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Abstract

Current methods for generating qualitatively different
plans are either based on simple randomization of plan-
ning decisions and so cannot guarantee meaningful dif-
ferences among generated plans, or require extensive
user involvement to drive the system into different sec-
tions of the overall plan space. This paper presents
a cost-effective method for automatically generating
qualitatively different plans that is rooted in the cre-
ation ofbiasesthat focus the planner toward solutions
with certain attributes. Biases are derived from analysis
of adomain metatheoryand enforced through compila-
tion into preferences over planning decisions. Users can
optionally direct the planner into desired regions of the
plan space by designating aspects of the metatheory that
should be used for bias generation. Experimental results
are provided that validate the effectiveness of the bias-
ing method for reliably generating a range of plans with
meaningful semantic differences.

Introduction
Automated planning tools hold much promise as decision

aids for humans charged with producing plans for large-
scale, demanding applications. The value of the tools lies
with their ability to help humans understand the complexity
of the underlying problem, providing guidance in the deter-
mination of a solution that is well-suited to their needs and
concerns.

For many real-world applications, the search space is
dense with solutions. Air campaign planning (Thaler &
Shlapak 1995; Lee & Wilkins 1996) and travel planning
(Linden, Hanks, & Lesh 1997)) provide two examples. For
these applications, it is not difficult to find a solution; rather,
the challenge is to produce a solution that is tailored to the
preferences and needs of the user. One means by which to
help users with this task is to provide a set ofqualitatively
distinctoptions that vary in meaningful ways. A set of solu-
tions of this type would help the user understand the range
of possibilities available to him or her.

Current automated planning tools can readily generate
different plans, for example through repeated runs with ran-
domized choices at decision points. The differences among
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such plans, however, are difficult to extract and not neces-
sarily semantically meaningful. Furthermore, different users
will have different notions of what constitutes ‘meaningful’
differences. For example, with travel plans a budget trav-
eler might like to see options with a range of costs while
the business traveler might like to see options that maximize
accumulation of frequent flier points. Ideally, a system for
generating qualitatively different plans would allow the user
to specify dimensions along which he or she would like to
see variation.

To address the problem of meaningfulness, hill-climbing
methods could be used to generate successive plans un-
til they differed sufficiently along some defined evaluation
function. Two problems arise with this approach. First, the
complexity of plan generation makes it expensive to iterate
through many solutions. Second, defining evaluation crite-
ria for complex planning domains is problematic: evaluation
metrics are generally difficult to elicit, multidimensional in
nature, qualitative rather than quantitative, and often sub-
jective (Gil 1998). As such, defining the ranking function
required to drive a hill-climbing process will be difficult in
many domains.

Recent work on mixed-initiative, interactive, and advis-
able planning enables users to drive the process of gener-
ating qualitatively different plans (Ferguson & Allen 1998;
Tate, Dalton, & Levine 1998; Myers 1996). With these
frameworks, however, the user must be involved extensively
in an ongoing role to articulate desired differences and to
manage the space of options.

This paper describes a framework for generating qualita-
tively different plans in a fully automated fashion, but that
can accept user guidance to influence the types of solutions
that are generated. Rather than searching through the space
of plans directly, the algorithm leverages ametatheoryof the
planning domain, introduced previously to support user ad-
visability of a planner (Myers 1996). This metatheory pro-
vides an abstracted characterization of the planning domain
that highlights key semantic differences among operators,
planning variables, and instances. This abstraction provides
the ability to filter out irrelevant differences when generat-
ing plans, focusing instead on distinctions that are guaran-
teed to be semantically meaningful. Based on analysis of
the metatheory,biasesare generated that are designed to fo-
cus the planner toward solutions with certain characteristics.
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These biases are enforced by imposing preferences on plan-
ning decisions. The result is plans that are guaranteed quali-
tatively differentby design, rather than possibly (though not
necessarily) distinct by randomization.

While the biasing approach does not require user input, it
can readily accept guidance from the user to target certain
subportions of the overall plan space. For example, users
could indicate that they want to see plans within a range of
cost and time values, while insisting on traveling by airplane
(rather than train, boat, or car).

