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Abstract

Pet robots are autonomous robots capable of
exhibiting animal-like behaviors, including emo-
tional ones, as they interact with people and ob-
jects surrounding them. As pet robots become
more integrated into our lives, a more natural way
of communicating with them will become neces-
sary. Similarly, they will need to understand hu-
man gestures in order to perceive our intentions
and communicate with us more effectively. In this
paper, we present an extensible, real-time, vision-
based communication system that interprets 2D
dynamic hand gestures in complex environments.
Our strategy for interpreting hand gestures con-
sists of: hand segmentation, feature extraction,
and gesture recognition. To segment the hand
from the cluttered background, this system uses
both motion and color information. The location
of the hand is subsequently tracked as the user
makes the gesture and its trajectory information
is stored in a feature vector. Finally, the gesture is
interpreted using this vector and translated into a
command that the robot understands. We imple-
mented our system on Yuppy, a pet robot proto-
type. Currently, via an external microcamera, we
can navigate Yuppy in unstructured environments
using hand gestures.

Introduction

As pet robots become more integrated into our every-

day lives, it will become essential for them to perceive
and understand our intentions and actions. We will also
want to communicate with them as we do with other
human beings. Yet, to communicate and interact with
robots, we are still required to use specialized input de-
vices such as keyboards, mice, trackers, or data gloves
(Zimmerman & Lanier 1987). Thus, a more natural,
contact-less interface would be desirable to avoid the
need for external devices.

An example of such an interface is speech (Huang,
Ariki, & Jack 1990). However, when we communicate
with each other, we also use gestures, facial expressions,
and poses as supplements or substitutes for speech.
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Clearly, pet robots would perceive our intentions and
communicate with us more effectively if they were able
to interpret human gestures and body language.

One of the most expressive components of body lan-
guage is hand gesture. We use our hands to explore
objects and to express our ideas and our feelings. Thus,
hand gestures provide a very natural interface for us to
communicate with robots.

Recently, there has been a significant amount of re-
search on hand gesture recognition. The two most com-
mon approaches are model-based and feature-based.
Model-based approaches assume a physically valid
model of the hand and attempt to recognize a ges-
ture as a variation of the hand articulation, using tech-
niques such as template matching (Heap & Hogg 1996;
Rehg & Kanade 1994) and neural networks (Nowlan
& Platt 1995). Similarly, a 3D model of a human has
been used to guide stereo measurements of body parts
for human-robot interaction (Kortenkamp, Huber, &
Bonasso 1996). Model-based approaches generally suf-
fer from being computationally expensive due to the
need for high resolution images to ensure accurate seg-
mentation, and the need to cope with variations in in-
tensity, scale, orientation, and deformation.

Feature-based approaches do not assume a 3D model
of the hand but instead use low-level image features.
Some examples are the use of Hidden Markov Models
(HMMs) (Yamato, Ohya, & Ishii 1992), a view-based
approach with dynamic time warping (Darrell & Pent-
land 1993), and the trajectory analysis of hand gestures
coupled with speech recognition for controlling a mobile
robot (Perzanowski, Schultz, & Adams 1998) among
others. These methods may be more suitable for real-
time gesture recognition since low-level image features
can be computed quickly, but they require an effective
segmentation of the hand from the input images.

Accurate segmentation of the hand from the back-
ground is difficult. For this reason, some researchers
have controlled the imaging conditions using special
backgrounds (Darrell & Pentland 1993; Rehg & Kanade
1994), static backgrounds with background subtraction
(Appenzeller, Lee, & Hashimoto 1997; Dang 1996), or
special markers or colored gloves (Starner, Weaver, &
Pentland 1998; Hienz, Grobel, & Offner 1996) to sim-



plify the segmentation task. However, these systems are
not flexible enough for most real world applications.

A combination of motion and color detection has
been used (Appenzeller, Lee, & Hashimoto 1997; Kahn
et al. 1996) to eliminate these constraints. Limitations
still exist in the their use because they are prone to also
detect shadows of moving objects and similarly colored
objects. But, by using these two cues together, the
false-positives are considerably reduced, making this a
more flexible approach for hand segmentation.

This paper focuses on the real-time, visual interpre-
tation of 2D dynamic hand gestures in complex environ-
ments. Our goal is to enable humans to communicate
and interact with a pet robot in a more natural fashion.
The scope of this work is not to create a full lexicon sys-
tem that will facilitate this interaction in every possible
way, but to provide an extensible mechanism to enable
the recognition of new gestures.

