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Abstract

We address in this paper the problem of coordinating
resource-bounded agents under time constraints in a dy-
namic environment. The agent society we deal with consists
of coordinated agents each of which has a goal to achieve be-
fore a deadline and new agents can asynchronously appear to
achieve time-constrained goals and to coordinate their plans
with the already coordinated agent society. Agents use pro-
gressive planning that adapt the detail of their local plans
according to local deadlines and available resources. The
plan consists of a hierarchy of partial plans where each par-
tial plan satisfies a part of the goal. In such environments,
constructing a complete plan and then coordinating it with
other agents doesn’t guarantee that the planning and coordi-
nation operations will finish before the given deadline. What
we propose is an anytime coordination that allows an agent
to return a coordinated plan at any time by using series of
partial planning followed by a coordination until the com-
plete plan is constructed and coordinated or the deadline is
met. This progressive plan merging operation is assessed in
a resource allocation problem.

Introduction
Negotiation (Kraus, Wilkenfeld, & Zlotkin 1995) between

distributed planning agents is imposed to handle potential
interactions and solve conflicts. Cooperation is necessary
when no agent has sufficient resources and information to
solve a problem. When agents have a particular view on
a problem independently of the other agents, inconsistency
between local plans could arise.

Application domains concerned with such problems
include the airport ground service scheduling (Neiman,
Hildum, & Lesser 1994), resource allocation (Schwartz &
Kraus 1997), cooperating robots (Mouaddib 1997), dis-
tributed scheduling (Sen & Durfee 1996; Mouaddib 1998)
and others. Several coordination techniques (Durfee &
Lesser 1987; Decker & Lesser 1992) have been developped
for such applications where it is assumed that agents are not
dynamic and with unlimited rationality. It is also assumed
that the coordination overhead is negligible. The system
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with which we work consists of a set of agents performing
in a common environment with limited resources and where
the coordination cost can be time consuming.

We conduct basic research in a coordination technique
for a resource-bounded agent society which supports lim-
ited rationality of agents and time-consuming planning and
coordination operations. This technique is a progressive
planning agent-based system where each agent determines
progressively its local plan (Mouaddib 1997) and reacts dy-
namically to local plans of other agents. This planning tech-
nique adapts dynamically the detail of the plan to the avail-
able resources. Each local plan is represented with a hier-
archy of partial local plans from the mandatory one to the
optional ones. The coordination is based on series of partial
planning cycles followed by negotiation cycles. After each
partial planning cycle a partial plan is available for a coor-
dination with the plans of the other agents. This strategy,
through an iterative coordination, allows to minimize the
backtracking and to reduce the costs of planning and coor-
dination at unnecessarly detailed levels (Mouaddib 1997).
This flexible coordination can be interrupted at any time
and the plan merging operation of the new agents stops by
accepting only the coordinated partial local plans.

The rest of the paper presents this approach, an analysis
of its performance, first experimental results and its charac-
teristics.

Cooperative Distributed Providers
We consider the application of distributed databases (DDB)
which are located in different geographical areas and time-
constrained transactions conveying queries on information
stored on DDB sent to distributed providers that access to
DDB to construct their response. Transactions use approx-
imate query processing where transactions are logically
splitted into mandatory subtransactions that convey queries
to get the mandatory information and optional subtrans-
actions to get optional informations. Each subtransaction
gets its required information fromone database. Providers
should allocate the required database in order to coordi-
nate their access and to avoid conflicts. Providers negotiate
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their database access. Clients sending requests have time-
bounded connection in the net to formulate their requests
and receive the required information. This scenario is in-
spired from an electronic commercial application (Sand-
holm & Lesser 1995) that can be seen as a time-constrained
resource allocation problem.

Providers try to maximize the overall performance of the
system by providing a high quality solution. The qual-
ity improvement, achieved through the progressive satisfac-
tion of subtransactions, is along the degree of the relevance
and the level of detail. The satisfaction of each subtrans-
action is assigned by a monetary charge that the client is
willing to pay for the information. When providers cannot
construct their optimal response under time pressure and
resources constraints, they negotiate to borrow resources
from the least important providers (low monetary gain).
The providers are cooperative because they try to maximize
the overall performance by maximizing the global rewarded
monetary gain.