The ability to generate qualitatively different plans is es-
sential for the effective use of generative planning technol-
ogy in producing solutions that satisfy user requirements. In
particular, the technology should be viewed as a tool to assist
human planners rather than as a replacement for them, with
the user driving the kinds of solutions that the technology
produces. In particular, after requesting a set of qualitatively
different plans, the user would make recommendations on
how to improve them. The idea is that the generated plans
act as initial seeds, which users can subsequently refine to
meet their needs (using, for example,planning advice(My-
ers 1996)).

Our biasing method for generating qualitatively differ-
ent plans was implemented and evaluated within SIPE–2
(Wilkins 1988), a Hierarchical Task Network (HTN) plan-
ner (Erol, Hendler, & Nau 1994). The biasing method is not
specific to HTN planning but rather applies to any form of
operator-based planning. Experimental evaluation was per-
formed in a travel domain that involves selecting itineraries,
schedules, accommodations, modes of travel, and carriers
for business and pleasure trips. The results show that the bi-
asing method is effective for reliably producing a range of
plans with meaningful semantic differences.

Measuring Qualitative Difference
The fundamental problem that we address is to producen
solutions to a given planning problem, such that those so-
lutions do a good job of ‘covering’ the set of possible solu-
tions. We are interested in small values ofn (i.e., 2≤ n≤ 5),
since a user of an automated planning system would gener-
ally consider only a small number of options at any point
in time. We consider two notions of coverage,dispersion
andproximity, both of which are grounded in the notion of a
measurable distance between plans.

Plan Distance
We have opted to ground plan distance inevaluation crite-
ria, which have the advantage of measuring aspects of the
plan that are of significance to users. This contrasts with
syntactic measures of plan distance (for example, the differ-
ence in plan length), which do not necessarily correlate with
semantic differences among plans.

We assume a set ofk evaluation criteria that define ak-
dimensional spaceEK in which to situate plans. For simplic-
ity, we assume that evaluation values are normalized to lie in
the range[0,1]. With these evaluation criteria, we formally
define our notion ofplan distancein terms of the Euclidean
distance between the corresponding points for those plans in
evaluation space.

Definition 1 (Plan Distance) The distance between two
plans P1 and P2 is defined to be

Dist(P1,P2) =

√√√√ k

∑
i=1

(Evali(P1)−Evali(P2))2

Dispersion
Dispersion is defined to be the average distance between
plans in a plan set. As such, dispersion measures the degree
to which solutions are spread apart from each other.

Definition 2 (Dispersion) Thedispersionfor a plan setP
is defined to be

Disp(P) =
∑1≤i< j≤nDist(Pi ,Pj)

n×(n−1)
2

.

Proximity
Proximity is defined to be the average distance for a point
in the evaluation space to its closest point in the evaluation
of the plan set. As such, proximity measures the degree to
which the solution set is ‘near’ all other points in the evalu-
ation space.

Definition 3 (Proximity) The proximity of a point e =
{e1 . . .ek} ∈ EK to a plan setP = {P1 . . .Pn} is defined to
be

Prox(e,P) = Min1≤i≤n

√ ∑
1≤ j≤k

(ej −Evali(Pi))2

 .

Theproximity for a plan setP is defined to be the average
proximity toP from any point in EK:

Prox(P) = Avg
e∈EK (Prox(e,P)) .

Closed-form solutions for computing proximity are not gen-
erally available in continuous evaluation spaces. We em-
ploy sampling methods to approximate proximity measures
in this paper.

Discussion
Higher dispersion values generally indicate that a plan set
does a better job of covering the extremities of the plan
space. As such, highly dispersed plan sets are useful when
users want to investigate the limits of the solution space. In
contrast, lower proximity values correlate with plan sets that
are more representative of the set of possible solutions in
that they are ‘closer’ to all points in the evaluation space.
As such, low proximity plan sets are valuable for presenting
users with reasonable first-cut solutions that are likely to be
close to what would be the user’s ideal solution.

For these reasons, we seek to generate solution sets that
are highly dispersed with low proximity. These two objec-
tives can be conflicting, depending on the distribution of
plans through the evaluation space. For example, extremal
points in the evaluation space will be maximally dispersed
but are unlikely to yield low proximity values.



Domain Metatheory
A standard planning domain is modeled in terms of three ba-
sic types of elements:individualscorresponding to real or
abstract objects in the domain,relationsthat describe char-
acteristics of the world and individual world states, andop-
eratorsthat describe ways to achieve objectives.

