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Abstract

A probabilistic framework for representing and visually
recognizing complex multi-agent action is presented.
Motivated by work in model-based object recognition
and designed for the recognition of action from visual
evidence, the representation has three components: (1)
temporal structure descriptions representing the tem-
poral relationships between agent goals, (2) belief net-
works for probabilistically representing and recogniz-
ing individual agentgoals from visual evidence, and (3)
belief networks automatically generated from the tem-
poral structure descriptions that support the recognition
of the complex action. We describe our current work
on recognizing American football plays from noisy tra-
jectory data.1

Keywords: action recognition, plan recognition, rep-
resenting visual uncertainty

Introduction
Evaluating whether an observed set of visual phenomena

constitute a particular dynamic event requires representa-
tion and recognition of temporal relationships and uncer-
tain information. The goal of this paper is to present a new
approach to the representation and recognition of complex
multi-agent probabilistic actions. By complex we simply
mean that the action contains many components that occur
in, typically, a partially ordered temporal relation to one an-
other, subject to certain logical constraints (e.g. A happens
before B, B is before C or D, but only one of C or D can
occur). These relations generally reflect causal connections
or influences between components. The actions we are con-
sidering are multi-agent, resulting in parallel event streams
that interact in interesting temporal (typically causal) ways.

By probabilistic we refer to the uncertain nature of both
the model and the data. The action description itself is
typically probabilistic: e.g. B followsA, but only 80% of the
time. This uncertainty results from complex actions defined

1This research was funded by Office of Research and Develop-
ment (ORD) contracts 94-F133400-000 and 97-F157800-000.
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by typical components that are only sometimes observed due
to uncertainty in the world. Another source of uncertainty is
the fuzziness of attributes used to describe agent interaction
(e.g. obj1 is near obj2). Finally, the design of the
representation is intended to support recognition and we
therefore need to consider real sensing capabilities, which
are probabilistic at best. Often, perceptual evidence can be
either missed or hallucinated.

There are numerous domains that contain interesting,
complex, probabilistic actions. Examples include sport-
ing events, military and security surveillance, traffic mon-
itoring, and robotic collaboration. The task and domain
developed here is recognizing American football plays. It
has the necessary attributes of containing complex actions
(plays) performed by a multi-agent system (the offense) in
which there is great uncertainty and unpredictability (the
defense). Methods exist for tracking football players from
video (Intille & Bobick 1995). For the recognition task, we
presume tracked data that provides the location and rough
orientation of each player at each time during the play. Our
current system uses a database of 29 manually, though nois-
ily, tracked plays. Figure 1 shows 3 “chalkboard” image
examples of 3 different observations of a “p51curl” play.

An analogy to object recognition

At the heart of our approach to complex action recognition is
an idea developed within the context of model-based object
recognition. The task there is to match a given object model
to an image from which edge elements have been extracted.
One of the more successful approaches to this problem is that
of using feature-model interpretation matching trees, where
the visual features are edge segments (Grimson & Lozano-
Pérez 1987). Each layer of the tree represents a given model
edge. The fanouts of each node span the potential image
edge fragments that might match the given model edge of
the given layer. A hypothesis is a path from the root to
the leaves that specifies the match of each model edge to
specific image features.

The goal, of course, is to find the correct hypotheses.
However the number of edges make exhaustive search com-
putationally prohibitive. Rather, the approach is to find a
consistent hypothesis, and assume that consistency implies
correctness. As developed in (Grimson & Lozano-Pérez
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Figure 1: Three examples of a p51curl play. The lighter trajectories are the offensive players. The data provided to the system consists of
trajectories for all the objects including the ball, the approximate orientation of each object at each point along its trajectory, and a position
label for each trajectory.

1987) the order of the consistency can be varied depending
upon computational resources and accuracy requirements.
For example, if we restrict our attention to two-dimensional
objects, a unary consistency check simply requires that each
model edge is at least as long as the proposed matching im-
age edge. A binary consistency check verifies not only the
unary relations but also all pairwise relationships, namely
the angle and bounded distance between edges.