Cooperative Progressive Planning Agents
Progressive planning agents

Progressive planning (Mouaddib 1997) consists in present-
ing each local plan as a hierarchy of processing levels (satis-
faction of a subtransaction)P� = fP 1

�; P
2
�; : : :; P

n�
� g. The

agent� starts its processing by constructing the partial lo-
cal planP 1

� achieving the mandatory part of the goal while
the other partial local plans achieve the optional parts of the
goal to refine the quality resolution. We assume that the
goal is logically splitted into several parts from the manda-
tory one to the most optional. The agent ignores the op-
tional parts of the goal when the resources (time, servers,
etc ...) are not enough large to construct a complete plan.
This processing allows first an agent to adapt the detail of
its local plan to its deadline and to the available resources.
Agents are cooperative and try to maximize the overall per-
formance of the system. An agent can accept to borrow
resources used by an optional partial plan to another agent
requiring the same resource for a more important partial
plan.

We improve the expressiveness of the plan by intro-
ducing the resources used by partial local plans in or-
der to anticipate conflicts. We assume in our environ-
ment that each partial local plan uses only one resource.
The extension to several resources consists in assuming
lower granularity of partial local plans. Then the lo-
cal plan of an agent� can be seen as follows:P� =
f(P 1

�; ri; I�); (P
2
�; rj ; J�); : : :; (P

d
� ; rk ;K�)g. The plan

P� is constructed through series of partial planning cycles
followed by negotiation cycles. We name in the following
the Partial Local Plan (PLP) an element of the plan rep-
resented by the tuple(actions, resource, interval). This
tuple means that the PLP (the execution of the actionac-

tions) will use the resourceresourceduring the intervalin-
terval. Mandatory PLP is the tuple(P 1

�; ri; I�) while op-
tional PLPs are the tuples(P k

� ; ri; J�) wherek > 1.
The agent constructs, first, the mandatory PLP and then

coordinates it with the local plans of the other agents. After-
wards, it proceeds in the same way with the optional PLPs
one by one.

Stating the coordination problem
Our scenario consists of a groupA = f�; �; : : : ; 
g of n
agents, an environment represented with its set of resources
R = fr1; : : : ; rkg and a set of goals planningf G1, G2, ...,
Gn g. The coordination problem in this context is summa-
rized with the following points: (1) Each agent has a goal
to achieve before a deadline. (2) Each goal can be solved
at different levels of detail. (3) Each agent uses a subset
of available resources. And (4) A local plan consists of a
hierarchy of PLPs where each one improves the quality of
the solution of its predecessor. Furthermore, agents have to
coordinate their local plans to avoid conflicts on resources.
The coordination of the agent society consists of two con-
straints:
� Each resourcerj cannot be used by more than one agent
at the same time.

8(P i
�; rj ; I�) and (P

j
� ; rj ; I�) : I� do not overlap I� (1)

� Each agent� should respect its deadline.

8rj 2 R; � 2 A : max
(P i

�;rj ;I�)2P�
(end(I�)) � deadline(�)

(2)
The strategy adopted to maintain these constraints re-
spected, consists of an incremental merging PLP operation.
The merging agent proceeds in series of partial planning
cycles followed by negotiation cycles to construct and to
coordinate its local plan with the other local plans of the
agent society. This strategy stops as soon as the deadline
of the merging agent is reached or a negotiation cycle fails
(a merging current PLP operation fails). This strategy has
real-time properties of anytime algorithms since it can be
interrupted at any time and returns a solution consisting of
the sequence of PLPs coordinated in previous cycles.

To apply to a cooperative distributed providers applica-
tion, each database is a resource and a transaction is a time-
bounded goal of a provider where its local plan consists of a
set of tuples(subtransaction, database, interval)represent-
ing the subtransaction to process, the database to allocate
and the interval of time during which the database will be
used.

Anytime Coordination
Agent interactions: Contract-Net Protocol
The communication is based on a message-passing mech-
anism. A new agent, once the goal received, derives, first,



the mandatory PLP. The agent broadcats, then, this plan to
the other agents for coordination. These agents respond in
turn only when a conflict occurs with their local plans by
sending disagreement specifying the conflicts. To these dis-
agreements, the new agent sends a resolution to the agents
for avoiding conflicts. When these conflicts are solved and
the PLP of the new agent is maintained, a new PLP is con-
structed for an optional part of the goal and a new coordi-
nation round is performed. This iterative processing is re-
peated until a PLP of the new agent is rejected or a deadline
is met or all PLPs of the new agent are accepted.
Specifying and detecting conflicts
The merging agent receives several disagreements where
each of which describes a conflict, the agent centralizes all
these disagreements in order to optimally solve them.
Definition 1 We say that the agent� is in conflict with an
agent� when the merging PLPP i