The domain metatheory captures high-level attributes of
planning operators, variables, and individuals, thus provid-
ing users with the means to describe desired solution char-
acteristics in terms that are natural to them. The domain
metatheory was developed originally to provide a language
in which users could constructadvicefor a planning system
(Myers 1996) but is not advice-specific: it describes gen-
eral properties of elements of a planning domain and can be
employed to support a variety of uses, including the genera-
tion of qualitatively different plans. The metatheory is built
around three main constructs:roles, features, andmeasures.

A featuredesignates an attribute of interest for an oper-
ator that distinguishes it from other operators that could be
applied to the same task. For example, among operators that
can be used to refine tasks of moving from location X to lo-
cation Y, there can be some that involve travel by air, land,
or water; each of these media could be modeled as a fea-
ture. Because there can be multiple operators that apply to
a particular task, features provide a way of abstracting from
the details of an operator up to distinguishing attributes that
might be of interest to users. Note that features differ from
operator preconditions in that they do not directly restrict
use of operators by the planner.

Related features are grouped intofeature categories. For
example, the features{Air Land Water}mentioned above
define aTransport-Media category. Feature categories
themselves can have interesting properties. Just as planning
operators reflect a hierarchical structure, features and feature
categories can be organized in hierarchical fashion. Certain
categories may bemutually exclusivein that at most one fea-
ture from the category can be assigned to any given operator;
this is the case for the feature categoryTransit-Ownership
containing the elements{Public Private}. Other categories
may support overlapping features; for example, there may be
an operator that involves bothAir andLand travel.

A role corresponds to a capacity in which an individual is
to be used within an operator. For instance, a transportation
activity within the travel domain could have roles such as
Origin andDestination, andCarrier. Roles correspond to
individual variables within a planning operator.

Feature categories can have associatedmeasures. A
measure corresponds to an ordering (possibly partial) of
features within the category with respect to some desig-
nated criteria. For example, consider the feature category
Transit-Ownership with features{Public Private}. For
the measureCOMFORT, the featurePrivate would rank
higher thanPublic; for the measureAFFORDABILITY , the
order would be reversed.

A single measure can be used across different feature cat-
egories. For example,AFFORDABILITY would apply to a
broad range of feature categories. Thus, by expressing pref-
erences on measure, it is possible to influence a broad range
of plan generation decisions.

Vacation-Scope= {Overseas National Regional}
AFFORDABILITY: (Overseas National Regional)
TIME-EFFICIENCY: (Overseas National Regional)

Accommodation= {Hotel Motel Camp}
COMFORT: (Camp Motel Hotel)
AFFORDABILITY: (Hotel Motel Camp)

Transport-Media = {Air Land Water}
AFFORDABILITY: (Water Air Land)
TIME-EFFICIENCY: (Water Land Air)

Land-Transport-Mode = {Auto Bus Shuttle Taxi Train Limo}
AFFORDABILITY: (Limo Train Auto Taxi Shuttle Bus)
TIME-EFFICIENCY: (Bus Shuttle Auto Limo Taxi Train)
COMFORT: (Bus Shuttle Taxi Train Auto Limo)

Transit-Ownership = {Public Private}
COMFORT: (Public Private)
AFFORDABILITY: (Private Public)
TIME-EFFICIENCY: (Public Private)

Transit-Capacity = {Solo Shared}
COMFORT: (Shared Solo)
AFFORDABILITY: (Solo Shared)

Figure 1: Sample Feature Categories and Associated Mea-
sures from the Travel Domain

Figure 1 presents an excerpt from the metatheory for the
travel domain that shows sample feature categories and as-
sociated measures. Each block defines a feature category,
with the first line listing the name of the feature category
followed by its constituent features. The remaining lines de-
clare a measure associated with that feature category, and
provide the ranking of the features for that measure and cat-
egory. Here, we show only measures that completely order
the features (although partial orders are possible).

Just as measures can be employed to rank features (and
hence operators with those features), they can also be em-
ployed to rank instances. For measures on instances, an
ordered set ofmeasure valuesis defined. For each mea-
sure, a given individual can (optionally) be assigned one
of these values, thus inducing a partial order over in-
stances. In the travel domain, for example, the measure
AFFORDABILITY has the values (Extravagant Expensive
Moderate Inexpensive Cheap) in increasing order from left
to right. The individualRitz of class Hotel has the
AFFORDABILITY value Extravagant, while the individual
Motel6 of classMotel has the valueCheap, thusMotel6
ranks higher thanRitz with respect toAFFORDABILITY .