The next section of this paper presents an overview of
the system. The following sections explain the different
modules of our system: hand segmentation, feature ex-
traction, and gesture recognition. Then, the results of
our experiments are discussed. Finally, the conclusion
and the future work are provided in the last section.

Overview

The test bed for this system is an emotional pet robot
called Yuppy (Figure 1), currently being developed at
the MIT Artificial Intelligence Laboratory. This robot
is built on top of a 12 inch synchrodrive base and is
equipped with various sensors to increase its awareness
of the environment and allow for better interaction with
humans. Although this robot is meant to be fully au-
tonomous, all perception and control code for this work
temporarily run off-board on a 300 MHz Pentium Pro
workstation. For development purposes an external and
uncalibrated, wide-angle lens Chinon CX-062 color mi-
crocamera was used, similar to the ones on Yuppy.

Figure 1: Yuppy: An emotional pet robot

A precise “language” with a grammar is needed in hu-
man to human communication and some researchers

have worked on recognizing American Sign Languages
(Starner, Weaver, & Pentland 1998; Dorner 1993). Nev-
ertheless, a small set of gestures that is easy to use and
understand will suffice to specify commands to pets.
The initial goal of this system is to enable humans to
direct the robot using hand gestures; thus, the lexi-
con chosen consists of a simple set of basic 2D ges-
ture classes or primitive gestures (Figure 2) that can
be done with a single hand in the direction of the ar-
row. They include linear (vertical, horizontal, and di-
agonal) as well as circular (clockwise and counterclock-
wise) gestures. Each gesture class allows for variations
in the speed of the hand’s motion, different ranges of
hand motions, and small deviations (orientation, trans-
lation) in the trajectory of the hand’s motion.
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Figure 2: Primitive Gestures

Our strategy for interpreting hand gestures consists
of the following three phases:

1. Segment the gesturing hand from the input images
using motion and color information and track it in
real-time.

2. Store the hand’s trajectory information in a feature

vector.

3. Interpret the user’s gesture using the feature vector

and issue a command for the robot to perform the
desired task.

We begin with a detailed discussion of the hand seg-
mentation, followed by the feature extraction and ges-
ture recognition phases.

Hand Segmentation

Hand gesture recognition requires the ability to accu-
rately segment the hand from the cluttered background.
To achieve real-time performance and robustness to
complex backgrounds, we use a segmentation algorithm
based on motion and color information. We currently
assume that users wear long-sleeved clothes and the
robot is static while observing the gesture.

Motion Detection

The most common method for detecting motion is opti-
cal flow, which estimates the relative motion by means
of temporal variations of the brightness pattern (Horn
1986). However, this method is slow in the absence of
specialized hardware.



Another common alternative is to use image differ-
encing. This method determines the edges of the mov-
ing components, and can be computed very fast by
taking the difference between corresponding pixel val-
ues of two subsequent images and selecting the pixels
that pass a certain threshold. However, it also includes
in the result pixels of the background which were cov-
ered in the previous frame. To improve this method,
we use the image difference of three sequential images
(Iy—2, Ii—1,I;) by taking the pixelwise difference be-
tween the RGB (Red, Green, Blue) representations of
the last two and the first two images and selecting the
pixels that satisfy the following condition:

]It - It-l' > # and lIt—l — It_2] >0

where I; is an image frame taken at time ¢ and @ is
a threshold. This method can fail in the presence of
shadows because they move with the entities that create
them, but we solved this problem using color.

Color Detection

The use of color as a basis for skin segmentation has
several advantages. First, human skin colors tend to
cluster in color space (Yang, Lu, & Waibel 1997) due
to their richness in red tones. Second, color is faster
to process compared to other hand features. Third,
it is orientation invariant in the 2D image plane, as-
suming that the image intensity is invariant between
adjacent image frames. Despite these advantages, de-
viations in the color representation can occur due to
changes in the lighting conditions, specular reflections,
motion, and nonlinearities introduced by the camera
and the frame grabber. However, by choosing the right
color space, these deviations can be reduced.

