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Abstract

We investigate the computability of problems
in probabilistic planning and partially observ-
able infinite-horizon Markov decision processes.
The undecidability of the string-existence prob-
lem for probabilistic finite automata is adapted
to show that the following problem of plan ex-
istence in probabilistic planning is undecidable:
given a probabilistic planning problem, determine
whether there exists a plan with success proba-
bility exceeding a desirable threshold. Analogous
policy-existence problems for partially observable
infinite-horizon Markov decision processes under
discounted and undiscounted total reward mod-
els, average-reward models, and state-avoidance
models are all shown to be undecidable. The re-
sults apply to corresponding approximation prob-
lems as well.

1 Introduction
We show that problems in probabilistic planning
(Kushmerick, Hanks, ~ Weld 1995; Boutilier, Dean, 
Hanks 1999) and infinite-horizon partially observable
Markov decision processes (POMDPs) (Lovejoy 1991;
White 1993) are uncomputable. These models are cen-
tral to the study of decision-theoretic planning and
stochastic control problems, and no computability re-
sults have previously been established for probabilis-
tic planning. The undecidability of finding an opti-
mal policy for an infinite-horizon POMDP has been a
matter of conjecture (Papadimitriou & Tsitsiklis 1987),
(Littman 1996), (Blondel & Tsitsiklis 1998). Our 
sults settle these open problems and complement the
research on the computational complexity of finite-
horizon POMDP problems (Papadimitriou & Tsitsiklis
1987; Littman 1996; Mundhenk, Goldsmith, & Allen-
der 1997; Littman, Goldsmith, & Mundhenk 1998).

We show that the following basic plan-existence
problem in probabilistic planning is undecidable:

Given a probabilistic planning problem:

Copyright (~)1999, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

¯ a set of states
¯ a probability distribution over the value of the

initial state
¯ a set of goal states
¯ a set of operators that effect stochastic state

transitions
¯ a rational threshold v on the probability of plan

success

determine whether there is a sequence of opera-
tors that will leave the system in a goal state with
probability at least v.

The probabilistic planning problem can be recast as
an infinite-horizon undiscounted total reward POMDP
problem, the problem being to determine whether
there is a policy for the process with expected value
at least 7" (Boutilier, Dean, gc Hanks 1999). Unde-
cidability results for probabilistic planning thus have
consequences for at least some POMDP problems as
well. In this paper we demonstrate the undecidability
of POMDPs for a variety of optimality criteria: total
undiscounted and discounted reward, average reward
per stage, and a state-oriented negative criterion dis-
cussed in (Puterman 1994). We also show the undecid-
ability of several related approximation problems. An
interesting consequence of our results on the impossi-
bility of finding approximately optimal plans is that if
the length of a candidate solution plan is bounded in
size---even by an exponential function of the input de-
scription length--the solution found can be arbitrarily
suboptimal.

Our analysis assumes incomplete information about
the system state (partial observability), but does not
set any a priori bound on the length of the solution
plan. Even so, the undecidability result holds whether
the set of admissible plans have finite length, infinite
length, or either. Previous research had addressed ei-
ther other models such as the fully observable case
(Littman 1997), and bounded-length plans and finite-
horizon POMDPs (see (Goldsmith & Mundhenk 1998)
for a survey), or special cases, for example estab-
lishing decidability and computational complexity of
goal-state teachability with either nonzero probability
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or probability one (Alur, Couroubetis, & Yannakakis
1995; Littman 1996).

Our undecidability results for the probabilistic plan-
ning problems are based on the string-existence or
emptiness problem for probabilistic finite-state au-
tomata (PFAs). The undecidability of this problem
was first established in (Paz 1971). However we use
the reduction in (Condon & Lipton 1989) for our work,
since properties of the reduction help establish results
for several additional open problems, including the
threshold-isolation problem also raised in (Paz 1971).
The work in (Condon & Lipton 1989) in turn is based
on an investigation of Interactive Proof Systems intro-
duced in (Goldwasser, Micali, & Rackoff 1985), and
an elegant technique developed in (Freivalds 1981) 
show the power of randomization in two-way PFAs.

