
Cooperative Plan Identification:
Constructing Concise and Effective Plan Descriptions

R. Michael Young
Department of Computer Science
North Carolina State University

Raleigh, NC 27695-7534
young@csc.ucsu.edu

Abstract

Intelligent agents are often called upon to form plans
that direct their own or other agents’ activities. For
these systems, the ability to describe plans to people
in natural ways is an essential aspect of their interface.
In this paper, we present the Cooperative Plan Identifi-
cation (CPI) architecture, a computational model that
generates concise, effective textual descriptions of plan
data structures. The model incorporates previous theo-
retical work on the comprehension of plan descriptions,
using a generate-and-test approach to perform efficient
search through the space of candidate descriptions.
We describe an empirical evaluation of the CPI archi-
tecture in which subjects following instructions pro-
duced by the CPI architecture performed their tasks
with fewer execution errors and achieved a higher per-
centage of their tasks’ goals than did subjects following
instructions produced by alternative methods.

Introduction
Complex activities, by definition, contain a large
amount of detail. When people describe activities to
one another they leave out information they feel is
unimportant and emphasize information they feel is
essential. This economy of communication is an ex-
ample of speakers obeying Grice’s maxim of Quantity:
say no more and no less than what is needed (Grice
1975). There is a wide range of contexts where intelli-
gent agents that create and use plans might require the
ability to generate task descriptions of similar brevity.
Unfortunately, it is not a straightforward matter to
produce an effective description of a given plan auto-
matically when one or more of the intended readers or
hearers are human. There is a mismatch between the
amount of detail in a plan for even a simple task and
the amount of detail in typical plan descriptions used
and understood by people.

In this paper, we consider communication in the con-
text called plan identification. In this context, a speaker
describes a plan P to a hearer in order to single out P
as the solution to what the speaker believes is a mutu-
ally understood planning problem. A description of a

1Copyright (~)1999, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

plan P is a subset of the components of P used by a
speaker for plan identification.

In the discussion that follows, we define a compu-
tational model of plan identification, called cooperative
plan identifica¢ion (CPI), used to generate concise de-
scriptions of plans produced by AI planning systems.
We also describe a task efficacy evaluation (Walker
Moore 1997) of the cooperative plan identification tech-
niques where plan descriptions are used as instructions
for tasks carried out by human subjects. Subjects carry
out their tasks in a simulated domain and their perfor-
mance on the tasks is measured to determine the effec-
tiveness of the instructions that they follow. The ex-
periment demonstrates that the descriptions produced
by cooperative approaches are more effective than those
produced by several alternative techniques.

Related Work
While several natural language systems have been de-
veloped for the generation of textual descriptions of
action, these systems have been limited in the effec-
tiveness of the descriptions they produce by the com-
plexity of the activities that they describe. Mellish
and Evans (1989) describe a system that produces tex-
tual descriptions of plans created by the NONLIN plan-
ner (Tare 1977). Their system generates text that con-
tains reference to every component in a NONLIN plan.
Consequently, as Mellish and Evans themselves point
out, the resulting descriptions often contain an inap-
propriately large amount of detail.

Vander Linden and Martin (1995) discuss a text gen-
eration system that produces texts describing small sets
of plan components, focusing on the selection of rhetori-
cal relations that best expresses the components’ proce-
dural relationships with other actions in the same plan.
The Drafter project at the University of Brighton (Hart-
ley ~ Paris 1997) has developed a system to exploit
plan-based representation of activities to support mul-
tilingual instruction generation. This system represents
task domains in a common action language and gener-
ates instructions based on the plans for a given task.
In both these systems, plans for specific tasks are con-
structed by hand; because the detail present in the
plans is pre-determined by human users, the systems

From: AAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

do not need to address issues of plan size and can avoid
the complexity introduced by dealing with larger, au-
tomatically generated plans.

A Cooperative Approach to Plan

Description

In this research, we adopt the view that the use of plan
descriptions in discourse is an instance of Gricean co-
operation. A central idea in this work is that Grice’s
maxim of Quantity guides a speaker when he is selecting
the amount and type of detail to include in a plan de-
scription. Under this interpretation, a candidate plan
description contains sufficient detail precisely when a
hearer can reconstruct the plan being described (or one
reasonably close to it) from the content present in the
candidate.