Simple RGB and normalized RGB (r = Tﬂ%’
9= x5 +g 5 0=R +g T 5) thresholding are commonly
used methods (Scheile & Waibel 1995), but they are
not very robust to different skin tonalities and light-
ing conditions. We use the HLS (Hue, Lightness, and
Saturation) color model, a linear transform of the RGB
space. By disregarding the lightness component and
using appropriately defined domains of hue and satura-
tion, robustness to changes in illumination and shadows
can be achieved (Saxe & Foulds 1996).

To obtain bounds for the hue and saturation of hu-
man skin color we used an a priori model of skin color.
We plotted different skin tonalities under different light-
ing conditions in HS space. Under any given lighting
condition, a skin-color distribution can be character-
ized by a multivariate normal distribution (Yang, Lu,
& Waibel 1997). Thus, the thresholds for hue and satu-
rations (Hpmin, Hmazs Smin, Smaz) Were obtained by de-
termining an area (typically two standard deviations)
around the mean values of H and S. For efficiency
in computation, a simple square representation in HS
space is used; thus, a pixel or color pair (h,s) in this
space is skin-colored if it passes the following condition:

(Hpmin < h < Hpay) and (Spin < 8 < Spaz)

As the gesture is made, a sequence of RGB images
(100x100 pixels) is taken by the frame grabber and pro-
cessed in real-time on a frame by frame basis. We cur-

- rently run our algorithms in a user-specified window of

attention which excludes the user’s face.

In our system, motion detection is computationally
less expensive than skin color detection, so it is ap-
plied to the images first, to constrain the search for
skin color to moving regions only. Initially three im-
ages (I;—2, I;—1, It) are obtained from the frame grabber
and processed independently by both the motion and
the skin-color detectors. Motion is detected by taking
the image difference of these three images. The result
is stored in a binary image, I,,. To speed up the skin-
color detection, we also compute a bounding box that
surrounds all moving components.

The HLS representation of I;—; (this image reflects
the moving components as a result of the image dif-
ferencing) is then used to determine the skin-colored
patches inside the bounding box. The result is stored
in a binary image, I., where 1 indicates skin color and
0 other colors. This binary image is smoothed and an
8-neighbor connected components algorithm is used to
cluster each skin-colored region.

After the initial processing on the input images, the
results of the motion and skin-color detection are com-
bined by superimposing I, on I,,,. For each skin-colored
region in I, a bounding box is placed around the mov-
ing pixels, to obtain a moving skin-colored region. The
regions with very few moving pixels (noise) are dis-
carded because they are usually similarly colored ob-
jects (e.g. a pink chair, a light-pink phone) in the im-
age’s background. The others are passed through func-
tion f which segments the hand based on the size of the
skin-color region and the amount of motion within it:

f(moving_pizels, skincolored_pizels) =
¢1 * moving_pizels + cp * skincolored_pizels

where ¢; and cs are constants that determine the
weight each detector is given in segmenting the hand.
This function allows the flexibility of adding new detec-
tors to the system as well as using probability instead
of a simple score to segment the hand.

The hand is chosen to be the region with the highest
score (i.e. the skin-colored region that has the largest
area and the greatest number of displaced pixels). The
hand’s centroid is determined and its motion is tracked
in real-time as new image frames are processed. If lit-
tle motion is detected or the area of the moving skin-
colored region with the highest score is very small, the
previously computed centroid is reused. Similarly, if
the Euclidean distance between the hand’s centroid of
the previous image frame and the current centroid does
not exceed a certain threshold, the current centroid is
considered the new location of the hand; otherwise, the
previous centroid is kept.

An illustration of the hand segmentation is shown in
Figure 3. Image (a) shows the last image frame taken
by the camera as the person makes the gesture in front



of the robot. The bounding box delimits the attention
window where gestures are recognized. Image (b) shows
the results of the image differencing and the bounding
box surrounding the moving components. Image (c)
shows skin-colored areas inside the bounding box, in-
cluding the pink chair in the background. Image (d)
shows all the moving skin-color regions. The gesturing
hand is selected from among these regions and displayed
in image (e). Finally, a crosshair is drawn on the cen-
troid of the hand in image (a).