The paper is organized as follows. The next sec-
tion defines PFAs and the string-existence problem,
and sketches the reduction of (Condon & Lipton 1989),
highlighting aspects used in subsequent proofs. The
remainder of the section establishes the undecidability
of related approximation problems and the threshold-
isolation problem.

The following section makes the connection between
PFAs and probabilistic planning, proving the undecid-
ability of the latter problem. POMDPs are addressed
next: several optimality criteria are introduced, then
the policy-existence problem is defined and shown to
be undecidable regardless of which optimality criterion
is adopted.

2 PFAs and the String-Existence Prob-

lem

A probabilistic finite-state automaton M is defined by
a quintuple M = (Q, ~, T, s, f) where Q is a finite
set of states, ~ is the input alphabet, T is a set of
IQI × [Q[ row-stochastic transition matrices1, one for
each symbol in ~, s E Q is the initial state of the
PFA, and f E Q is an accepting state. The automaton
occupies one state from Q at any point in time, and at
each stage transitions stochastically from one state to
another. The state transition is determined as follows:

1. The current input symbol a determines a transition
matrix Ma.

2. The current state s determines the row Ma[s], a
probability distribution over the possible next states.

3. The state changes according to the probability dis-
tribution Ma [s].

The automaton halts when it transitions to the ac-
cepting state f. In this paper, we restrict attention
to pfa’s in which the accepting state f is absorbing:
Ma[f,f] = 1.O, Va G ~.

1Throughout the paper, we make the standard assump-
tion that all the numbers (e.g. transition probabilities) are
rational.

We say the automaton accepts the string w E ~*
(~* denotes the set of all finite strings on ~) if the
automaton ends in the accepting state upon reading
the string w, otherwise we say it rejects the string. We
denote by pM(w) the acceptance probability of string
w by PFA M. The acceptance probability pM(w) for
an infinite string w is defined naturally as the limit
limi__.copM(wi), where wi denotes the length i prefix
of W.

Definition 1 The string-existence problem for PFAs
is the problem of deciding whether or not there is some
input string w E E* that the given PFA accepts with
probability exceeding an input threshold v.

Both (Paz 1971) and (Condon & Lipton 1989) 
tablish the undecidability of this problem, also known
as the emptiness problem:

Theorem 2.1 (Paz 1971)(Condon 8~ Lipton 1989)
The string-existence problem for PFAs is undccidable.

In the next subsection, we describe the properties of
the reduction developed in (Condon & Lipton 1989),
followed by a more detailed explanation of the proof.
The details of the proof are used to develop corol-
laries related to probabilistic planning and POMDP
problems, most notably Lemma 4.3, which establishes
the undecidability of optimal policy construction for
discounted-total-reward infinite-horizon POMDPs.

2.1 Properties of the Reduction

In (Condon & Lipton 1989), the (undecidable) ques-
tion of whether a Turing Machine (TM) accepts the
empty string is reduced to the question of whether
a PFA accepts any string with probability exceeding
a threshold. The PFA constructed by the reduction
tests whether its input is a concatenation of accepting
sequences. An accepting sequence is a legal sequence
of TM configurations beginning at the initial configu-
ration and terminating in an accepting configuration.

The reduction has the property that if the TM is
accepting, i.e. it accepts the empty string, then the
PFA accepts sufficiently long concatenations of accept-
ing sequences with high probability. But if the TM is
not accepting, the PFA accepts all strings with low
probability. We next formalize these properties and
use them in subsequent undecidability results. The
following section explains how the PFA generated by
the reduction has these properties.

Theorem 2.2 There exists an algorithm which, given
a two counter TM as input and any rational c > 0
and integer K >_ 1, outputs a PFA M satisfying the
following:

1. If the TM does not accept the empty string, the PFA
M accepts no string with probability exceeding c.

2. If the TM is accepting, then let string w represent
the accepting sequence, and let wn denote zo con-
catenated n times. We have limn~oopM(wn) =
1 - (1/2) K, and Vn,pM(wn) < 1 - (1/2)g.