To produce cooperative plan descriptions, we use a
generate-and-test architecture called cooperative plan
identification (CPI). The process used by the architec-
ture is divided into two functions (the overall architec-
ture is shown in Figure 1). The first, called the gen-
erator function, constructs candidate descriptions; the
second function, called the evaluator, tests descriptions
against success criteria captured by the interpretation
of the maxim of Quantity and described in the follow-
ing section. The algorithm searches the space of de-
scriptions of the plan that the speaker is identifying
(called here the source plan), looking for an acceptable
plan description of minimal size and structure. Search-
ing the space of all plan descriptions is computationally
expensive; rather than perform an exhaustive search for
candidate descriptions, we describe two algorithms used
as CPI generator functions that restrict the space they
search to more tractable subsets of the full space while
still producing reasonable candidates.

source Model .plan preferences

: Searc~ ";

i
Controller

successful/
unsuccesful i i

plan
description

Figure 1: An Overview of the CPI Architecture.

Cooperation in Plan Description
Our previous work (Young 1996) describes a technique
for characterizing the adequacy of a plan’s description
with repect to the amount of detail it contains. We
adopt this technique as the CPI evaluator function and
describe it briefly in this section. See (Young 1996) for
a more complete description.

In our previous work, the plan description process
is modeled as a collaboration between a speaker and a
hearer. In order to understand a plan description, a
hearer uses her knowledge about plans and planning to
fill in any information that was missing from a speaker’s
description. To produce a plan description that is coop-
erative, a speaker uses his knowledge about the hearer’s
interpretation process to select a plan descript!on that
is brief but contains enough information to be under-
stood. In this work, the hearer’s interpretation process
is represented by the use of a plan reasoning algorithm
that takes a partial plan description and fills in its gaps,
performing the same type of plan reasoning that a plan-
ning system would use to create the source plan in the
first place. If the resulting complete plan (or plans)
is similar enough in structure to the source plan, the
algorithm characterizes the candidate as acceptable.

In this work, the interpretation of a candidate plan
description is represented as search through a space of
partial plans represented as a graph. The construc-
tion of the graph is controlled by a plan-space planning
algorithm (Kambhampati, Knoblock, & Qiang 1995)
that models the plan reasoning the hearer employs to
reconstruct any detail missing from the candidate de-
scription. In addition to the plan reasoning algorithm,
there are two other components that are central to the
hearer model we use. The first is a limit on the heater’s
reasoning resources -- specifically, the amount of plan
reasoning that she can bring to bear during the inter-
pretation process. Clearly, the effort needed to con-
struct a complete plan from a partial one requires the
use of a hearer’s reasoning resources. These resources
are finite; a cooperative speaker that takes the hearer’s
use of these resources into account can adjust the con-
tent of his description so that the resources will not be
exhausted. Here this resource limit is represented by
an integer constant that places an upper bound on the
number of nodes that can be searched in the plan-space
graph when characterizing a candidate plan description.

The second central issue in the representation of the
hearer’s plan reasoning is her use of plan preferences,
that is, her preferences for plans of particular structure
over others. As a hearer fills in the gaps in a partial plan
description, her planning activity is influenced by her
preferences over aspects of the task domain. Her pref-
erences for types of actions, for particular sequences of
actions to achieve a goal, etc, all influence the structure
of the complete plan that will emerge. Plan preferences
are represented here by a ranking function that assigns
non-negative integer rankings to plans on the fringe of
the search space during construction of the graph. Re-
gions of the graph rooted at nodes ranked most pre-

ferred will be explored before regions rooted at nodes
with less preferred rankings.

The three aspects of the hearer’s plan reasoning
model (i.e., her planning algorithm, her resource limits
and her plan preferences) operate together to construct
a plan space graph representing the inferences that will
be performed by the hearer when interpreting the can-
didate plan description. The structure of this graph
determines the adequacy of the candidate to serve as
the source plan’s description: when all of the solution
plans in the graph are reasonably similar to the source
plan, then the candidate description is considered ac-
ceptable. An optimum plan description is an acceptable
candidate description containing the fewest number of
plan components of all similarly qualified descriptions.

While this work provided an algorithm for determin-
ing the adequacy of a given candidate description, we
did not describe an algorithm for constructing candi-
dates in an efficient manner. In the following section,
we describe an architecture that combines our previ-
ously defined adequacy criteria for candidate descrip-
tions with several related algorithms for efficiently gen-
erating candidates.