� of � shares the same
resource at the same time with at least one PLPP j

� of the
agent�. Formally:

9 (P i
�; rc; I�); (P

j
� ; rc; I�) : I� overlaps I� (3)

From this definition, the merging agent, that we name
in the following�, classifies the collected conflicts in four
categories (Mouaddib 1997). According to the category, an
appropriate rule of resolution is adopted.
� Hard critical conflict: The mandatory PLPP 1

� of � is
in conflict with the mandatory PLPP 1

� of an agent�.
� Hard non-critical conflict: The mandatory PLPP 1

� of
� is in conflict with an optional PLPP i

� (i > 1) of an agent
�.
� Soft critical conflict: An optional PLPP i

� (i > 1) of �
is in conflict with the mandatory PLPP 1

� of an agent�.
� Soft non-critical conflict: An optional PLPP i

� of � is
in conflict with an optional PLPP j

� of � (i and j> 1).
When the merging agent� receives disagreements from

other agents, it defines for each PLPP i
� a set of PLPsSP i

�

with which it is in conflict. The agent� classifiesSP i
�

in
four categories according to type of the conflicts:
� SP i

�
is ahard critical set whenP i

� is a mandatory PLP
and a hard critical conflict occurs with one element of the
setSP i

�
.

� SP i
�

is a hard non-critical set whenP i
� is a mandatory

PLP and only hard non-critical conflicts occur with the ele-
ments of the setSP i

�
.

� SP i
�

is asoft critical setwhenP i
� is an optional local plan

and soft critical conflicts occur with one element of the set
SP i

�
.

� SP i
�

is asoft non-critical setwhenP i
� is an optional PLP

and only soft non-critical conflicts occur with the elements
of the setSP i

�
.

The detection and type of conflicts are up to the agents
sending the disagreement while the agent�, receiving dis-
agreements, is in charge of progressively resolving them.

Decentralizing the detection and type of conflict can par-
ticipate in reducing the time-consuming process of nego-
tiation while centralizing their resolution can be a costly
and time-consuming process. The organisation of conflicts
into categories allows to define the appropriate strategy to
solve them. These strategies validate progressively PLPs of
merging agents as soon as the category of conflicts that they
provoke are resolved.
Utility of plans
The negotiation, for resolving conflicts, uses plan’s utility
measure to solve these conflicts. When the utility for a plan
is greater than the utility of another one, the resolution of
the conflict prefers the first plan over the second. PLPs are
assigned with the utility which takes two attributes into ac-
count: therewardR andpenaltyP values.

Definition 2 Each PLP has a reward func-
tion R(P i

�; rj ; duration(I�) = end(I�) � begin(I�))
representing the value rewarded by the agent when the PLP
has been executed during an amount of time by using a re-
source. This value can represent an amount of money to pay
for delivered information.

Definition 3 The penalty functionP evaluates the cost
paid to use the resource during an amount of time

P (rj ; I�) = Costrj (duration(I�)) (4)

Definition 4 A time-dependent utility function, Ur;I

P i
�

,

measures the utility of executing the PLPP i
� if it uses the

resourcer during the interval of timeI .

Ur;I

P i
�
= R(P i

�; r; duration(I))� P (r; I) (5)

Global strategy of resolution
The setSP i

�
contains the PLPs in conflicts with the merging

PLPP i
�. The strategy of resolution consists of two func-

tions: first, Avoiding conflictwhich consists in delaying,
when it is possible, merging PLP of the agent� to avoid
conflict and second,non-avoided conflicts resolutionwhich
consists in using utility of PLPs to decide whether the merg-
ing PLP should be maintained or not. We describe in the
following both functions.
Avoiding conflicts This function delays the merging
PLPs in conflicts rather than delaying the PLPs of the other
agents that could put back in cause solved conflicts be-
tween the other agents and then other negotiation cycles
should be perfomed. This solution can cause a combina-
torial complexity of the strategy. The conflict avoidance
function consists in making the intervalI� after the in-
tervals I� with which it overlaps. This means that the
interval I� should be delayed with the amount of time
end(I�) � begin(I�). When delaying the merging PLP,
the agent� verifies whether the deadline is reached or not.
In order to coordinate the merging PLPP i

� with the PLPs
of P j

� the setSP i
�
, the agent� sorts this set according to



end(I�). Afterwards, it assesses the avoidance of conflicts
between the merging PLP and the PLPs of these agents�
one by one. To this end, the agent� delays progressively its
merging PLP by the amount of timeend(I�) � begin(I�)
until this amount violates its deadline. By delaying the
merging PLP, some conflicts inSP i

�
disappear, but others

could appear. The merging agent� sends, then, its modified
PLP to the other agents that are not in negotiation to make
them informed on the modification of the PLP and then to
assess new conflicts. The new detected conflicts are added
in the setSP i

�
. The agent� don’t try to avoid them because

they are later than the non-avoided ones in the setSP i
�

and
then it is not possible to avoid them. Afterwards, the set
SP i

�
contains only the conflicts that cannot be avoided and

then theconflict resolutionfunction is called.