We conclude this section making two additional
points about the string-existence problem.

¯ Due to the separation between the acceptance prob-
ability of the PFA in the two cases of the TM ac-
cepting the empty string or otherwise, the string-
existence problem remains undecidable if the strict
inequality in the description of the existence problem
is replaced by a weak equality (>) relation.

¯ Although the problem is posed in terms of the ex-
istence of finite strings, the result holds even if the
strings have infinite length.

2.2 Details of the Reduction

The class of TMs used in the reduction in (Condon g¢
Lipton 1989) are two-counter TMs, which are as pow-
erful as general TMs. The constructed PFA is sup-
posed to detect whether a sequence of computations
represents a valid accepting computation (accepting se-
quence) of the TM. This task reduces to the problem of
checking the legality of each transition from one con-
figuration of the TM to the next, which amounts to
verifying that

¯ the first configuration has the machine in the start
state

¯ the last configuration has the machine in the accept-
ing state

¯ each transition is legal according to the TM’s tran-
sition rules.

All these checks can be carried out by a deterministic
finite state automaton, except the check as to whether
the TM’s counter contents remain valid across consec-
utive configurations. The PFA rejects immediately if
any of the easily verifiable transition rules are violated,
which leaves only the problem of validating the coun-
ters’ contents across each transition.

On each computation step taken by a two-counter
TM the counters’ contents either stay the same, get
incremented by 1, or get decremented by 1. Assuming
without loss of generality that the counter contents are
represented in unary, this problem reduces to check-
ing whether two strings have the same length: given a
string anbm, does n = m?

Although this question cannot be answered exactly
by any PFA, a weak equality test developed in (Con-
don & Lipton 1989) and inspired by (Freivalds 1981)
can answer it in a strict and limited sense which is
nonetheless sufficient to allow the reduction. The weak
equality test works as follows. The PFA scans its in-
put string a"b"~, and with high probability enters an
indecision state (or equivalently we say the outcome
of the test is indecision). With some low probability
the PFA enters a one of two "decisive" states. If the
substrings have equal length the PFA either enters a
correct state or a suspect state. It enters these two
states equiprobably. However, suppose that the PFA
enters a decisive state but the input string is composed

of unequal-length substrings (m # n). In this case the
suspect outcome is k times more likely than the cor-
rect outcome, where the discrimination factor k can
be made as large as desired by increasing the size of
the PFA.

The PFA of the reduction carries out a global test of
its own on a candidate accepting sequence for the TM,
using the weak-equality test to check for counter in-
crements or decrements on consecutive configurations.
Given a candidate accepting sequence, if the outcome
of all the tests are decisive and correct, the PFA accepts
the input. If the outcome of all the tests are suspect,
the PFA rejects the input. Otherwise, the PFA re-
mains in the global-indecision state until it detects the
start of the next candidate accepting sequence (start
configuration of the TM), or until it reaches the end of
the input. If it is in the global-indecision state at the
end of the input, it rejects.

If the original TM accepts the empty string, ob-
serve that the probability that the PFA accepts can ap-
proach the upper limit 1/2 on an input string consist-
ing of a concatenation of sufficiently many accepting
sequences. If the TM does not accept the empty string,
it follows from the properties of the weak-equality test
that the probability that the PFA accepts any string
is no larger than 1/k.

By making a minor adjustment to the PFA, the ac-
ceptance probability of the PFA when the TM accepts
the empty string can be made arbitrarily close to 1:
Instead of rejecting or accepting if it sees an all sus-
pect or an all correct outcome on a single candidate
accepting sequence, the PFA can instead increment an
all-decisive counter with a finite upper limit K. The
PFA accepts its input if and only if the the all-decisive
counter reaches K, and it has seen an all correct on
a candidate sequence. Hence, if the TM is accepting,
the PFA accepts concatenation of sufficiently many ac-
cepting sequences with probability arbitrarily close to
1 - (1/2) K. In addition, for the cases when the TM is
not accepting, the acceptance probability of the PFA
can be made as small as desired for a given counter
upper limit K, by choosing the discrimination factor k
of the weak-equality test to be large.