Generating Candidate Plan Descriptions

Generating an effective plan description is a difficult
problem since there is no obvious technique for con-
structing the description directly from the source plan.
While exhaustive search through the space of all the
possible candidates is guaranteed to find an optimum
description, the computational cost of this search is
prohibitive; since every coherent subset of the source
plan’s components could potentially serve as the plan’s
description, the space of candidate descriptions is es-
sentially the power set of the set of components in the
source plan.

There is evidence, however, that optimal plan de-
scriptions are not required for natural, concise and
effective descriptions. As reported by Hull and
Wright (1990), people often generate non-optimal plan
descriptions and when they do so, their readers or
hearers are still able to carry out the tasks at hand.
A problem closely related to plan identification, the
task of generating referring expressions, is similarly
constrained by efficiency limitations when algorithms
search for optimal descriptions. As Dale and P~e-
iter (1995) describe in their characterization of compu-
tational models used to generate referring expressions,
they adopt the strategy of restricting search to tractable
subsets of the solution space in such a way that the
systems generate concise (but not necessarily optimal)
texts that are both natural and effective. This strategy
has been adapted for use in plan identification and is
discussed further below.

This section defines four implemented algorithms
used to determine a set of plan components that will
serve as a source plan’s description. The first two are
cooperative techniques, motivated by distinct compu-
tational interpretations of Grice’s maxim of Quantity.

These two algorithms serve as generator functions in
implementations of the cooperative plan identification
architecture. The second pair of algorithms represent
approaches that do not take a model of the hearer into
account, using instead two distinct techniques that di-
rectly translate the source plan into its description.
These two direct translation techniques are used in the
evaluation described below in order to provide a basis
for comparison against the two cooperative techniques.
Space limitations preclude a detailed comparison of ex-
ample data structures created by these algorithms; sam-
ple data structures and the texts that correspond to
them are described in (Young 1997).

In this paper, we will use the DPOCL plan-
ner (Young, Pollack, & Moore 1994) as the hearer
model’s planning algorithm. DPOCL extends the
UCPOP planner (Penberthy & Weld 1991) by incorpo-
rating hierarchical planning directly into a causal link
framework. DPOCL’s principal qualification for use
in this work is that it is not built especially for the
generation of task descriptions; rather, it is a domain-
independent planning algorithm. DPOCL plans con-
tain sufficient structure to ensure the plans’ soundness
and, consequently, the plans serve as strong test cases
for the generation of plan descriptions. In addition,
DPOCL is readily characterized as a plan-space plan-
ning algorithm.

Local Brevity: Exploiting a Plan’s StructuralIn-
formation. The Local Brevity algorithm searches for
acceptable plan descriptions moving through the space
of candidate descriptions from complete, detailed can-
didates toward partial, abstract ones. In this manner,
the algorithm is similar to the Local Brevity algorithm
of Dale and Reiter (1995); as in their approach, the CPI
Local Brevity generator begins its search with a com-
plete description (a complete plan) and creates new can-
didates by iteratively removing single components from
the description based on local decisions dictated by a
set of heuristics. These heuristics are based on results
from studies of the comprehension of instructional and
narrative texts (described below) that indicate that the
presence of some plan components in a plan’s descrip-
tion are more important to the heater’s understanding
of the plan than are others. To determine the order
in which components are deleted from the working de-
scription, the heuristics are used to assign a weight to
each of the source plan’s components. The algorithm
iterates, first deleting the element in the plan that is
weighted lowest, then passing the resulting working de-
scription to the evatuator function. Because the Lo-
cal Brevity algorithm begins its search with a complete
plan, the initial description is likely to be acceptable
to the evaluator (that is, it is likely to contain suffi-
cient information to properly identify the plan being
described). The deletion process iterates until the eval-
uator indicates that the working plan has become too
partial to be acceptable. At this point, the algorithm
adds back in the last component that was deleted and

uses the resulting data structure as the source plan’s
description.

The heuristics used to determine the order in which
plan components are deleted are captured in two
weighting functions, one used to rank plan steps and
one used to rank causal links. These weighting func-
tions each sum a number of terms representing the con-
tribution of structural features of the plan to the im-
portance of the component’s appearance in the plan’s
description.

A plan’s steps are weighted based on three fac-
tors reflected in the three terms in Equation 1 be-
low. The equation is motivated by the following heuris-
tics suggested by the more qualitative results described
in (Trabasso & Sperry 1985; van den Broeck 1988;
Graesser et al. 1980):

¯ The greater the number of causal dependencies a step
has on previous steps in the plan, the more important
the appearance of the step is in the plan’s description.