We define thedomainof a measure to be the set of (par-
tially) ordered values employed by the measure. For mea-
sures defined over feature categories, the domain is the set
of features that comprise the feature category. For measures
defined over instances, the domain is the set of measure val-
ues that can be assigned to instances.



Biasing Algorithm
Our approach to generatingn qualitatively different plans
uses the domain metatheory to establishn sets ofbiasesthat
can direct the planner toward different sections of the over-
all plan space. In addition to n, our algorithm takes as input
a subset of the measures provided by the domain metathe-
ory. These measures can be selected by the user in order
to influence the types of qualitative differences among the
generated plans.

Bias and Region Creation
The biasing method involves partitioning the domains of the
selected measures intointervals, and then grouping the in-
tervals (one from each measure) intocasesdesigned to force
the planner into different sections of the overall plan space.
We use the termregionto refer to the collection of biases for
a given case.

A bias is defined by a measure and an interval of values
within the domain of the measure. To simplify manipula-
tion and bias enforcement (described below), a proportional,
order-preserving mapping from each measure domain onto
the interval[0,1] is defined. For simplicity, we restrict atten-
tion to connected intervals.

Different strategies for partitioning and grouping are pos-
sible. For the results described in this paper, each measure
domain is partitioned inton subintervals of equal length (rel-
ative to [0,1]). A set of n regions is created by, for each
measure, randomly assigningeach of then intervals for the
measure to a different region.1 This strategy provides sys-
tematic coverage of measures in that each interval appears in
exactly one region. The use of random selection for region
assignment is important to avoid potential problems that can
arise due to correlations among measures.

Bias Enforcement
Biases are enforced in a heuristic manner: rather than im-
posing hard constraints, choices available to the planner are
ordered to reflect the preferences inherent in the biases. Be-
cause the enforcement of biases prioritizes choices rather
than filtering them, it does not restrict the set of plans that
could be produced. As such, the biases can be viewed as
relaxableconstraints on plan generation.

Two types of planning decisions are influenced by biases:
operator selectionandinstance selection.

Operator Selection Multiple operators could be used to re-
fine a goal within a plan.

Instance SelectionInstantiation of variables is performed
in two situations. First, instances are selected for variables
left uninstantiated after the original task has been reduced

1Measures with fewer thann elements are problematic in that
there will be multiple intervals that contain the same domain ele-
ments. As a result, it is possible that multiple regions will contain
combinations of intervals that are effectively identical. To avoid
this problem, measures with fewer thatn elements are combined
(for region creation only) into an artificial composite measure de-
fined by the cross-product of their domains. Partitioning and group-
ing are performed relative to this composite measure.

to a primitive task network. Second, certain operators dic-
tate that variables be instantiated, although a unique value
may not be determined by accumulated constraints on that
variable. (Suchearly commitmentis often used to reduce
the complexity of constraint reasoning (Myers & Wilkins
1998).)

For each of these decision types, a scoring function de-
fines an ordering that reflects the degree to which the choices
satisfy the stated biases for the current case. Choices
are made according to this order, with random selection
amongst choices with equivalent scores. In particular, the
most highly ranked choice will be selected first; successive
choices may be made in the event that backtracking through
that decision occurs.

The scoring functions take into account whether a given
bias isrelevantto a given instance or operator. We say that a
bias is relevant to an instanceI if the bias measure is defined
for I. Similarly, a bias is relevant to an operatorOpr if the
operator has some feature in a feature categoryF for which
the measure is defined.

The calculation ofbias distancelies at the heart of the
scoring mechanism. Bias distance measures the extent to
which a choice satisfies a stated bias. For an instanceI, the
function BDist(I,B) is the distanced between the interval
of measureM defined byB and the measure value forI in
M. If the measure is not relevant to the instance, then the
distance is defined to be⊥; otherwise, the distance is the
absolute difference between the measure-defined mapping
of I and the interval onto[0,1]. The functionBDist(Opr,F ,B)
for bias distance for an operatorOpr and feature categoryF
is defined similarly.