2.3 Undecidability of Approximations

The question of approximability is an important one,
especially when computing an optimal answer is im-
possible. Unfortunately, it follows from the next corol-
lary that approximations, such as computing a string
which the PFA accepts with probability within an ad-
ditive constant or multiplicative factor ¢ < 1 of the
maximum acceptance probability of the PFA2 are also
uncomputable.

Corollary 2.3 For any fixed e, 0 < e < 1, the fol-
lowing problem is undecidable: Given is a PFA M for

2The maximum acceptance probability is taken as the
supreInum over the acceptance probability over all strings.



which one of the two cases hold:
¯ The PFA accepts some string with probability greater

than 1 - e.
¯ The PFA accepts no string with probability greater

than e.

Decide whether case 1 holds.
Proof. The corollary is an immediate consequence
of the properties outlined in Theorem 2.2, and the fact
that e in the reduction can be made as small as desired.

[]

2.4 Undecidability of the Threshold-
Isolation Problem

There might be some hope for decidability of the
string-existence problem for special cases: those for
which the given threshold (also called a cutpoint) is
isolated for the PFA:

Definition 2 (Rabin 1963) Let M be a PFA. The
threshold v is e-isolated with respect to M if ]pM(x) 
r] >_ ¢ for all x E ~*, for some e > O.

Definition 3 The threshold-isolation problem is,
given a PFA M and a threshold r, decide whether, for
some e > O, the threshold r is e-isolated for the PFA
M.

Isolated thresholds are interesting because PFAs with
isolated thresholds have less expressive power than
general PFAs, thus the corresponding decision prob-
lems are easier. The language accepted by a PFA M
given a threshold r, denoted by L(M, v), is the set of
all strings that take the PFA to the accepting state
with probability greater than r:

L(M, r) = {w E ~.* : pM(w) > v}.

General PFAs are powerful enough to accept even non-
context-free languages (see (Paz 1971) for an example).
However, Rabin in (Rabin 1963) showed that PFA with
isolated thresholds accept regular languages. A natural
question then is: given a PFA and a threshold, whether
the threshold is isolated for the PFA. If we can compute
the answer and it is positive, then we can presumably
compute the regular language accepted by the PFA,
and see whether it is empty or not. That would afford
at least the opportunity to recognize and solve a special
case of the general string-existence problem.

The decidability of the isolation problem was raised
in (Paz 1971), and was heretofore an open question 
the best of our knowledge. The reduction in this paper
shows that recognizing an isolated threshold is hard as
well:

Corollm-y 2.4 The threshold-isolation problem is un-
decidable.

Proof. As stated in Theorem 2.2, we can design the re-
duction with e = 1/3, and K = 1. It follows that if the
TM is not accepting, then there is no string that the
PFA accepts with probability greater than 1/3, while

if the TM is accepting, there axe (finite) strings that
the PFA accepts with probability arbitrarily close to
1/2. In other words, the threshold 1/2 is isolated iff
the TM is not accepting. []

3 Undecidable Problems in Probabilis-
tic Planning

This work was originally motivated by questions about
the computability of probabilistic planning problems,
e.g. the problems introduced in (Kushmerick, Hanks,
& Weld 1995; Boutilier, Dean, ,~ Hanks 1999).

The probabilistic planning problem, studied in
(Kushmerick, Hanks, & Weld 1995) for example, in-
volves a finite set of states, a finite set of actions ef-
fecting stochastic state transitions, a start state (or
probability distribution over states), a goal region of
the state space, and a threshold r on the probability
of plan success. The problem is to find any sequence
of actions that would move the system from the start
state to a goal state with probability at least r.

