
DISTANCE-SAT: Complexity and Algorithms

Olivier Bailleux and Pierre Marquis
CRIL/Universit~ d’Artois

rue de l’Universit~ - S.P. 16
62307 Lens Cedex - FRANCE

e-mail: {bailleux, marquis}@cril.univ-artois.fr

Abstract

In many AI fields, the problem of finding out a solution
which is as close as possible to a given configuration
has to be faced. This paper addresses this problem
in a propositional framework. The decision problem
DISTANCE-SAT that consists in determining whether a
propositional CNF formula admits a model that dis-
agrees with a given partial interpretation on at most d
variables, is introduced. The complexity of DISTANCE-
SAT and of several restrictions of it are identified. Two
algorithms based on the well-known Davis/Putnam
search procedure are presented so as to solve DISTANCE-
SAT. Their empirical evaluation enables deriving firm
conclusions about their respective performances, and
to relate the difficulty of DISTANCE-SAT with the diffi-
culty of SAT from the practical side.

Introduction

In many AI fields, the problem of finding out a solu-
tion which is close as possible to a given configuration
must be faced. Such a configuration typically encodes
some form of preference knowledge (e.g., an expected
state, or a normal state) that conflicts with the hard
constraints of the problem, represented as a knowledge
base. For instance, in the consistency-based diagno-
sis framework (Reiter 1987), the expected state of the
components of a device is the one where none of them
is faulty. Whenever a failure occurs, such a diagnosis
no longer is possible: assuming that every component
behaves as its model of correct behaviour requires it
conflicts with the observations that have been made. In
this situation, this assumption must be revised (some
components are to be assumed faulty) so as to restore
consistency. Since many fault assumptions can typi-
cally be made in order to achieve this goal, a princi-
ple of parsimony is often adopted: among the possible
diagnoses, the selected ones are those including a min-
imal set (w.r.t. cardinality or set-inclusion) of faulty
assumptions. Thus, the diagnoses that are "not so far"
from the expected one are preferred to the remaining

Copyright (~) 1999, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved

ones: one-fault diagnoses are first considered, then two-
faults diagnoses, and so on.

In this paper, this problem is addressed within a
propositional framework. The knowledge base is repre-
sented as a propositional CNF formula ~, the expected
configuration as a partial interpretation PI, and we are
interested in finding out a model of ~ that disagrees
with PI on at most d variables. We call DISTANCE-SAT
the corresponding decision problem.

In the following, the complexity of DISTANCE-SAT is
identified in the general case and in some restricted
cases. Like the well-known SAT problem (which can
be viewed as a restriction of it), DISTANCE-SAT is NP-
complete. However, DISTANCE-SAT is somewhat more
difficult than SAT, in the sense that the tractable re-
strictions for SAT do not typically give rise to tractable
restrictions for DISTANCE-SAT.

Then, two algorithms for solving DISTANCE-SAT are
presented. The first one, DPdis~ance, is a straightfor-
ward adaptation of the Davis/Putnam search proce-
dure. To every node of the search tree is associated
a value that measures the disagreement between the
given configuration and the partial interpretation that
corresponds to the node (and can be read off directly
by picking up the literals from the branch that ends
up to the node under consideration). Whenever this
value exceeds the given maximal bound d, the algorithm
backtracks. Our second algorithm, DPdis~ance+lasso, is
a variant of DPdis~ance. The only difference between
them lies in the branching rule. While the branch-
ing rule used in DPdistance is a standard, "efficient",
branching rule for SAT, the branching rule used in
DPdistance+lasso is much more oriented towards the sat-
isfaction of the distance constraint. The objective is
to lasso in priority a model that is close to the given
configuration. Thus, among the clauses that are com-
pletely falsified by the given configuration, those of min-
imal length are considered. Among the variables of
these clauses, one of those that maximize the standard
branching rule heuristic (used in DPdistance) is selected
as the branching variable.