Bias distances are scored so that values in the interval are
heavily rewarded while values outside the interval are penal-
ized in proportion to the distance from it:

BDistScore(d) =

{
0 if d =⊥
1 if d = 0
−d otherwise

The score for an instanceI relative to a regionR is defined
to be the sum of the score forI relative to each biasB in R:

Score(I,R) = ∑
B∈R

InstScore(I,B)

InstScore(I,B) = BDistScore(BDist(I,B))

The score for an operatorOpr is defined similarly. How-
ever, an operator may have features from multiple feature
categories that are relevant to the stated biases. For this
reason, the average score across those relevant feature cate-
gories (denoted byF B) is used:

Score(Opr,R) = ∑
B∈R

OprScore(Opr,B)

OprScore(Opr,B) =
AvgF∈F B

BDistScore(BDist(Opr,F,B))



Evaluation
To evaluate our algorithm for biasing plan generation, we
compared dispersion and proximity values for plan sets of
varying size that were produced using biases to those gen-
erated by simply randomizing planning decisions within
SIPE–2 (i.e., choice of operators and variable instances).2

Generated plans ranged in length from 2 to 14 actions.
The evaluation space was defined by three evaluation cri-

teria:

• the overallcost(measured in dollars),

• the overalltime(measured in hours),

• thedistancecovered (measured in kms).

Evaluations for generated plans were normalized relative
to assigned minimum and maximum values for each cri-
terion. Minimal values were derived through analysis of
the planning domain; maximum values were obtained by
adding a small buffer (roughly 5%) to the maximum values
seen throughout the course of experimentation (encompass-
ing several thousand plans). Determining exact maximum
bounds was not feasible because of the overall size of the
plan space.

Figures 2 and 3 display the results for an experiment that
evaluated four different generation strategies for plan sets:

• biases derived from the 2 measures
{AFFORDABILITY ,TIME-EFFICIENCY}.

• biases derived from the 2 measures
{AFFORDABILITY ,COMFORT}

• biases derived from the 3 measures
{AFFORDABILITY ,COMFORT,TIME-EFFICIENCY}

• randomization of planning decisions(no biasing)

For each strategy, 100 plan sets of sizes 2 through 9 were
generated (i.e., 800 plan sets in total for each strategy).

Figure 2 plots the mean dispersion value for each trial of
each method as a point, embedded in a vertical line showing
the standard deviation. Figure 3 provides a similar plot for
estimated proximity values, obtained by averaging proxim-
ity values for points on a uniformk-dimensional grid with
10 grid points within the evaluation space (i.e., for a total of
10k sample points). To provide perspective for these charts,
note that the maximal plan distance in the evaluation space
is 1.73 while the mean plan distance is .58.3

The experimental results show that the two biasing meth-
ods produce solution sets with significantly better disper-
sion (i.e.,higher) and proximity (i.e.,lower) measures, from
n = 2 throughn = 6. Even more significant, however, are
the differences in standard deviation which show that the

2An alternative form of evaluation would be to compare the
amount of time required to achieve certain levels of coverage. This
definition seems less suitable: while relative comparison of disper-
sion and proximity values are possible, the interpretation of abso-
lute values for these two measures is unclear.

3For a normalizedk-dimensional space, the maximum distance
between points is

√
k, and the expected mean distance between

points is
√

k
9.
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Figure 2: Plan Set Dispersion Measures for 100 Trials
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Figure 3: Plan Set Proximity Measures for 100 Trials

biasing approaches vary much less than the randomized ap-
proach. These effects are highly pronounced for 2≤ n≤ 6,
tapering off asn increases beyond that point. As one would
expect, dispersion and proximity values for all methods tend
to decrease asn increases.

These experiments validate the idea that by using biases
rather than randomization to direct the search process, plan
sets can be generated for small values ofn with significantly
better coverage, and for larger values ofn that are no worse.
Furthermore, thereliability is far superior in that the user is
unlikely to get bad results (i.e., low dispersion or high prox-
imity) since the standard deviation is significantly smaller.

Future Work
As already noted, a variety of strategies is possible for con-
structing regions of biases. While the particular method se-
lected worked well within our experiments, alternative ap-
proaches merit investigation. For example, the use ofdy-
namic feedbackamong regions could lead to better results:
after creating a solution for one region, its evaluation scores
could lead to adaptation of other regions to promote better



proximity or dispersion.
Additional aspects of the domain metatheory could be

leveraged as well. For example,role information is not di-
rectly used in the current framework but could provide an-
other input to the overall biasing algorithm. Thus, users
could indicate that they want to see a range of options for
air carriers, for example.