While it had been well established that restricted
versions of this problem were decidable, though in-
tractable as a practical matter (Papadimitriou ~ Tsit-
siklis 1987; Bylander 1994; Littman, Goldsmith, &
Mundhenk 1998), the complexity of the general prob-
abilistic planning problem (i.e. without restrictions on
the nature of the transitions or the length of solution
plan considered) had not been determined.

The results of the previous section establish the un-
computability of such problems in the general case--
when there is no restriction imposed on the length
of solution plans considered. Uncompntability follows
when it is established that a sufficiently powerful prob-
abilistic planning language can model any given PFA,
so that any question about a PFA can be reformulated
as a probabilistic planning problem.

This is the case for the probabilistic planning model
investigated in (Kushmerick, Hanks, & Weld 1995).
This model is based on STRIPS propositional planning
(Fikes ~ Nilsson 1971) with uncertainty in the form
of (conditional) probability distributions added to the
action effects. It is established in (Bontilier, Dean, 
Hanks 1999) that the propositional encoding of states
is sufficient to represent any finite state space, and the
extended probabilistic STRIPS action representation
is sufficient to represent any stochastic transition ma-
trix. Thus the string-existence problem ("is there any
input string that moves the automaton from the start
state to an accepting state with probability at least
r?’) can be directly reformulated in the planning con-
text ("is there any sequence of actions that moves the
system from a start state to a goal state with probabil-
ity at least r?’). An algorithm that solved the planning
problem would answer the question of whether or not
such a plan exists by either generating the plan or ter-
minating having failed to do so, thus solving the equiv-
alent string-existence problem. Thus, as a corollary of



the undecidability of the string-existence problem for
PFAs we obtain:
Theorem 3.1 The plan-existence problem is undecid-
able.

We also note that due to the tight correspondence
between PFA’s and probabilistic planning problems,
the other undecidability results from the previous sec-
tion apply as well:
¯ "Approximately satisficing planning," generating a

plan that is within some additive or multiplicative
factor of the threshold is undecidable.

¯ Deciding whether the threshold for a particular plan-
ning problem represents an isolated threshold for
that problem is undecidable.

Having established a connection between PFAs and
probabilistic planning, we next explore the connec-
tion between PFAs (and probabilistic planning) and
POMDPs.

4 Undecidable Problems for POMDPs
Markov decision processes and their partially observ-
able variants provide a general model of control for
stochastic processes (Puterman 1994). In a partially
observable Markov decision process (POMDP) prob-
lem, a decision maker is faced with a dynamic system
S modeled by a tuple S = (Q, ~,T, R, O, s), a general-
ization of our PFA definition with similar semantics: Q
and ~ are sets of n states and m actions respectively,
T is a set of n × n row-stochastic transition matrices,
one for each action in ~.

The POMDP model generMizes the PFA/Planning
model in two ways: a more general model of observabil-
ity, and a more generM model of reward and optimality.

In the Planning/PFA model, it is assumed that the
decision-making agent will not be able to observe the
world as it executes its plan, thus is limited to pre-
computing then blindly executing its solution. This
can be viewed as a limiting case of the POMDP model:
the unobservable MDP or UMDP.

In the POMDP generalization, the agent receives an
observation from the world after every stage of exe-
cution, which might provide some information about
the prevailing world state. Observation information
is specified through the parameter O, which supplies
probabilities of the form P(ols, a, d): the probability
that observation o would have been received, given that
the system was in state s, action a was performed,
which effected a transition to state d. The agent
maintains a probability distribution over the prevail-
ing world state, then updates that information every
time it takes an action a and receives an observation
o. The solution to a POMDP problem is a policy: a
mapping from the actions so far taken and the obser-
vations so far received to an action. The term plan is
often used to refer to a policy in the unobservable case,
where there are no observations; thus a policy consists
of a sequence of actions.

Unlike the Planning/PFA model which strives to
find any plan that exceeds the threshold, the MDP
model computes a policy that maximizes an objective
function; a variety of objective functions are explored
in the literature.