Grimson and Lozano-Pérez (Grimson & Lozano-Pérez
1987) note that although it is mathematically possible for
an incorrect interpretation to satisfy the binary relations but
not higher order relations, the probability of an object doing
so falls precipitously as object complexity increases. This
allows them to construct heuristic pruning methods that
search for the correct interpretation by only maintaining
binary consistency. It is this idea, that massive low order
consistency typically implies correctness, that drives our
approach to recognizing complex actions.

Our approach
The approach we have developed consists of the following
representational elements:

� We first define a temporal structure description of the
global behavior, in this case a football play. The basic
elements of this structure represent individual, local goals
or events that must be detected. The relations coded in
the structure are temporal constraints to be verified.

� For each basic element of the temporal structure, we de-
fine a visual network that detects the occurrence of the
individual goal or event at a given time accounting for
uncertain information.

� Temporal analysis functions are defined which evaluate
the validity of a particular temporal relationships, such as
before.

� A large multi-agent belief network is automatically con-
structed reflecting the temporal structure of the action.

OBJ2
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OBJ4

D

OBJ3

OBJ1

Figure 2: An football play diagramming the s51 example play.
The play consists of 4 offensive agents and a ball. Also marked is
the line-of-scrimmage (LOS) and some 5-yard marker yardlines.
The heavy dotted line indicates the most typical path for the ball
when it is thrown by OBJ2 after the ball is handed to OBJ2 from
OBJ1. The lighter dotted line indicates a secondary pass option.
Implicit is that OBJ3 and OBJ4 turn at the same time.

This network, similar in structure to a naive Bayesian
classifier, represents a particular play using only beliefs
and evidence about the expected temporal relationships
between agent goals.

The likelihood that a particular play has been observed is
computed by evaluating the appropriate belief networks.

s51 play example
The task for a recognition system is to recognize whether a
given set of trajectory inputs like those illustrated by Fig-
ure 1 corresponds to a particular type of play, such as the
p51curl. Normally plays consist of 11 offensive players. A
simplified example of a p51curl play, called the “s51,” con-
taining only 4 offensive players and a reduced number of
actions per player will be used for illustration in this paper.
The s51 chalkboard diagram is shown in Figure 2.

The input to the system consists of trajectories given by
(x,y,orientation,label) tuples as a function of the frame num-
ber, i.e. time. Here, orientation denotes the approximate



upper-body orientation of the player and label is the name
of the player’s starting position.

Prior work
Prior multi-agent plan recognition work can be roughly di-
vided into two methods. Some approaches have an explicit
representation for group intentionality(e.g. (Grosz & Kraus
1996)), typically using modal logics. Other approaches
“compile down” intentional reasoning into procedural com-
ponents, trading off the ability to reason about complex
intentional interaction for computational tractability in do-
mains with noisy evidence detectors. Our hypothesis is that
for some useful recognition tasks visually-detected agent-
based goals can be “compiled” into efficient and powerful
classifier networks using binary temporal relationships be-
tween detected goals.

Promising work on recognizing single-agent action from
trajectory information using transition diagrams and fuzzy
reasoning (Nagel et al. 1995) led us to investigate the
use of belief networks for multi-agent action recognition,
which more explicitly represent knowledge dependencies
and are computationally well-understood. Bayesian net-
works have been used to relax the strict assumptions of
plan hierarchy models such as (Kautz & Allen 1986). For
example, networks can represent multiple top-level goals
where probabilistic priors can be used to rank two equally
possible but not equally likely plans (Charniak & Goldman
1993). Further, they have been used to integrate “action pat-
terns” and beliefs about an agent’s mental state (Pynadath
& Wellman 1995). Previous work in traffic understanding
has used an agent-based belief network and agent-centered
features for recognition of driving activity from simulated
(Forbes et al. 1995) and real data (Buxton & Gong 1995;
Huang et al. 1994). Unlike that work our task requires that
the system must also represent the logical and temporal re-
lationships between multiple agents. Remagnino, Tan, and
Baker (Remagnino, Tan, & Baker 1998) recently described
a pedestrian and car tracking and surveillance system that
models the interaction between any two agents using a small
belief network. Dynamic belief networks (DBNs) and hid-
den Markov models (HMMs) have been used with some
success but have not been demonstrated to be appropriate
for domains in which multi-agent relationships result in
large feature spaces and in which large and complete data
sets for training are unavailable.