¯ The greater the number of subsequent steps that de-
pend upon a step, the more important the appear-
ance of the step is in the plan’s description.

¯ The deeper a step appears in the plan hierarchy, the
less important the appearance of the step is in the
plan’s description.

For a given step s in plan P, the weight ws assigned
to s is determined by the summation of three terms:

w~ = (In(s, P)×kp)+(Out(s, P)xk~)+(Depth(s,
(1)

In this equation, In(s, P) is a function returning the
number ofs’s satisfied preconditions in P (i.e., the num-
ber of causal links leading in to s), kp is a constant scal-
ing factor for incoming causal links, Out(s) is a function
returning the number of causal links leading out of s,
k~ is a constant scaling factor for outgoing causal links,
Depth(s) is a function returning the number of ances-
tors of s in P, and kd is a constant scaling factor for
step depth.

The values of the scaling factors are determined em-
pirically and may vary between domains. All scaling
factors in Equation 1 except kd are constrained to be
no less than 0 while the magnitude of kd is constrained
to be no greater than 0.

A single factor is used to assign weights to the causal
links in a plan description: links are weighted based
on their temporal duration. Results from reading com-
prehension and text summarization studies (Golding,
Graesser, & Millis 1990; Kintsch & Van Dijk 1978;
Rumelhart 1977) suggests that causal relationships be-
tween steps that are temporally close are often so read-
ily reconstructed that references to the relationships
are elided from plan descriptions. In causal link plan-
ners without an explicit representation of time (such
as DPOCL), an estimate of the link’s duration can be
made by counting the number of steps in the plan that
might possibly occur between the link’s source step and

its destination step. The greater the number of inter-
vening steps, the longer the duration of the causal link.
In the CPI implementation, for a given causal link l
from step si to step sj in plan P, the weight assigned
to l is expressed by the equation

wt = (Inter(l, P) x (2)

where Inter(l, P) is the number of all steps that could
possibly intervene between si and sj in P and kz is
a constant scaling factor for intervening steps, ki is
restricted to be no less than 0.

To determine the sequence of components to be elim-
inated from the source plan, both the components’
weights and their position in the plan structure are
considered. In general, components with lower weights
are eliminated first. However, in order to preserve the
decompositional structure of the partial plan (in ac-
cordance with the constraint on referential coherence
described above), steps are only eliminated from the
leaves of the plan (that is, steps are only eliminated
when they are either primitive steps or abstract steps
whose children steps have already been eliminated).
The elimination of causal links is not similarly con-
strained.

As steps and causal links are removed from the plan,
all plan components that make reference to those steps
and links are also eliminated. For instance, when a
step is removed from a plan description, all causal links
leading into or out of that step are removed, all order-
ing constraints for the step are taken out of the plan
description and the step’s binding constraints are also
deleted.

The Plan Path Algorithm: Following the Source
Planner. The Plan Path algorithm generates candi-
date descriptions following a path through the space
of plans created by the source planning system as it
solved the original planning problem. The Plan Path
algorithm begins its search by considering the null plan
at the root of this graph and moves through the graph
by selecting at each choice point the child node that lies
along the shortest path from the root node to the source
plan. When the algorithm visits a node in this space,
it sends the partial plan associated with that node to
the evaluator, testing to see if the plan can serve as a
description. The Plan Path algorithm halts as soon as
it finds a plan that is successful (that is, a plan that
contains enough information to effectively identify the
plan being described).

This algorithm requires access to the list of nodes
that lie along the path from root to source plan in the
source planner’s plan graph. In the CPI implemen-
tation, the nodes are supplied as input by the source
system along with the source plan. Providing these
additional data structures is a minor requirement for a
refinement planning system, since the nodes are created
by the source planner during the search that produces
the source plan to begin with.

Two Direct Translation Algorithms. In order to
provide comparisons to the cooperative plan identifica-
tion algorithm, two direct translation approaches are
also defined. The implementation of these approaches
is described briefly below.

The Exhaustive Algorithm: The component of
Mellish and Evans’s system that generated the content
of a plan description was relatively straightforward: the
system generated a description that referred to every
component of the plan being described (with the excep-
tion of certain NONLIN bookkeeping structures). The
same strategy for content selection was used here in the
Exhaustive algorithm. To generate plan descriptions,
the Exhaustive algorithm takes as input the source plan
and, since every element of the plan is to be included in
the description, the process returns the complete source
plan as its output.