Most objective functions are based on the idea of a
reward function, the function R(s, a) which associates
a reward or penalty for taking an action a while in a
state s. AdditionM aspects of the objective function
are:

¯ The horizon. The horizon determines how many ac-
tions are to be executed. Typically considered are
finite-horizon problems where the policy is executed
for a fixed number of steps, and infinite-horizon
problems where the policy is executed for an inde-
terminate number of steps.

¯ The discount factor. In a discounted objective func-
tion, rewards gathered in earlier stages of execution
are valued more highly than rewards gathered in
later stages. A discount factor 0 < fl < 1 is pro-
vided, and the reward gathered at stage i is actu-
ally fli R(si,ai). The undiscounted case--fl = 1-
provides the same reward for an (s, a) pair regardless
of the stage at which it occurs.

¯ Total versus average reward. In the former case the
objective is to maximize the sum of all (possibly dis-
counted) rewards over the (possibly infinite) horizon.
In the latter case the objective is to maximize the
total reward divided by the number of stages (taken
as a limit in the infinite-horizon case).

We will refer to the choice of a horizon, a discount
factor and an aggregation operator as an optimality
criterion. The criteria most often studied in the liter-
ature are:

¯ Maximizing total discounted reward over a finite or
infinite horizon.

¯ Maximizing average reward over a finite or infinite
horizon.

¯ Maximizing total undiscounted reward over a finite
horizon.

¯ Maximizing total undiscounted reward over an infi-
nite horizon under restrictions on the reward func-
tion and system dynamics that bound the total re-
ward possible.

In this paper we are primarily interested in infinite-
horizon problems, as (1) complexity results for finite-
horizon problems are well established (Goldsmith 
Mundhenk 1998) (Mundhenk, Goldsmith, & Allender
1997), and (2) the Planning/PFA problem maps to 
infinite-horizon POMDP, but not to a finite-horizon
model.

We are now in a position to define the policy-
existence problem for POMDPs, under a given opti-
mality criterion. The space of policies considered in the
following definitions is an important consideration. All



of the lemmas hold when the space of policies includes
any one or more of the following sets: finite action
sequences of indefinite length, infinite sequences, or al-
gorithms that create such finite or infinite sequences.

Definition 4 The policy-existence problem (with re-
spect to an optimality criterion) is, given a POMDP
and a threshold, whether there exists a policy with ex-
pected value greater than the threshold.

4.1 Undeeidability for Positive-Bounded
Models under Total Undiscounted Re-
ward

The most direct result involves a special case
of infinite-horizon undiscounted total-reward models
called positive bounded (Puterman 1994). The essen-
tial feature of this model is that the reward structure
and system dynamics for a problem must ensure that
the total reward gathered is bounded both above and
below, even over an infinite horizon.

The planning problem can easily be posed as a
positive-bounded POMDP:

¯ the same observation o is received regardless of the
state and action (non-observability)

¯ unit reward is gathered on the execution of any ac-
tion on the goal state (Figure la)

¯ the execution of any action at the goal state leads
to an absorbing state: the system stays in that state
and gathers no additional rewards (Figure la)

¯ all other states and actions incur no reward.

Prom this equivalence we can immediately establish the
following lemma:

Theorem 4.1 The policy-existence problem for
positive-bounded problems under the infinite-horizon
total reward criterion is undecidable.

ProoL Since any planning problem can he posed as a
positive-bounded POMDP, we can easily verify that an
effective algorithm for that problem could be used to
solve the plan-existence problem, and by Corollary 3.1
such an algorithm cannot exist. To see this, note that
a plan, say a finite sequence of actions, exists for the
planning (PFA) problem with probability of reaching
the goal (success probability) exceeding v, if and only
if a finite sequence of actions exist with value exceed-
ing v for the corresponding UMDP model (as outlined
above and in Figure la): Let p denote the success prob-
ability of a finite sequence of actions w in the planning
problem. Then p is the expected total reward of ac-
tion sequence wa (w followed by any action a) in the
corresponding UMDP model. Conversely, if v is the
value of a sequence w in the UMDP model, then v is
the success probability of sequence w in the planning
problem.