Although some search-based systems for recognizing
multi-agent goals and actions have been proposed (Retz-
Schmidt 1988; Azarewicz, Fala, & Heithecker 1989;
Tambe 1996), noisy visual data requires a representation
that can handle uncertainty. (Devaney & Ram 1998) have
demonstrated that pairwise comparison of features between
trajectories can be used to recognize some group military
behaviors for large numbers of agents.

Huber has shown that simple goal recognition belief net-
works can be constructed automatically from representa-
tions of action used for a plan generation system and then
used by a planning agent in a multi-object scene (Huber
1996). Our approach builds on Huber’s work of automatic

(goalTeam s51
"Team goal for simple-p51curl (s51) play."

(agentGoal obj1
(agent (obj1 (C))) ; Obj1 is always the Center (C)
(goal obj1_act1 "snapToQB (obj1)")
(goal obj2_act2 "blockQBPass (obj1)")
(before obj1_act1 obj1_act2))

(agentGoal obj2
(agent (obj2 (QB))) ;Obj2 is always the Quarterback (QB)
(goal obj1_act1 "dropback (obj2 5)")
(goal obj2_act2 "throwPass (obj2)")
(before obj2_act1 obj2_act2))

(agentGoal obj3 ;The Right Wing Back (RWB)
(agent (obj3 (RWB RTE RHB HB FB TB LWB LSB)))
(goal obj3_act1 "passPatStreaking

(obj3 4 45 defReg nearRightSidelineReg 0)")
(goal obj3_act2 "passPatCutting

(obj3 70 offSidelineRightReg freeBlockingZoneReg)")
(goal obj3_act3 "runbehind (obj3 obj4)")
(goal obj3_act4 "passPatParaLos

(obj3 3 defReg offSidelineRightReg 4)")
(goal obj3_act5 "catchPass (obj3)")
(before obj3_act1 obj3_act2)
(before obj3_act2 obj3_act4))

(agentGoal obj4 ;The Right Flanker (RFL)
(agent (obj4 (RFL RWB RSB LFL LSB LWB)))
(goal obj4_act1 "passPatStreaking

(obj4 4 50 defReg offEndZoneReg 0)")
(goal obj4_act2 "passPatCutting

(obj4 70 offSidelineLeftReg freeBlockingZoneReg)")
(goal obj4_act3 "passPatParaLos

(obj4 3 defReg offCenterLineReg 4)")
(goal obj4_act4 "catchPass (obj4)")
(before obj4_act1 obj4_act2)
(before obj4_act2 obj4_act3))

(around obj3_act2 obj4_act2)
(xor obj3_act5 obj4_act4))

Figure 3: A temporal structure description for the s51 play exam-
ple with only some actions and temporal relationships specified.

construction of networks.
The remaining sections of this paper describe each com-

ponent of our representation and some recognition results.

Temporal structure description
The temporal structure description represents the prototyp-
ical scenario of the described action. It is comprised of
fundamental behavior elements connected by temporal con-
straints. We assume that the complex actions we wish to
recognize have such a prototype and that they can be ex-
pressed with this language.

Individual goals and behaviors
We use individual agent goals as the basis for the de-

scriptive structure and view complex actions as a partially
ordered set of goal directed behaviors on the part of in-
teracting agents. We define goals by their (probabilistic)
characteristic behaviors, building on work in probabilistic
plan recognition (Charniak & Goldman 1993). To evaluate
whether an agent has a particular goal at a particular time
we will evaluate the perceptual evidence.

For example, the halfback can have the goal of running
between the tackle and the guard. To determine if indeed
he has such a goal a recognition system must evaluate the
visual evidence, particularly the position of the tackle and
the guard and the direction of motion of the halfback. The



interaction of multiple agents and the reaction of agents to
the movement of other agents can lead to large variations in
some movement, as indicated by the examples in Figure 1.
However, at any given time, evidence detected in a local
space-time window can indicate that an agent has a particu-
lar goal. Later we will more fully detail the construction of
belief networks that serve as the definition of the individual
agent goals.