Another key area for future work is in highlighting differ-
ences among plans. Such explanatory capabilities are crit-
ical for helping users make informed choices about their
options. The domain metatheory provides a means for ab-
stracting from the details of planning decisions and could be
used to concisely summarize key differences between plans.
For example, summaries along the following lines could be
readily extracted using the domain metatheory:

Accommodationswere chosen that ranked high onaf-
fordability, United was chosen as thecarrier for air
travel, andpublic transitwas used whenever possible.

Discussion
Focused Biasing The experiments presented above em-
ployed biasing over the full extent of measure domains in or-
der to provide coverage of the entire solution space. In gen-
eral, users will be interested in restricting attention to sub-
regions of the overall space (e.g., overseas vacations in the
low to medium affordability range). The biasing approach
presented here can readily accommodate this narrowing of
the solution space by allowing the user to designate portions
of the measure domains over which biases should range.

Measure-Measure Correlation Certain correlations exist
among the measures defined in the metatheory for the travel
domain. The measuresAFFORDABILITY and COMFORT
have a strong inverse correlation for feature categories and
instances where they are both defined. However, there are
several domains where one is defined but not the other.
COMFORTandTIME-EFFICIENCY have a mild positive cor-
relation when they overlap, but such overlaps are limited.
The use ofAFFORDABILITY and TIME-EFFICIENCY over-
lap significantly, but show a range of positive, negative, and
mixed correlation,

The specific biasing method described in this paper em-
ploys random selection among measure intervals to avoid ef-
fects due to correlations among measures. However, knowl-
edge about correlations could be used as the basis for more
sophisticated biasing methods that try to leverage known
correlations among measures.

Measure-Evaluation Correlation Correlations exist be-
tween certain of the metatheory measures and the evalua-
tion criteria used to adjudicate qualitative difference. While
this correlation can be strong (as between the measure
AFFORDABILITY and evaluation criteriaCost), it is quite
weak for others. Such linkage is to be expected, since the
metatheoretic biases used to distinguish planning options
should relate to evaluation criteria of interest to users.

Biasing Cost The cost of creating biases and regions is
negligible. Similarly, enforcement of biases adds only the

cost of identifying the most highly ranked choice among
available options.

Related Work

Work to date on generating qualitatively different plans that
is not rooted in randomization relies extensively on the user
to drive the planner to different sections of the plan space.
For example, TRIPS (Ferguson & Allen 1998) and O-Plan
(Tate, Dalton, & Levine 1998) support mixed-initiative plan-
ning in which a user can explore different planning options
by either explicitly telling the system what to do next, or
imposing constraints on the plan or planning process. Sim-
ilarly, the Advisable Planner (Myers 1996) provides the
means to sketch desired characteristics of a single plan at
high levels of abstraction.

The Automated Travel Assistant (ATA) (Linden, Hanks,
& Lesh 1997) generates a sequence of plans that vary in
response to user feedback on the content of earlier plans.
The objective within this system is to find an acceptable so-
lution quickly that ranks highly with respect to stated and
inferred user preferences. The basic approach involves in-
crementally building an improved model of user preferences
by analyzing user critiques of solutions that are suggested
by the problem-solving system. Each generated solution re-
flects the evolving preference model, in a way that parallels
our method of generating a single plan that reflects certain
biases. However, the ATA frames planning as anattribute
selectionproblem: finding values for a fixed set of variables.
This problem is very different from the open-ended plan
generation employed by the biasing algorithm described in
this paper.

Conclusions

For many significant planning domains, users are reluctant
to relinquish full control of the planning process. Rather,
they would like automated planning tools that can help them
understand their options. Tools that generate plans with
guaranteed significant semantic differences can be of great
value to these users, enabling them to make an informed se-
lection from the space of possible solutions.

The biasing technique presented in this paper provides a
simple, low-cost mechanism to reliably generate plans with
meaningful semantic differences. An additional advantage
of the method is that it enables the user to direct the overall
process without having to be involved continuously in de-
tailed decision-making.
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