A similar equivalence holds for infinite action se-
quences. []

4.2 UndeeidabUity under the Average Re-
ward Criterion

The indirect connection to PFAs allows extension of
the previous result to all undiscounted total-reward
models, and to average-reward models as well.

Theorem 4.2 The policy-existence problem under the
infinite-horizon average reward criterion is undecid-
able.

Proof. The proof is complete once we observe that
questions on acceptance probability of strings for a
given PFA can be readily turned to questions on the
value of similar strings in a related UMDP model. This
transformation is achieved by modeling the probability
of reaching the accepting state f using rewards (Figure
lb). It can be verified that there is a string accepted
by the PFA M with probability exceeding r if and only
if there is a string with average reward greater than r
for the corresponding UMDP model. To see this,
assume for some string w, p~4(w) > v, and denote by
v(w) the average reward of w under the correspond-
ing UMDP model. We must have, for any action a,
pM(w)~ _< v(wak) where wak denotes w concate-
nated with k repetitions of action a. The inequality
follows from writing v(w) in terms of the probability
of reaching the goal state on each prefix of w. We
thus have limk--,oo v(wa~) >_ pM(w). Hence for some
k, v(wak) > r. Conversely, we can verify that for any
string w, v(w) < pM(w), so if v(w) > r, pM(w) 

A similar equivalence holds for infinite strings. []

4.3 Undeeidability of the Discounted-
Reward Model

We turn now to the most commonly studied model:
maximizing total expected discounted reward over an
infinite horizon. Here, as in the proof of Lemma 4.2,
we make a small change in the PFA constructed in the
emptiness reduction.

Theorem 4.3 The policy-existence problem under the
infinite-horizon discounted cvilerion is undecidable.

Proof. Let us take the PFA constructed in the reduc-
tion of Section 2.2 and change it to a leaky PFA as fol-
lows. Let d be any rational value such that 0 < d < 1.
The leaky PFA, upon reading an input symbol, con-
tinues as the original PFA with probability 1 - d. Oth-
erwise, we say that it leaks, and in this case it makes
a transition to either an absorbing rejection state or
the absorbing accepting state, each with equal overall
probability d/2. It is not hard to verify that maximiz-
ing the probability of reaching the accepting state in
such a leaky PFA corresponds to maximizing the ex-
pected total discounted reward in a UMDP with a re-
ward structure as described in the proof of Lemma 4.2
and Figure l(a), where the discount factor is fl -- 1- 
We show that if the TM is accepting (see Section 2.1),
then the leaky PFA accepts some strings with probabil-
ity greater than 1/2, while if the TM is not accepting,
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Figure 1: (a) The criterion of maximizing the probability of reaching a goal state in probabilistic planning modeled as 
total reward criterion. The old absorbing goal state (labeled goal) now, on any action, has a transition to an extra absorbing
state with reward of 1.0. All other rewards are zero. (b) Similarly, a PFA string-existence problem modeled as an average
reward problem.

every finite string is accepted with probability less than
1/2.

Assume the TM is accepting, and let w be an ac-
cepting sequence of the TM. Assume the original PFA
accepts only after K > 2 decisive outcomes (the all-
decisive counter limit K is explained in the end of the
reduction subsection).

Let q denote the probability that the PFA "halts"
(i.e. goes into one of the absorbing states) on read-
ing w~. Let p denote the probability that the PFA
has leaked given that it halts, i.e. it halts due to the
leak and not due to the remaining possibility of hav-
ing K decisive outcomes (which has 1 -p probability).
Hence, given that the PFA halts on wj, the probability
of acceptance is:

1/2p + (1 - p)(1 - K) = 1/2p + (1 - p )( 1/2 + c

for some e > 0, and the overall probability of accep-
tance is q[1/2p + (1 -p)(1 - 1/2~)]. As q approaches
1 with increasing j in w~, we need only argue that p
is bounded above by a constant strictly less than 1,
for sufficiently large j, to show that acceptance prob-
ability exceeds 1/2 for some j. We note that p = 1,
when j < K. With j >_ K, the probability that the
PFA leaks can be no larger than 1 - p(e), where p(e)
denotes the probability of event e, the event that the
PFA does not leak on to/, but halts (upon reading the
last symbol, so that it has made K decisions), hence
p(e) > 