Goal action components
Figure 3 shows a simplified temporal structure description
for the s51 example in Figure 2. The description contains
four agents: obj1, obj2, obj3, and obj4. Each object in
the temporal structure graph has a set of goal action com-
ponents. The example indicates that in an s51 play, obj1
should have a goal to snapToQB (snap (or hand) the ball
to the quarterback) and blockQBPass (block for the QB
as the QB passes the ball). Each goal has a label, such
as obj1 act1 (short for object1’s action1). The s51 exam-
ple has been limited to just six goal types: snapToQB,
blockQBPass, passPatStreaking, passPatCutting, passPat-
ParaLos, and catchPass. The detector for each goal type
receives a list of parameters.2

Object assignment
The trajectories in our dataset are labeled using standard
football position notations (e.g. QB, C, HB). However,
since all football plays can be run from several different
starting formations (so that the defense cannot determine
the play from the starting formation of the offense), the
temporal structure description must indicate the valid po-
sition types for each object. In the example description
in Figure 3, the agent slot of the agentGoal obj3 de-
scription indicates that objectobj3 can possibly match with
a trajectory if the trajectory has one of labels (RWB RTE
RHB HB FB TB LWB LSB). This list is a preference or-
dering. obj3 will most often be the RFL, then the RWB,
and so on. Given the preference orders for all objects, a
consistent assignment of trajectory data to the play descrip-
tion must be made. Here our system finds the single most
consistent interpretation using preference assignments, the
constraint that all trajectories must be assigned to an object
in the temporal structure description, and a heuristic scoring
function. Due to space limitations this matching process is
not discussed further.

Temporal constraints
The remaining slots in the the temporal structure descrip-
tion indicate the temporal and logical relationships between
agent goals. Two temporal primitives are available: before
and around. For example, “(before obj1 act1 obj1 act2)"
indicates that goal obj1 act1 occurs before obj1 act2, where

2For example, passPatCutting takes parameters (obj a toReg in-
Reg). The network encodes detects the following: Obj, which
must be an eligible receiver, runs a pass pattern segment making
a sharp (e.g. about a degrees) change in motion in inReg after
which obj is moving in towards the toReg.

obj1 act1 is the label for "snapToQB (obj1)" and obj2 act2
is the label for "blockQBPass (obj1)". Similarly, “(around
obj3 act2 obj4 act2)" indicates that object3’s passPatCut-
ting goal occurs around the same time as object4’s passPat-
Cutting goal. The meanings of “before" and “around" will
be defined shortly. Finally, “(xor obj3 act5 obj4 act4)" in-
dicates that object3’s catchPass goal xor object4’s catchPass
goal should be observed.

By assumption, the goals of an agent are active during
temporal intervals of finite duration; they are not instan-
taneous events. As such, Allen’s interval algebra (Allen
1983) applies and there are potentially 7 possible temporal
relations (not counting inverses). However, that algebra re-
quires precise definition of the endpoints of the intervals.
Our ability to assign goals to agents based upon perceptual
evidence will be fuzzy, allowing us only to assign a graded
value that varies over time. In the ideal case there would
be a nice peak or plateau in the probability a goal is active
during a temporal window, but real data is rarely ideal.

Note that our temporal constraints do not support most
temporal implications. For example, the temporal relation
of simultaneity is expressed as aroundwhich can be inter-
preted as “about the same time as.” Clearly such a ‘fuzzy’
relation is not transitive and we cannot apply transitive clo-
sure to the temporal relations. Rather, we only exploit those
relations manually constructed by the knowledge engineer
designing the action description.

Visual nets and temporal functions
Previous work has shown that agent goals can be repre-
sented in a probabilistic framework using Bayesian be-
lief networks (Charniak & Goldman 1993; Huber 1996;
Pynadath & Wellman 1995). We also use belief networks
based on visual evidence, or visual networks, that offer a
rich representation designed to handle uncertainty in evi-
dence, goal models, spatial reasoning, and temporal reason-
ing. Further, the networks can be used as building blocks
for recognizing multi-agent activity.

Network structure and evaluation
A single belief network represents each goal or event and
can be instantiated at any time during a play. The networks
typically contain between 15 and 25 nodes with a relatively
tree-like link complexity and therefore exact propagation
algorithms can be used to compute the probabilities of each
node state (Pearl 1988). The structure of each network is
manually specified. Currently the priors are also manually
assigned, however some priors can be obtained from analyz-
ing the evidence and the performance of particular feature
detectors.