Resolving non-avoided conflicts The agent� resolves
conflicts according to their type. When the merging PLP
is rejected, the negotiation cycle fails and the agent� stops
its strategy of resolution. When a PLPP j

� is rejected by a
merging agent�, the agent� must discard all its PLPsP k

�

(k � j) due to the characteristics of the progressive plan-
ning. That’s why, the resolving conflict function perfers a
merging PLPP i

� over another PLPP j
� when its utility is

higher than the cumulated utility of allP k
� (k � j). In the

following, we describe the resolving conflicts rules.
� For a hard critical set: WhenUP 1

�

r;I is greater than
P

P
j

�
2S

P1
�

P
k�jU

r
0

;J

Pk
�

the agent� maintains its mandatory

PLP and sends back all PLPsP j
� of SP 1

�
to their respective

agents�.

When
P

P
j

�
2S

P1
�

P
k�jU

r
0

;J

Pk
�

is greater thanUr;I

P 1
�

, the agent

� accepts all the PLPs ofSP 1
�

and it sends a message to the
corresponding agents�. The negotiation cycle of the merg-
ing agent fails and its local plan is rejected. Consequently,
the corresponding goal can not be achieved. This situation
means in our application that the provider cannot deliver in-
formation, even the mandatory information.
� For a hard non-critical set: The agent� maintains its
mandatory PLPP 1

� and rejects all optional PLPs in the set
SP 1

�
. In this resolution, we prefer maintaining a mandatory

PLP rather than several optional PLPs.
� For a soft critical set: The agent� discards its optional
PLP. The negotiation cycle fails and then the incremental
construction of the merging plan stops. The merging agent
returns the PLPs coordinated up to this step.
� For a soft non-critical set: When the utilityUr;I

P i
�

is greater

than
P

P
j

�
2S

Pi�

P
k�jU

r
0

;J

Pk
�

, the agent� rejects all optional

PLPs of the setSP i
�

and maintains its merging optional par-
tial local plan. Otherwise, the agent� discards its optional
PLP and negotiation cycle fails. The agent� stops its pro-
cessing and returns the PLPs coordinated up to this step.

Society of new merging agents

Several new agents can proceed to a progressive plan merg-
ing opertaion. In this approach we described how a new
agent progressively constructs and coordinates its plan. The
same processing is repeated for each new agent one by one
according to their deadline. Indeed, agents in society use
two message queues where the first queue is used to store
messages concerning the declaration of merging and the
second queue used for messages exchanged during the co-
ordination with the current new merging agent. As soon
as the current new merging agent is coordinated, agents in
society, including the new coordinated, proceed to the co-
ordination of the next new merging agent (with the most
urgent deadline). A new coalition is then created.

Analysis
The termination of the iterative processing of this approach
is guaranteed because the number of rounds is bounded by
the maximum numberkmax of levels per agent. While
the termination of each round is guaranteed by the num-
ber of agents in the societyn. The complexity of the
approach is thenO(kmax � n). In large societies (n is
very large) the complexity isO(n) while in small societies
(n � kmax, kmax = 5), the complexity is equivalent to
O(n2). Consequently, this approach is more suitable for the
large societies. We also analyze in critical situations (where
only some PLPs are accepted) and in non-critical situations
(where the complete merging local plan is accepted) the cu-
mulated cost of planningCp and coordinationCc of our ap-
proach and abasic approachsimilar to PGP approach.
�Our approach: The cost ofone round of the anytime co-
ordination is the cost of partial plan constructionCp cycle
and a coordination cycleCc. Thus the cost ofone round is
as follows:

Costa round = Cp(P
i
�) + max

�2A
(
X

j

Cc(P
j
� ; P

i
�)) (6)

In the most critical situation the cost of the anytime coordi-
nation is then the cost of the first round while in the other
situations is the cumulated cost ofone round:

P
i Costi,

wherei is the roundi of the iterative processing of the any-
time coordination.
� Basic approach:The cost of this approach is the cost of
the complete plan construction and its coordination. Thus
the cost in critical and non-critical situations is the same.