Assume the TM is not accepting. A candidate (ac-
cepting) sequence refers to a sequence of TM configura-
tions where the first one is the initial TM configuration
and the last is an accepting configuration. Any input
string s can be viewed as a concatenation of j _> 0
candidate sequences appended with a possibly empty
string u where none of the prefixes of u is a candidate
sequence: s = wlw2."wju, j > O. If j _< K, then
probability of acceptance of the leaky PFA is qp/2,
where q < 1 is the probability of halting on s and
p = 1 is the probability of leaking given that the PFA
halts. Here, p = 1 because there is no other possibil-

ity for halting, but note that q < 1. If j > K, then
probability of acceptance is: q(p/2 + (1 - p)(1/2 - 
where q < 1 is the probability of halting on s and p < 1
is the probability of leaking given that the PFA halts.
Given that the PFA halts and does not leak, the prob-
ability of acceptance is strictly less than 1/2, as the
PFA is keeping a counter, and the probability of K
suspect outcomes is more than 1/2 (for appropriately
small K > 1, such as K = 2).

A similar conversion to the one in the proof of
Lemma 4.1 reduces the string-existence problem for
the leaky PFA to the question of policy-existence in a
UMDP under the discounted criterion, thus complet-
ing the proof. [:]

We note that an inapproximability result similar to
the one for PFAs also holds for POMDPs under the
total undiscounted reward and the average reward cri-
teria. However, under the discounted criterion, the op-
timal value is approximable to within ally e > O, due
to the presence of the discount factor.

4.4 Undecidability under a Negative
Model

The optimality criteria studied to this point involve
maximizing the expected benefits of executing a policy.
An alternative goal would be to choose a policy likely
to avoid distaster. In these cases (slate-orienled nega-
tive models) the objective is to minimize the probabil-
ity of entering one or more designated negative states
over the infinite horizon. We use the reduction in
the previous proof to establish the undecidability of
this particular negative model; the technique should
be applicable to other negative models as well.

Theorem 4.4 Policy existence under the stale-
oriented negative model is undecidable.

Proof. We reduce the string-existence question for
the leaky PFA in reduction of Lemma 4.3 to this prob-
lem. Note that in the string-existence reduction for
the leaky PFA, if the TM is accepting, there exist in-
finite (and therefore finite) sequences of symbols 



which the probability of acceptance of the leaky PFA
exceeds 1/2. If the TM is rejecting, the probability of
acceptance of no infinite sequence is over 1/2 (an infi-
nite sequences with acceptance equals 1/2 may exist.).
Take the rejecting absorbing state of the leaky PFA to
be the state to avoid and the (undecidable) question
would be whether there is an infinite sequence that
avoids the rejecting state with probability exceeding
1/2. []

5 Summary

This paper investigated the computability of plan ex-
istence for probabilistic planning, and policy existence
for a variety of infinite-horizon POMDPs. A corre-
spondence was established between probabilistic (non-
observable) planning and probabilistic finite-state au-
tomata, and the reduction of (Condon & Lipton 1989)
was exploited to show that many natural questions in
this domain are undecidable. The PFA and planning
problems were then viewed as a special case of infinite-
horizon POMDPs, thus providing undecidability re-
sults for a variety of POMDP models, both discounted
and undiscounted.

It is now well established that optimal planning
without full observability is prohibitively difficult both
in theory and practice (Papadimitriou & Tsitsiklis
1987; Littman 1996; Mundhenk, Goldsmith, & Allen-
der 1997). These results suggest that it may be more
promising to explore alternative problem formulations,
including restrictions on the system dynamics and the
agent’s sensing and effecting powers that are useful for
realistic problem domains yet are more amenable to
exact or approximate solution algorithms.
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