Figure 4 shows one such network, catchPass. The
network consists of two types of nodes: unobservable belief
and observable evidence.
Unobservable belief nodes A belief node has two states,

true and false, and represents an internal state of the
agent or some external state in the world at the time when
the network is evaluated. Each visual network has a
designated main goal node (e.g. catchPass).



Figure 4: The catchPass goal network.

Observable evidence nodes An evidence node’s states and
state values are directly dependent upon the data. Some
nodes are binary (e.g. observed, notObserved), most are
trinary, (e.g. observed, maybeObserved, notObserved),
and the remainder have specialized states that quantize a
particular feature detector output (e.g. the result of the
distance detector is quantized into states inContact,
nextTo, near, inVicinity, far, distant). To maintain con-
tinuous valued information, whenever possible evidence
is entered as “virtual” likelihood evidence.3

The main belief node of each network can accept pa-
rameters set by the caller of the network at run-time. For
example, goal nodecatchPass (obj1) accepts one ar-
gument, a specific agent. Each network is designed so that
it can be applied to any world object and return a reasonable
result.

Locality in space-time
Visual networks can be applied to any agent at any time.
As much as possible, visual goal networks are designed to
use evidence observed locally in space and time. Further,
evidence features are typically deictic, or agent centered.
For example, networks sometimes compute the distance
between the current agent and the closest agent.

Because goal networks can make use of dynamic state
variables (e.g. snapTime) and the output of other
goal networks (e.g. catchPass uses the result of the
playInProgressnetwork), the networks are not entirely
“closed.” Incorporating input from other networks or dy-
namic state variables violates the belief network assumption
that all variable dependencies are modeled via explicit con-
ditional probabilities. We accept this approximation, noting
that the networks themselves are simplified approximations
to the actual dependency structure and that partitioning ac-
tions into small networks simplifies and makes manageable
the job of the knowledge engineer.

3So-called “virtual” evidence,or the relative likelihood of each of
the discrete states, is entered into a network to use continuous-
valued evidence in a node with discrete evidence states (see
(Pearl 1988)). The likelihood is obtained using the relative
activation levels of each discrete state which are computed with
piecewise linear functions.
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Figure 5: Goal likelihood curves returned by the networks “drop-
back (QB 5)” and “catchPass (RSE)” superimposed with the corre-
sponding temporal curves for “dropback (QB 5) before catchPass
(RSE)” and “dropback (QB 5) around catchPass (RSE)”.

We incorporate evidence from an external network,
such as the playInProgress evidence node, into a
network such as catchPass (obj1) as follows. If
the playInProgress network cannot evaluate and re-
turns NIL, no evidence is entered for the node. If the
playInProgress network returns a high likelihood of
a particular state that exceeds a predetermined threshold
for playInProgress, evidence is entered directly into
the catchPass network (e.g. if observed = .99 and not-
Observed = .01 and threshold(playInProgress)
= .85 then observed = 1.0 is entered into catchPass).
Finally, if playInProgress evaluates below the thresh-
old, the beliefs are treated as direct evidence and the
probabilities are converted to likelihood evidence (Pearl
1988) (e.g. if observed = .8 and notObserved = .2 and
threshold(playInProgress) = .85 then the evi-
dence that observed is 4 times more likely than notObserved
will be entered into the catchPass network).

Temporal analysis functions
The output of a visual goal network at each frame for a
given object results in a likelihood curve over time. Tempo-
ral relationship evidence detectors use these curves as input.
The functions compute a certainty value for the observed,
before, and around tests at each time frame using heuristic
functions that compare the activation levels of each goal
over time, characteristics of each input curve, the tempo-
ral distance between features of the curves, the amount of
overlap between the curves, and a minimal activation time
for each goal. The functions are designed to preserve the
uncertainty in the output of the visual goal networks and to
avoid hard thresholding. Two curves returned by the net-
works “dropback (QB 5)” and “catchPass (RSE)” are shown
in Figure 5 overlaid with the likelihood values for the be-
fore and around detectors corresponding to “dropback (QB
5) before catchPass (RSE)” and “dropback (QB 5) around
catchPass (RSE)”.

Multi-agent networks
Multi-agent action is recognized using a multi-agent belief
network. At each time, the network integrates the likelihood
values returned by temporal analysis functions at that time
and returns a likelihood that a given play has been observed.