The Primitive Algorithm: One possible approach
to describing a plan is to describe just the lowest-level
steps in the plan - those that will actually be exe-
cuted. These steps correspond to the primitive steps
in a DPOCL plan, the leaf node steps in the source
plan data structure. The Primitive algorithm takes as
input the source plan and selects as the plan description
the primitive steps in the plan, returning those steps in
a total temporal order consistent with the source plan’s
temporal constraints.

Empirical Evaluation

To evaluate the CPI model, we studied the empirical va-
lidity of the claim that providing conversational partici-
pants with a cooperative description of a plan increases
the effectiveness of the communication. To address this
claim, human subjects were presented with a series of
text descriptions whose content had been automatically
generated by the four algorithms described above. The
subjects were asked to carry out the plan descriptions in
a simulated task domain. Their actions were then ana-
lyzed along several dimensions to determine the quality
of the subjects’ performance. The hypothesis for the
experiment stated that subjects that followed instruc-
tions produced by the cooperative techniques (i.e, the
Local Brevity and Plan Path algorithms) would per-
form their tasks with fewer errors and achieve more
of their top-level goals than subjects following instruc-
tions produced by the alternative approaches (i.e., the
Exhaustive and Primitive algorithms).

The process used to produce the texts in this experi-
ment was divided into three main components. The first
module, consisting of the DPOCL planning algorithm,
was used to construct solution plans for four planning
problems in the task domain. The plans produced by
DPOCL were then passed to the second component, a
content determination module. For each input plan,
this module applied each of the four approaches to con-
tent determination discussed above. The two generate-

and-test approaches and the two alternative direct-
translation algorithms each generated a corresponding
plan description, resulting in a total of four descriptions
for each input plan. Finally, the four plan descriptions
were passed to a text realization module. The real-
ization module determined the English text used to de-
scribe the plan components included in the descriptions
as well as the order that the text appeared in the text
descriptions.

During the experiment, 24 human subjects 2 were
individually asked to perform a series of four tasks --
one for each of the four experimental source plans.3 For
each task, we provided each subject with a list of the
goals for each task (taken from the goal specification
of the corresponding source plan) and a set of written
instructions (one of the four text descriptions that had
been produced for the source plan). They were asked
to carry out the task as described by the text within
a computer simulation constructed using a text-based
virtual reality system. The task domain simulated a
college campus and subjects’ tasks involved running er-
rands across campus (e.g., checking out books from the
library, registering for classes at the R.egistrar’s Office).
Subjects interacted with the simulation via a command-
line interface; the simulation was designed with a one-
to-one correspondence between simulation commands
and the primitive actions in the operator set used by
the planner when creating the source plans for the ex-
periment.

Configuring the Experimental System

The system components described in the preceding sec-
tion contain a number of user-specifiable parameters.
The various settings for the parameters that were used
in the experimental systems are described here.

Local Brevity Weighting Functions. The Local
Brevity algorithm uses weighting functions to assign
weights to each step and causal link in a plan; the
weighting functions appear in Equations 1 and 2. The
values of the scaling factors that were used in the exper-
iment are as follows: for incoming causal links, kp = 1,
for outgoing causal links ke = 5, for step depth, kd = 1,
for intervening steps, kt = 2. These values are assigned
to reflect my estimation of this relative emphasis of the
factors discussed in the research by Trabasso and Sperry
and by Graesser ct al discussed above. 4

2Subjects were solicited from the general University of
Pittsburgh community and paid $9.00 per hour for their
participation.

aSubjects were divided into four groups; each group per-
formed the same set of tasks but was presented with the
tasks in an order differeing from the order used to present
the tasks to the other groups.

4These constants are user-specifiable parameters and,
short of performing extensive experiments that compare the
performance of the system under various settings, no strong
conclusions can be drawn about the relative merits of one
set of values over any others.

