.

The second half of Table I gives the results for some
problems that are easy to solve for the systematic
search of IPP. Here our local search techniques also
performed relatively well. Some of the problems were
solved more efficiently with a local search and some
others with a systematic search, but in all cases the
search required at most a few seconds.

Compared to Blackbox, in general, in this exper-
iment the performance improvement of our search
methods was less significant, except for bwlarge~
where they were significantly faster than Walksat.

Table II gives results concerning the second kind of
experiment, where GPG uses local search for a fast
computation of a quasi-solution, which is then pro-
cessed by ADJUST-PLAN. This experiment was con-
ducted on a Sun Ultra 60 with 512 Mbytes. As local
search heuristic in every run we used Walkplan with
noise equal to either 0.3, 0.4 or 0.5 (lower noise for
harder problems, higher noise for easier problems),n

In all the tests max-adjust-time was set to 180 sec-
onds and the number of flaws admitted in a quasi-
solution was limited to either 2, 4 or 6.

Compared to IPP, GPG found a solution very effi-
ciently. In particular, on average GPG required less
than a minute (and 6.3 seconds in the fastest run)
solve Logistics-d, a test problem introduced in (Kantz
& Selman 1996) containing 1016 possible states. More-

1°It should be noted that the results of this experiment
were obtained by setting the parameters of our heuristics
and of Walksat to particular values, that were empirically
chosen as the best over many values tested.

nHowever, we observed that the combination of local
search and plan-adjustment in GPG does not seem to be
significantly sensitive to the values of the parameters of the
heuristics, and we expect that the use of default values for
all the runs would give similar results. Probably the major
reason of this is that here local search is not used to find a
solution, but to find a quasi-solution. Further experiments
for confirming this observation are in progress.

Problem graph graph Walkplan Tabuplan T-Walkplan IPP Blackbox
levels creation (Walksat)

Rocket.a 7 0.46 48.57 (2) 1.16 0.5 126.67 5.77
Roeket_b 7 0.49 6.5 1.4 2.78 334.51 8.23
Logistics-a 11 1.58 2.5 1.77 1.04 2329.06 4.0
Logistics_b 13 1.15 19.9 85.43 (3) 5.25 1033.75 12.83
Logisties_c 13 2.22 19.4 37.63 7.05 > 24 hours 20.91
Bw_large-a 12 0.3 4.04 123 (8) 13.1 0.38
Blocks-suss

705 (4)
6 0.04 0.01 0.01 0.02 0.01 0.139

Tyre-fixit 12 0.08 0.09 0.2 0.077 0.05 0.273
Rocket-10 3 0.1 0,006 0.003 0.005 0.005 0.083
Monkey-2 8 0.2 5.49 6.9 0.68 0.04 3.882
TSP-complete 9 0.28 1,26 0.99 0.59 1.65 0.833
Fridge-2 6 0.88 0,056 0.063 0.09 0.06 0.243
Logistics-4 9 0.37 0,01 0.007 0.01 0.01 0.041
Logistics-4pp 9 0.34 0,007 0.005 0.008 0.005 0.079
Loglstics-6h 11 0.48 0,33 2.01 0.15 2.82 0.156
Logistics-8 9 0.65 0.17 0.18 0.05 0.01 0.147

Table I: CPU seconds required by our local search heuristics, by IPP (v. 3.3) and by Blackbox (v. 3.4) for solving some
problems (first part of the table) and some easy problems (second part). The numbers into brackets indicate the number
runs in which a solution was not found (if this is not indicated, then a solution was found in all the runs.)

GPG IPP Blackbox
Problem total time local] repair total Graphplan [Graphplan

time
] num.

+ Satz + Walksat
0.31 1.24 1.24
7.75

I levels

num.
actions

1.6(0.8) 0.35
I

levels
mean(min) time time

] actions
mean (min)[mean (min)

Bwdarge..a 1.25 13.6 (12) 13.6 (12) 12 12
Bw_large_b 27.3(2.3) 3.5 23.8 20.6 (18) 20.6 (18) 18 18 109.88 3291
Rocket-a 1.1(0.5) 0.8 0.28 9.2 (7) 33 (30) 53.5 7 34 59.7 60.86
Rocket_b 1.3(0.4) 1.0 0.3 0.4 (7) 32.4 (30) 146.7 7 30 65.64 60.58
Logistics.a 3.9(0.8) 0.36 3.5 13.6 (11) 63.3 (56) 956 11 64 70.34 76.34
Logistics_b 3.9(1.4) 0.9 3.0 15.6 (13) 58 (52) 423 13 45 112.05 302
Logistics_c 2.42(2.15) 1.66 0.76 15.6 (14) 70.8 (69) >24h. 162.4 539
Logistics_d 57(6.3) 5.6 50.7 20.5 (17) 94.5 (84) >24h. 132.2 912
Gripper-10 51.2(15.4) 46.8 4.3 26.7 (19) 35.16 (29) 126.47 19 29 2607.8 2467
Gripper-12 320(63.8) 71.4 248.7 29 (29) 38.4 (35) 1368.5 23 35 3> 9070 > 8432