Figure 3: Hand segmentation

Feature Extraction

The information about the hand’s trajectory needs to
be encapsulated in a representation that can be used
to identify the appropriate gesture. To achieve this, we
need to first determine the beginning and the end of a
gesture. The capability of determining when a gesture
ends and a new one begins is called gesture segmenta-
tion and is a major problem in gesture recognition.
Different approaches have been taken by the research
community to solve the segmentation problem. Exter-
nal devices have been used (e.g. clicking and releasing
a mouse button (Rubine 1991)), but the need for these
devices is cumbersome and unnatural. A fixed starting
posture for each gesture (Baudel & Beaudouin-Lafon

1993) is not scalable because every gesture needs to
have a different starting posture. The use of hand ten-
sion was proposed by (Harling & Edwards 1996), but it
does not work on a sequence of dynamic gestures. This
problem can be solved by using HMMs given that seg-
mentation between gestures is done during the recogni-
tion process. Nevertheless, HMMs are very difficult to
use because of their demanding training phase.

Our system assumes that once the hand’s motion ex-
ceeds a certain velocity, the person has started a ges-
ture. As the hand moves, the vertical and horizontal
displacements (dz, dy) of the hand’s centroid in the im-
age space are calculated and stored in a feature vector
until the hand stops moving for a short period of time
(usually 2-3 seconds).

Gesture Recognition

In human communication, gestures are accompanied by
attitudes and emotions. Thus, being able to recognize
these attributes along with the type of gesture made
would be desirable. We provide a gesture recognition
system that is capable of interpreting a very important
gesture attribute — its speed.

Gesture interpretation is achieved by analyzing the
feature vector created from the hand’s trajectory. In the
case of linear gestures, the (dz,dy) displacements clus-
ter around fixed axes in the dz-dy plane: vertical ges-
tures around the dy axis, horizontal gestures around the
dz axis, and diagonal gestures around the two bisecting
axes (45° with respect to the dz-dy axes). The direction
of motion is determined by the side of the axis (posi-
tive/negative) on which clustering occurs (e.g., verti-
cal upward gestures have (dz, dy) clustering around the
positive side of dy, and vertical downward gestures clus-
ter around the negative side of the dy axis). Hence the
(dz,dy) displacements for the 8 linear primitive ges-
tures cluster in 8 distinct regions of the plane. The
centroid of such a cluster, along with the origin of the
dz-dy plane, determines a velocity vector whose mag-
nitude indicates the speed of the gesture.

For circular gestures, however, the (dz, dy) displace-
ments are spread in the plane. If the centroid of these
displacements coincides with the origin, we conclude
that the gesture is circular. The direction of motion
(clockwise/counterclockwise) is deduced from the time
sequence of the displacements in the feature vector.

First, the feature vector is scanned and any element
that contains the same set of signs for both dz and dy
as the previous element in the vector is discarded. The
result of this operation is that neighboring elements in
the vector have different signs for dz and dy. Second,
the signs of every sequence of four (dz,dy) pairs are
compared with a time-sequence model for the clockwise
motion (- +, + + , + -, ——) and counterclockwise motion
(+ + -+ -—-, +-). The sequences reflect the hand’s
trajectory in time on the dz-dy plane. The direction
of the circular gesture results from the time-sequence
model that matches the feature vector’s information.



Each primitive is assigned a label that distinguishes
it from other primitives. After determining the basic
gesture made by the user through the analysis of the
feature vector, this information is represented in a more
compact way, using a descriptor. The descriptor of a
gesture is an array that contains as its only element the
label of the identified primitive.

Model gestures are stored in a database containing
user-specified model gestures and their corresponding
meanings or commands for the pet robot (e.g., a circular
clockwise motion commands the robot to rotate in place
clockwise). Gestures are stored as descriptors in the
database. Once the descriptor produced from the user
gesture is obtained, it is queried in the database. If
such a gesture was found in the database, the command
associated with the gesture is returned and issued to the
robot; otherwise, the user gesture is ignored.

The simple gesture classes introduced above can be
combined to create new ones, allowing for an extensi-
ble hand gesture recognition system. To segment these
different primitives in one gesture, a hand pause is used
between primitives. This pause is shorter than the one
used for segmenting different gestures. When the ges-
ture is composite, the feature vector contains the dis-
placements of the hand’s centroid for each primitive,
separated by a marker. The descriptor for such a ges-
ture will contain sequentially the different labels for
each primitive in the composite gesture. This flexibil-
ity allows new gestures containing any number of prim-
itives with new different meanings to be created and
stored in the database as needed.

Experimental Results

To assess the accuracy of our system, we performed
an initial experiment where 14 subjects with different
skin tonalities (Asians, Caucasians, Hispanics, and In-
dians; Black subjects were not available) were asked
to perform 5 times a sequence of 16 gestures shown in
Figure 4. The environment was a crowded lab with a
variety of objects spread throughout.