The Hearer Model. The CPI hearer model contains
three customizable parameters: the planning algorithm,
the bearer’s plan preferences and her plan reasoning re-
source limit. DPOCL, the planning algorithm used in
the experiment as the model of the heater’s plan reason-
ing, is described in detail in (Young, Pollack, & Moore
1994). The plan ranking function used in the experi-
ment employed a domain-independent metric, looking
only at the size of the plan, preferring short, hierarchi-
cally structured plans with few top-level steps. In the
absence of empirical evidence to suggest specific values
for hearers’ plan reasoning resource bounds, an objec-
tive method was devised to automatically generate a
setting for the limit used for each plan being described.
Using this method, the mid-point is found between the
greatest depth bound where a complete plan descrip-
tion is generated and the least depth bound where an
empty plan description is generated. To compute the
mid-point value, each algorithm’s depth bound is ini-
tially set to 0. A plan description is generated using
this depth bound setting, and the depth bound value is
incremented until a plan description is generated that
contains less than the complete structure of the source
plan. This value is taken as the lower bound of the
range for the resource bound. The process continues to
iterate, incrementing the depth bound and producing a
new description, until the description that is produced
contains no detail at all. This value is taken as the up-
per bound of the range for the resource bound. The
mid-point between the upper and lower bounds is then
used as the depth bound when generating a description
for that source plan. Although the use of this tech-
nique results in the assignment of depth bounds that
vary between plans, the method provides a basis for
comparison by defining the same relative point in the
space of all candidates that each algorithm considers.

Summary of Results

The data that was collected for each subject consisted
of a series of four executions. Each execution repre-
sents the sequence Of all commands typed by the sub-
ject. Because of the one-to-one correspondence between
elements of a command (i.e., command names, argu-
ment names) and the act-types, locations and objects in
the simulation domain, it was straightforward to trans-
late each subject’s exections into a sequence of fully-
instantiated primitive plan steps in the language of the
planner.

To measure the success of the subject’s execution, we
used three dependent variables:

The Step Failure Ratio (SFAIL). The percentage
of the total number of steps containing preconditions
that failed during the execution.

The Precondition Failure Ratio (PFAIL). The
mean percentage of the number of preconditions for
a failed step that were unmet when the step was ex-
ecuted.

The Goal Failure Ratio (GFAIL). The percent-
age of the plan’s top-level goals that were unachieved
when the execution ended.

For each dependent variable, data was averaged over
items (that is, over plans) and a two-way repeated-
measures ANOVA was conducted. Means and standard
deviations for these variables, along with the results of
the various analyses of variance, are shown in Table 1.
In order to determine if the experimental source plans
themselves had an effect on subjects’ performance, a
separate analysis was performed for each item, using a
one-way, between-subjects ANOVA. Results of the sec-
ond analysis are described in depth in (Young 1997)
and are mentioned brielfy below.

The patterns of means for each of the dependent vari-
ables clearly support the hypothesis that cooperative
plan identification techniques (using the Local Brevity
and Plan Path algorithms) produce more effective plan
descriptions than the two alternative approaches (the
Exhaustive and Primitive algorithms). In particular,
the data indicate that the cooperative model has a sig-
nificant effect on the number of execution errors per-
formed by subjects during tasks (F(3,63) = 7.06,
.05) as well as the number of goals left unachieved by
subjects during tasks (F(3,63) = 3.52, p < .05);
effect on PFAIL did not reach statistical significance
(F(3,63) = 2.60, p < .08). See Table 1 for relevant
data.

Planned comparisons testing the specific prediction
that the cooperative techniques produce more effective
descriptions than the direct-translation techniques (Lo-
cal Brevity and Plan Path vs. Exhaustive and Prim-
itive) confirmed this hypothesis for both SFAIL and
GFAIL. The comparisons also showed that the Local
Brevity and Plan Path algorithms did not differ signif-
icantly from each other on any of the three dependent
variables. See Table 2 for all relevant F-values. This
table indicates the pairwise relationships between the
means for each of the conditions of the experiment.

In order to determine if the differences in the amount
of detail contained in the the plan descriptions could
have accounted for these results, we performed the two-
way analysis of variance for each of the dependent vari-
ables a second time, adjusting the number of errors for
each subject by dividing the data by the number of
components in the corresponding text description. De-
tails of this analysis are found in (Young 1997). The
results were the same as those reported for the initial
analysis, with the following exceptions. The pairwise
comparison between Exhaustive and Plan Path algo-
rithms indicates that the difference between the two on
the measure PFAIL and SFAIL were no longer signifi-
cant (F(3,63) = 2.44 and F(3,63) = 2.57, respectively).

Discussion

The data clearly show that when subjects follow in-
structions produced by the cooperative techniques, they
make fewer execution errors and achieve more of their

Table 1: Data for the Step Failure Ratio (SFAIL), Pre-
condition Failure Ratio (PFAIL) and Goal Failure Ratio
(GFAIL).