Table II: Performance of GPG using Walkplan and ADJUST-PLAN compared to IPP 3.3 and Blackbox 3.4. The 2nd column
gives the average (minimum) CPU-seconds required by GPG to find a solution over 5 runs. The 3rd gives the average time
spent by the local search, and the 4th the time for adjusting the plan. The 5th column gives the average (minimum) number
of levels that were required to find a solution by GPG. The 6th column gives the average (minimum) number of actions in
solution found by GPG. The 7-9th columns give CPU-seconds, number of levels and actions required by IPP. The 10-11th
columns give the average CPU-seconds required by Blackbox over 5 runs.

over, in terms of the number of actions, the plans gen-
erated by GPG on average are not significantly worse
than the plans generated by IPP. On the contrary, in
some cases GPG found plans involving a number of
actions lower than in the plans found by IPP. For ex-
ample, for Rocket_a GPG found plans involving a min-
imum of 30 actions and on average of 33 actions, while
the plan generated by IPP contains 34 actions.

Concerning the problems in the blocks world
(bwAarge-a e bwAarge-b), on average GPG did not
perform as well as IPP (though these problems are still
solvable in seconds). In these problems the local search
can take a relatively high amount of time for generat-
ing quasi-solutions, which can be expensive to repair.
The reasons for this are not completely clear yet, but
we believe that they partly depend on the fact that in
planning graphs with a limited number of levels these
problems have only a few solutions and quasi-solutions
(Clark et al. 1997).

In general, GPG was significantly faster than Black-
box (last columns of Table II) regardless the SAT-
solver that we used (either Satz or Walksat).12

12Graphplan plus Satz was run using the default settings
of Blackbox for all the problems, except for Gripper-10/12
in which we used the settings suggested in (Kantz & Selman

Table III shows preliminary results of testing the use
of local search for the task of plan adaptation, where in
the input we have a valid plan (solution) for a problem
P, and a set of changes to the initial state or the goal
state of P. The plan for P is used as initial subgraph
of the planning graph for the revised problem P’, that
is greedily modified to derive a new plan for P’.

In particular, the table gives the plan-adaptation
and plan-generation times for some variants of Lo-
gistics_a, where in general the local search performed
much more efficiently than a complete replanning using
IPP (up to five orders of magnitude faster).13

I_1-5 correspond to five modifications of the prob-
lem obtained by changing a fact in the initial state
that affects the applicability of some planned action.
G_l-l:t are modifications corresponding to some (sig-
nificant) changes to the goals in the last level of the
planning graph. Every change considered in this ex-

1999) for hard logistics problems. Graphplan plus Walksat
iteratively performed a graph search for 30 seconds, and
then ran Walksat using the same settings used for Table
I, except for Gripper-10/12 and bwAarge_b where we used
cutoff 3000000, 10 restarts and noise 0.2 (for Gripper-12
we tested cutoff 30000000 as well, but this did not help
Blackbox, which did not find a solution.)

13These tests were performed on a Sun Ultra 10, 64Mb.

Log-a W T T-W ADJUST IPP
I_l 0.008 0.009 0.019 0.1 1742
I_2 0.32 30.3 0.264 0.73 236
I_3 0.117 29.7 0.214 0.93 1198
I_4 0.318 141.9 0.231 1.9 1186
I_5 0.008 0.005 0.006 0.31 3047
G_l 0.502 162.1 0.31 0.88 69.6
G..2 0.008 0.007 0.008 0.32 864
6_3 0.066 142 0.03 0.22 3456
6_4 0.111 15.19 0.194 0.77 2846.6
0-5 0.009 0.389 0.005 0.37 266.3
6-6 0.006 0.196 0.005 0.09 459.5
o_7 0.005 0.034 0.006 0.23 401
6_8 0.006 0.006 0.005 0.04 520
6-9 0.102 0.464 0.068 0.77 663
0-10 0.162 22.145 0.034 0.78 445
G-II 0.121 160.8 0.284 0.77 1023

Table III: Plan-adaptation CPU-seconds required on aver-
age by the local search methods (20 runs), by ADJUST-PLAN
and by IPP for some modifications of Logistics_a. W indi-
cates Walkplan, T Tabuplan and T-W T-walkplan.

periment admits a plan with the same number of time
steps as in the input plan. Some additional results for
this experiment are given in (Gerevini & Serina 1999).