The accuracy rate obtained was above 90% for each
primitive gesture class and slightly above 70% for com-
posite gestures. These results demonstrate the viability
of our system for unstructured environments and its ro-
bustness to different skin tonalities and varying lighting
conditions. We used a commodity 300 MHz Pentium
Pro system with a Matrox Meteor frame grabber, and
achieved 15 frames per second (this includes processing
and redrawing the frame on the computer screen). Al-
though this speed is sufficient, higher performance can
be obtained using faster hardware.

A variety of reasons explain why the obtained accu-
racy was not higher. First, we had slight distortions
of diagonal motions due to the camera tilt, as well as
tracking failures when the hand left the camera’s field
of view and when other bare parts of the user’s body
exhibited a lot of motion. Second, some subjects erred
when making diagonal motions or composite gestures.

In other cases, the beginning of gestures was not de-
tected when subjects started the motion too slowly.
Third, the recognition success for composite gestures is
geometrically dependent on the recognition of each one
of its primitives. Lastly, the lower accuracy for com-
posite gestures is largely due to them being less natural
for humans, making it difficult for subjects to execute
them correctly.

Gesture Accuracy Gesture Accuracy
(%) (%)
f front 100.0 rotate-right 90.0
— right 97.1 rotate-left 95.7
¥ left-back 100.0 f‘ calm-down 91.4
A | righe-£ront 98.6 m dance 80.0
* back 100.0 ;<_:: hi 82.9
\ left-front 97.1 m make-square 72.9
\ right-back 95.7 & make-triangle 71.4
< left 100.0 n make-omega 80.0

. . _ # of correct gestures
Figure 4: Gestures accuracy=g—-5-0 gestures—=(14x5)=70

Some of these problems are not practical concerns
given that, when humans interact with a pet robot,
they tend to be more cooperative. Humans position
themselves close enough to the robot so that it can
pay attention to them. They also make the gestures
carefully, for the robot to understand them, and use
the robot’s behavior as feedback for improving the way
they make the gestures. During the experiment, we ob-
served how the gesture recognition’s accuracy for most
subjects improved as they obtained visual feedback.

Our system already allows people to interact with
Yuppy in a more natural fashion. Yuppy’s current in-
terface consists of an off-board camera, via which any
person can easily navigate the robot around the lab us-
ing each primitive gesture as a command (e.g., an up-
ward hand motion commands the robot to go front, a
clockwise circular motion commands the robot to rotate
in place clockwise).

It is important for the robot to interpret correctly
what the gestures mean and be able to respond to them
accordingly, but 100% accuracy in gesture interpreta-
tion is not really necessary. Even communication be-
tween humans is sometimes ambiguous, and we expect
the communication between humans and animals to be
even more so. People expect objects to react immedi-
ately, predictably and consistently; however, they are
more tolerant with humans and animals. Humans can
accept that a pet robot might not have perceived or
correctly interpreted the request; they expect and even
prefer unpredictable behaviors from their pets.



Conclusion

We have presented a starting point toward understand-
ing how vision can be used to recognize human gestures
and provide a natural interface to enhance human-robot
communication. Our system explored the use of fast al-
gorithms and simple features to determine the hand’s
trajectory in real-time using commodity hardware.

Our system was tested on Yuppy, an emotional pet
robot, and with the help of an off-board camera we were
able to navigate the robot in unstructured environments
using hand gestures. Initial evaluation of this system
resulted in above 90% accuracy for recognition of sin-
gle primitive gestures and above 70% for recognition of
composite gestures, demonstrating the viability of our
approach. But, we believe that better methods should
be devised to further evaluate this behavioral system.

This work provides a basic interface for future be-
haviors implemented on Yuppy, such as approaching a
person, searching for a bone, fetching the newspaper,
etc. Future work will address additional competency
in reliably differentiating the hand from other moving
parts of the body and continuously tracking the motion
of the hand, coping with simultaneous motion of both
the robot and the human, and supporting simultaneous
interaction of multiple people with the robot. A more
general gesture recognition system would include the
interpretation of hand poses and 3D gestures. We are
also interested in gesture learning, the robot’s reaction
to both what it perceives and how it feels, and the in-
terpretation of humans’ attitudes and emotions implicit
in their gestures.
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