B: s51 (obj1 obj2 obj3 obj4)
B: s51 (obj1)

B: s51 (obj2)

B: obj3_act5 observed

B: s51 (obj3)
B: s51 (obj4)

B: obj1_act1 before obj1_act2

B: obj2_act1 before obj2_act2

B: obj4_act2 before obj4_act3

B: obj4_act4 observed

B: obj3_act1 before obj3_act2

B: obj3_act3 observed

B: obj3_act2 around obj4_act2

B: obj4_act1 before obj4_act2

B: obj3_act5 xor obj4_act4

B: obj3_act2 before obj3_act4
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Figure 6: The s51 multi-agent recognition network.

Figure 6 shows an example of a multi-agent network
for the s51 play. The network structure is generated auto-
matically from the temporal structure description. In the
system discussed in this paper, a two-level naive Bayesian
classifier network structure is generated that encodes the
temporal structure of a play. All nodes in the multi-agent
networks represent beliefs or evidence observed over all the
play data seen from the start of the play until the current
time. The state characterization of all nodes comprises the
values (observed; notObserved). The main node in the ex-
ample is B: s51 (obj1 obj2 obj3 obj4). Linked to that node
is one node for each agent – for example B: s51 (obj1) –
representing the belief that the agent’s goals for the s51 have
been observed. Below these nodes are nodes representing:

� Binary temporal relationships between goals (e.g. B:
obj1 act1 before obj1 act2). These nodes represent the
belief that a particular temporal ordering has been ob-
served or notObserved at some point during the action
sequence.

� Evidence for binary temporal relationships (e.g E:
obj1 act1 before obj1 act2). There is a conditional link
from the temporal relation belief node to the evidence.
The evidence values are computed by the temporal anal-
ysis functions. To avoid cluttering the figure, these nodes
are represented with a boxed “E” node.

Temporal relationshipsbetween agents are linked directly
to the top-level belief node (e.g. see B: obj3 act2 around
obj4 act2). Additional links can be added for logical re-
lationships, which conditionally link the two related goal
observations.

A detector such as E:obj3 act1 before obj3 act2 im-
plicitly encodes the observation E:obj3 act1 observed and
E:obj3 act2. Therefore, when an agent goal node is tem-
porally compared to some other agent goal node, only the
temporal comparison belief node is incorporated into the
network. However, some goal actions are not included in
any temporal comparisons in the temporal action descrip-
tion. In these cases, the network includes an observed belief
and evidence node (e.g. B:obj3 act3 observed).

Conditional and prior probabilities for the network are
determined automatically using heuristics matching table
templates to specific node-link combinations, similar to the
method used by Huber (Huber 1996). The structure of the

network for the s51 shown in Figure 6 essentially imple-
ments a weighted voting scheme between observed goals
and temporal relationships between goals.

Experimental evaluation has demonstrated that naive
Bayesian networks are surprisingly good classifiers, de-
spite making strict independence assumptions between at-
tributes and the class. Moreover, recent work has shown
that augmenting such networks with additional binary con-
ditional dependencies improves classification performance
so that it is often better and otherwise comparable to more
complex representations, including more highly-connected
learned network structures (Friedman & Goldszmidt 1996).
Our multi-agent networks are naive classifiers where binary
temporal relations between goals have been encoded within
nodes, not in links between nodes.

The network shown in Figure 6 is only for a play with
four agents where the number of actions for each agent is
restricted to just a few examples. For a play with 11 agents,
the networks typically contain at least 50 belief nodes and
40 evidence nodes and often twice that number. Network
propagation by exact algorithms is feasible, however, be-
cause the network has a shallow tree linking structure and
consists of binary internal belief nodes. The temporal anal-
ysis functions return continuous valued likelihood informa-
tion. This information is entered into the multi-play network
as continuous evidence, avoiding unnecessary thresholding
of uncertain information.