Exhaustive l Primitive 1
M SD M SD

[12.8798 12.898017.8929 11.1346]
I LocalBrevity [PlanPath

M SD M SD
12.3228 6.571112.4725 8.5909

Means and Standard Deviations for SFAIL

{sooRc~. I dllss I Ms I F I
Algorithm x Subject Grp 111.0195 1.27
Error(Algorithm) 63 5751.9290 87.1504

ANOVA Summary Table for SFAIL

[Exhaustive]M SD MPrimitive] SD
17.8495 7.55756]4.6242 6.92501]

] L°ealBrevity] PlanPathIM SDM SD

I 1.2094 3.10373I 1.9524 6.02123I

Means and Standard Deviations for PFAIL

I souRc~ I dllas I MS I r I
Algorithm] 3 258.8364 86.2788] 2,60
Algorithm × Subject GrpI 12 344.1140 28.6761 0.89 I
Error(Algorithm) 63 2023.3722 32.1170

ANOVA Summary Table for PFAIL

Exhaustive Primitive

I 17.5595 22.3630I 12.4999 18.1429I
LocalBrevity [PlanPath]M SD M SD

2.3810 9.05821 0 0 j
Means and Standard Deviations for GFAIL

Is°URcE I dJlss I MS I r I
Algorithm

~ 1974.6284
658.2094 3.52

Algorithm × Subject Grp 2 4243.7423 353.6451 1.89
Error(Algorithm) 63 11765.8729 186.7598

ANOVA Summary Table for GFAIL

Table 2: Contrast Analysis Showing Pairwise Compar-
ison of Means

I Wechnlq"e I Mean II Teehnlque I Moan II ~ ~io I
Exhaustive 12,880 Primitive 7.893 3.71
Exhaustive 12.880 Local Brevity 2.323 16.62"
Exhaustive 12.880 Plan Path 2.473 16.16"
Primitive 7.893 Local Brevity 2.323 4.63*
Primitive 7.893 Plan Path 2.473 4.88*
Local Brevity 2.323 Plan Path 2.473 0.00

Contrast Analysis for SFAIL

[Technique I Me~ II Teohnlque I Me= II ~ ~io I
Exhaustive 7.849 Primitive 4.624 4.21"
Exhaustive 7.849 Local Brevity 1.209 17,85"
Exhaustive 7.849 Plan Path 1.952 14,08"
Primitive 4,624 Local Brevity 1.209 4,72*
Primitive 4.624 Plan Path 1,952 2.89
Local Brevity 1.209 Plan Path 1.952 0.22

Contrast Analysis for PFAIL

[Technique [Mean I[Technique [Mean [[F Ratio]

Exhaustive 17.559 Primitive 12.500 1.78
Exhaustive 17.559 Local Brevity 2.381 16,04"
Exhaustive 17.559 Plan Path 0.0000 21.46"
Primitive 12.500 Local Brevity 2.381 7,13"
Primitive 12.500 Plan Path 0.0000 10,88"
Local Brevity 2.381 Plan Path 0.0000 0.30

Contrast Analysis for GFAIL

* indicates significant F-value.

goals than subjects following instructions produced by
the direct-translation techniques. Subjects’ perfor-
mance across all experimental variables shows an in-
crease of roughly an order of magnitude, with statisti-
cally significant results obtained for both the step fail-
ure and goal failure ratios.

Since (almost all of) the results from the initial anal-
ysis are preserved when the data is adjusted to account
for the length of the texts, the data suggest that the ef-
fectiveness of the cooperative techniques is not due sim-
ply to their more compact form. Not only do the coop-
erative approaches produce text of comparable or only
slightly longer length, on average, than the Primitive
algorithm (the algorithm producing the most concise
texts), but the means of the Exhaustive algorithm (the
algorithm producing the lengthiest texts) for all three
dependent variables in the second analysis are lower
than those for the Primitive algorithm. This suggests
that the differences in the content of the descriptions
produced by these techniques.

Conclusions
This paper describes the generation of textual descrip-
tions of complex activities, specifically the generation of
concise descriptions of the plans produced by computer
systems. The technique, motivated by an interpretation
of Grice’s Maxim of Quantity, uses a generate-and-test
approach to efficiently search the space of possible plan
descriptions for a description that is both concise and
effective.