Cost =
X

i

Cp(P
i
�) + max

�2A
(
X

j

X

i

Cc(P
j
� ; P

i
�)) (7)

The time consumed by our approach in non-critical situ-
ations is greater than the time consumed by the basic ap-
proach because it is trivial to prove the following:

X
max(
X

cost) > max
XX

cost (8)



In critical situations our approach is more suitable because
the cost of the basic approach is the same than in non-
critical situations while our approach is only the cumulated
costs of performed rounds that can be in critical situations
no more thank=2 where k is the number of partial plans
of the merging agent. Finally, the approach is a greedy
technique based on a local optimisation approach to a dis-
tributed allocation resource problem that is hard to optimize
globally.

Experimental evaluation: First Results
This section illustrates the operation of the resulting ap-
proach and examines two fundamental questions. The first
goal is to compare the performance of our approach to a
basic approach similar to PGP approach (Durfee & Lesser
1987). This basic approach is based on a planning cycle
to construct a complete plan followed by a negotiation cy-
cle to coordinate the complete plan. It ignores time con-
straints and the overhead of construction and coordination.
The second goal of the experimental evaluation is to assess
the benefit of our approach in time-constrained situations.

Experiment design

A progressive planning agents language is specified allow-
ing the system to simulate the progressive plans for the
application. We have collected experimental data on the
performance of our approach and the basic approach. The
quality of the results for each problem instance is assessed
according to two parameters: thetime consumedin crit-
ical and non-critical situations by each approach to con-
struct and to coordinate the plan according to the number
of agents in the society, and thecumulated utilityof coordi-
nated partial plans according to the deadline before which
the merging agent must construct and coordinate its plan.
Problem instances are developed with 10 agents. This sec-
ond experimental evaluation will show the benefit of our
approach in time-constrained situations.

Empirical results on Consumed time

Figures 1 and 2 show that our approach is more suitable
than the basic approach for critical situations while in non-
critical situations it is the contrast. The theoretical explana-
tion to that is given in equations 6, 7 and 8.
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Figure 1: Time consumption in critical situations
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Figure 2: Time consumption in non-critical situations
Empirical results on utility
In this experiments, we measure tha value as a function of
available time (deadline). This value consists of the cu-
mulated utilities of coordinated PLPs:

P
i(Ui). Figure 3

shows the difference between the values of our approach
and the basic approach over the deadlines. The figure con-
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Figure 3: Comprehensive value for different deadlines
firms the fact that our approach leads to a substantial quality
gain over the basic approach. The main reason to that is the
basic approach can consume time for constructing partial
plans that it cannot be merged in a sosciety while our ap-
proach as soon as a partial plan is constructed its coordina-
tion is immediately processed. The basic approach cannot
trade-off between planning time and coordination time as it
is done in our approach.

Discussion
The approach, we present, addresses a problem much more
complicated than these addressed in previous works (Botti,
Crespo, & Ripoll 1994; Schwartz & Kraus 1997). Our ap-
proach addresses a problem of sharing several resources
while in (Botti, Crespo, & Ripoll 1994), it is proposed a
mechanism ofone resource (the blackboard). Unlike the
work presented in (Schwartz & Kraus 1997) consisting of
distributed servers of information negotiating to allocate
each resource (dataset) toone server, our agents negotiate
to allocate several resources. Furthermore, our approach is
more suitable to dynamic and time-constrained situations
through its anytime coordination. Unlike approaches de-
scribed in (Sandholm 1993; Sen & Durfee 1996) which



are task-based negotiation approaches, our approach can be
seen as a resource-based negotiation.

PGPP approach (Mouaddib 1997) is an extension of PGP
to constrained time environments. This approach progres-
sively constructs a complete local plan and it coordinates
it incrementally PLP by PLP while our new approach it
constructs a PLP and it immediately coordinates it. Our
new approach by stopping the incremental coordination of
PLP when the merging PLP operation fails, avoids to plan
at unnecessarily level of details and to predict judiciously
whether more actions maximize the expected gain or not
(Vidal & Durfee 1995). Furthermore, with this process-
ing this model can take the overhead of the negotiation into
consideration.

Unlike other investigators in resources allocation do-
main that have proposed distributed techniques (Neiman,
Hildum, & Lesser 1994; Schwartz & Kraus 1997) which
can perform backtracking to coordinate activites, our ap-
proach minimize backtracking and then reduces the com-
plexity of the algorithm. Further work will concern the
application of this approach in auctions and multi-robots
domains.
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