Results
We are using the representation described in this pa-
per in a football play recognition system. The
system has knowledge of about 40 region defini-
tions (e.g. line-of-scrimmage), 60 player types
(e.g. quarterback, receiver), and ISA relation-
ships between player types (wide-receiver ISA
receiver). We have constructed approximately 60 evi-
dence detectors (e.g. distance(closestAgent)) that
are applied to the trajectory data and produce probabilistic
quantized outputs (e.g. inContact = 0:3, nextTo = 0:7).
We estimate 70 robust visual networks will ultimately be
required for recognition of most of the plays in our database,
and about 50 of those have been constructed.

We have evaluated our system on 29 tracked plays using
a database of 10 temporal play descriptions. Figure 7 shows
the likelihood value obtained by evaluating the multi-agent
network at each frame for 7 play models on a datafile for
a t39 play. Here the desired behavior is achieved: uncer-
tain evidence of temporal relationships between goals is
sufficient to cause the t39 play detector’s likelihood value
to quickly rise above the other plays shortly after the play
action begins at frame 90.4

Figure 8 is a confusion matrix showing the final like-
lihood value obtained for each temporal play description
when run on 29 example plays. A “-” value indicates a

4The system requires approximately 1 second of computation
per frame per tested play on a 500 MHz Digital Alphastation
and could be highly parallelized.
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Figure 7: Result of running 7 play detectors on a t39 play example.
Shown is the likelihood of each play having been observed at frame
t considering all evidence from frames 0� t.

play where no good object-to-trajectory consistency match
could be found.5 The examples below the line (i.e. p58
through s35) do not yet have fully implemented temporal
play descriptions. The highest likelihood value obtained on
each data file (each row) is marked in bold.

Considering only the top portion of the table, the maxi-
mum likelihood value along each row selects the correct play
for 21 of the 25 play instances. 3 of the 4 errors are caused
by p56yunder examples being misclassified as p52maxpin
plays. Figure 9, which shows the diagrams for those two
plays with a misclassified example approximately overlaid
on top demonstrates why the system has difficulty classify-
ing the example. The diagram shows that both plays, when
executed perfectly, are similar when the “optional action”
is not taken into account. The only large observed differ-
ence between the plays is for the rightmost player, who
follows a trajectory different from both the p56yunder and
the p52maxpin. Our models currently do not include the
optional actions, which would contribute evidence to the
desired p56yunder classification. We are currently extend-
ing the multi-agent networks so they can encode optional
compound goals.

The bottom section of the table are the probabilities pro-
duced when applying the system to instances of plays for
which there is (as yet) no action network. The discouraging
result here is that false positives have values comparable
to the correct positives above. That is, while our current
system is capable of selecting the correct play description,
it cannot yet determine when a play does not belong to one
of its known categories. One reason for this is that we have
not yet completed constructing all the visual networks nec-
essary to provide rich descriptions of the plays. The weaker
the model, the more easily it is matched by some incorrect
instance. More detailed models will improve the ability of
the system to determine that a play is “none of the above.”

Overall the results are promising, especially consid-
ering the complexity and variation of the input data.
We have data to evaluate additional play descriptions
but must first complete coding the additional goal net-
works. Further, the multi-agent belief networks need
to be extended to handle compound groups of actions

5Prior to evaluating a particular multi-agent network, a consis-
tent match between the labeled trajectories and the object label
preference orderings must be found. This component of the
system is not discussed in this paper.

Ideal p56yunder

Example play

Ideal p52maxpin

Optional actions

Figure 9: P56yunder and p52maxpin play diagrams with one
p56under example play approximately overlaid. The system re-
turned likelihoods of .64 for p56yunder and .76 for p52maxin.

(e.g. player performs (XOR (goal-a and goal-b)
(goal-c and goal-d)) before we can completely
characterize the competence of the representation.

Final remarks
We have proposed a representation – motivated by findings
in the computer vision object recognition literature and the
power of augmented naive Bayesian classifiers – that repre-
sents complex, multi-agent action using low-order temporal
graphs. The primitives in these graphs are agent-based be-
lief networks that can recognize agent goals by probabilistic
integration of visual evidence. Networks with a structure
similar to naive classifiers are automatically generated from
a simple description of a team play. These networks contain
nodes that encode binary spatial and temporal relationships
and are small and therefore computationally manageable.
We have demonstrated that these networks can recognize
multi-agent action for a real domain with noisy input trajec-
tory data. Studying the representational, recognition, and
computational properties of the multi-agent networks is the
focus of our current work.
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