We defined two algorithms that were used as gener-
ator functions in implementations of the CPI architec-
ture. One, the Local Brevity algorithm, selects can-
didate descriptions based on the importance that the
elements of a description hold for the heater’s compre-
hension of the description as indicated by psychological
studies. The other, called the Plan Path algorithm, se-
lects candidates based on the processing that was used
to produce the source plan. For both implementations,
a common evaluator function was employed that used a
domain-independent planning algorithm as the hearer
model’s planning system and a domain-independent ap-
proach to applying the model to determine the accep-
tibility of candidate plan descriptions.

To characterize the efficacy of the two generator func-
tions relative to one another and relative to two al-
ternative direct-translation algorithms, we performed a
task-efficacy evaluation. In this experiment, subjects
that followed instructions produced by the CPI algo-
rithms committed fewer execution errors and achieved
more of their tasks’ top-level goals than subjects follow-
ing instructions produced by other techniques. The ex-
perimental results provide clear support for the greater
efficacy of the cooperative techniques.

Acknowledgements

Support for this work was provided by the Office of
Naval Research, Cognitive and Neural Sciences Divi-
sion (Grant Number N00 014-91-J-1694) and from the
DoD FY92 Augmentation of Awards for Science and
Engineering Research (ASSERT). The author thanks
Johanna Moore and Martha Pollack for many helpful
discussions and David Allbritton for his advise on ex-
perimental design.

References

Dale, R., and Reiter, E. 1995. Computational inter-
pretations of the Gricean Maxims in the generation of
referring expressions. Cog. Science 19(2):233-263.

Golding, J.; Graesser, A.; and Millis, K. 1990. What
makes a good answer to a question? testing a psycho-
logical model of question answering in the context of
narrative text. Discourse Processes 13:305-326.

Graesser, A.; l~oberston, S.; Lovelace, E.; and Swine-
heart, D. 1980. Answers to why questions expose the
organization of story plot and predict recall of actions.
J. of Verb. Learning and Verb. Behavior 19:110-119.

Grice, tI. P. 1975. Logic and conversation. In Cole,
P., and Morgan, J. L., eds., Syntax and Semantics III:
Speech Acts. New York, NY: Academic Press. 41-58.
Hartley, A., and Paris, C. 1997. Multilingual docu-
ment production: from support for translating to sup-
port for authoring. Machine Translation, Special Issue
on New Tools for Human Traslators 12(1-2):109-129.
Kambhampati, S.; Knoblock, C.; and Qiang, Y. 1995.
Planning as refinement search: a unified framework for
evaluating design tradeoffs in partial-order planning.
Artificial Intelligence 76:167-238.

Kintsch, W., and Van Dijk, T. A. 1978. Propositional
and situational representations of text. Psychological
Review 85:363-394.
Mellish, C., and Evans, 1~. 1989. Natural language
generation from plans. Computational Linguistics
15(4):233 - 249.
Penberthy, J. S., and Weld, D. 1991. UCPOP: A
sound, complete partial order planner for ADL. In
Proceedings of the Third International Conference on
Knowledge Representation and Reasoning.
Rumelhart, D. E. 1977. Understanding and summa-
rizing brief stories. In LaBerge, D., and Samuels, S. J.,
eds., Basic processes in reading: perception and com-
prehension. Erlbaum.

Tare, A. 1977. Generating project networks. In Pro-
ceedings of the International Joint Conference on Ar-
tificial Intelligence, 888 - 893.

Trabasso, T., and Sperry, L. 1985. Causal relatedness
and importance of story events. J. of Memory and
Language 24:595-611.
van den Broeck, P. 1988. The effects of causal relations
and hierarchical position on the importance of story
statements. J. of Memory and Language 27:1-22.
Vander Linden, K., and Martin, J. H. 1995. Express-
ing rhetorical relations in instructional text: A case
study of the purpose relation. Computational Linguis-
tics 21:29-57.
Walker, M., and Moore, J. 1997. Empirical studies in
discourse. Computational Linguistics 23(1):1-12.

Wright, D., and Hull, P. 1990. How people give verbal
instructions. J. of Appl. Cog. Psych. 4:153-174.
Young, R. M.; Pollack, M. E.; and Moore, J. D. 1994.
Decomposition and causality in partial order planning.
In Proceedings of the Second International Conference
on AI and Planning Systems, 188-193.

Young, 1~. M. 1996. Using plan reasoning in the gen-
eration of plan descriptions. In Proc. of the National
Conference on Artificial Intelligence, 1075-1080.

Young, R. M. 1997. Generating Descriptions of Com-
plex Activities. Ph.D. Dissertation, Intelligent Systems
Program, University of Pittsburgh.