Further experimental results concern the use of
ADJUST-PLAN for solving plan-modification problems.
In particular, the fifth column of the Table III gives the
CPU-time for 16 modifications of Logistics_a. These
results together with others concerning 44 modifica-
tions of Logistics_b (Gerevini & Serina 1999), Rocket_a
and Rocket_b indicate that adjusting a plan using
ADJUST-PLAN is much more efficient than a complete
replanning with IPP (up to three orders of magnitude
faster).

Finally, we are currently testing a method for solv-
ing plan-adaptation problems based on a combination
of local search and ADJUST-PLAN. The general idea is
that we first try to adapt the plan using local search
and without increasing the number of time steps in
the plan. Then, if the local search was not able to ef-
ficiently adapt the plan and this contains only a few
flaws, we try to repair it using ADJUST-PLAN, otherwise
we use GPG with the combination of local and sys-
tematic search described in the previous section. Pre-
liminary results in the Logistics and Rocket domains
indicate that the approach is very efficient.

Conclusions

We have presented a new framework for planning
through local search in the context of planning graph,
as well as methods for combining local and system-
atic search techniques, that can be used for both plan-
generation and plan-adaptation tasks.

Experimental results show that our methods can
be much more efficient than the search methods cur-
rently used by planners based on the planning graph
approach. Current work includes further experimen-
tal analysis and the study of further heuristics for the
local search and the plan-adjustment phases of GPG.

Our search techniques for plan-generation have some

similarities with Blackbox. A major difference is that,
while Blackbox (Walksat) performs the local search
a CNF-translation of the graph, GPG performs the
search directly on the graph structure. This gives the
possibility of specifying further heuristics and types
of search steps exploiting the semantics of the graph,
which in Blackbox’s translation is lost. For example,
if an action node that was inserted to support a fact /
violates some exclusion constraint c, then we could re-
place it with another action node, which still supports
f and does not violate c. This kind of replacement op-
erators are less natural to specify and more difficult
to implement using a SAT-encoding of the planning
problem.

Another significant difference is the use of local
search for computing a quasi-solution, instead of a
complete solution, which is then repaired by a plan-
adjustment algorithm.

Acknowledgments

This research was supported in part by CNR project
SCI*SIA. We thank Yannis Dimopoulos, Len Schubert
and the anonymous referees for their helpful comments.

References
Ambite, J. L., and Knoblock, C. A. 1997. Planning by
rewriting: Efficiently generating high-quality plans. In
Proc. of AAAI-97, 706-713. AAAI/MIT Press.
Blum, A., and Furst, M. 1995. Fast planning through
planning graph analysis. In Proc. of IJCAI-95, 1636-1642.
Clark, D. A.; Frank, J.; Gent, I. P.; MacIntyre, E.; Tomov,
N.; and Walsh, T. 1997. Local search and the number of
solutions. In Proc. of CP-97, 119-133. Springer Verlag.
Gerevini, A., and Serina, I. 1999. Fast Planning through
Greedy Action Graphs. Tech. Rep. 710, Computer Science
Dept., Univ. of Rochester, Rochester (NY), USA.
Glover, F., and Laguna, M. 1993. Tabu search. In Reeves,
C. R., ed., Modern heuristics for combinatorial problems.
Oxford, GB: Blackwell Scientific.
Glover, F.; Taillard, E.; and de Werra, D. 1993. A user’s
guide to tabu search. Annals of Oper. Research. 41:3-28.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In
Proc. of AAAI-96, 1194-1201.
Kautz, H., and Selman, B. 1998. The role of domain-
specific knowledge in the planning as satisfiability frame-
work. In Proe. of AIPS-98.

Kantz, H., and Selman, B. 1999. Blackbox (version 3.4).
http ://www. research, art. com/~kautz/blackbox.
Koehler, J.; Nebel, B.; Hoffman, J.; and Dimopoulos, Y.
1997. Extending planning graphs to an ADL subset. In
Proc. of ECP’97. Springer Verlag.
Minton, S.; Johonson, M.; Philips, A.; and Laird, P. 1992.
Minimizing conflicts: A heuristic repair method for con-
straint satisfaction and scheduling problems. Artificial In-
telligence 58:161-205.

Selman, B., and Kautz, H. 1994. Noise Strategies for
Improving Local Search. In Proe. of AAAI-94, 337-343.
Serina, I., and Gerevini, A. 1998. Local search techniques
for planning graph. In Proc. of the 17th UK Planning and
Scheduling SIG Workshop.