Both algorithms are empirically assessed on many
random 3-CNF instances (generated using the now
classical "fixed-length clauses model" (Chv~tal & Sze-

From: AAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved. 



mer6di 1988)), for several values of the ratio num-
ber of clauses/number of variables, for several sizes
of the given configuration, and several values of the
maximal disagreement number d. When d is small,
DPd~stance+lasso performs much better then DPd~sta~ce.
Contrastingly, when d is large, DPdistance is the best
performer.

The rest of this paper is organized as follows. Section
2 gives some formal preliminaries. Section 3 presents
DISTANCE-SAT and its computational complexity. Two
algorithms for solving DISTANCE-SAT are given in Sec-
tion 4. Section 5 presents an empirical evaluation of
these algorithms. Section 6 concludes this paper.

Formal Preliminaries
Let PROPps denote the propositional language built
up from a denumerable set PS of propositional sym-
bols (also called variables) and the connectives in the
standard way. The elements of PROPps are called for-
mulas. The size of a formula ~, noted I~1 is the num-
ber of signs (symbols and connectives) used to write it.
Var(~) is the set of propositional variables occurring
in ~.

Formulas are interpreted in the classical way. An
interpretation of a formula ~ is a mapping I that as-
sociates every propositional variable of Var(~) to one
of the two truth values of BOOL = {true, false}. A
partial interpretation of ~ is a mapping PI that asso-
ciates some propositional variables of Var(~) to one of
the two truth values of BOOL. Dom(PI) C_ Var(~)
denotes the domain of PI. A complete partial inter-
pretation is just an interpretation. In the following,
(partial) interpretations are represented as sets of lit-
erals. A positive literal x (resp. a negative literal -~x)
appears in PI iff PI(x) = true (resp. PI(x) = false).
An interpretation I is an extension of a partial interpre-
tation PI iff PI C I holds. A clause is said completely
falsified by a partial interpretation whenever every lit-
eral of the clause appears in the partial interpretation
with the opposite sign.

A k-CNF of a formula is a CNF formula in which
every clause contains at most k literals. A formula is
Horn CNF (resp. reverse Horn CNF) iff it is a CNF
formula s.t. every clause in it contains at most one
positive (resp. negative) literal. A Krom formula is 
2-CNF formula, i.e., every clause in it contains at most
two literals.

We assume that the reader is familiar with some basic
notions of computational complexity (see e.g., (Garey
& Johnson 1979)).

Definition and Complexity

Before defining DISTANCE-SAT in a formal way, we first
need the definition of disagreement between two partial
interpretations:

Definition 1 (disagreement)
A partial interpretation PI1 is said to disagree with a
partial interpretation PI2 on at most d variables iff the

number of variables x of Dom(PI1) N Dom(PI2) 
PIl(x) ~ PI2(x) is less than or equal to 

We are now ready to define DISTANCE-SAT.

Definition 2 (DISTANCE-SAT)
DISTANCE-SAT is the following decision problem:

¯ Input: A CNF formula ~, a partial interpretation
PI, and a non-negative integer d.

Q Question: Does there exist a model I of ~ s.t. I
disagrees with PI on at most d variables?

For every instance of DISTANCE-SAT, we call the con-
straint "I disagrees with PI on at most d variables" its
distance constraint.

DISTANCE-SAT is closely related to the problem of re-
pairing a supermodel (Ginsberg, Parkes, & Roy 1998).
A (St, S2b)-supermodel of a propositional formula E 
a model I of ~ s.t. if the variables of any subset of
St of size at most a are flipped in I, a model of ~ can
be obtained by flipping in I the variables of a disjoint
subset of Sb of size at most b. Let L~ be a set of literals
of size at most a s.t. every literal l from it is built up
from a variable from S~’ and I ~ I. Repairing I when it
is modified as indicated by L~ consists in finding out a
model of ~ simplified by L~ that disagrees on at most
b variables with the restriction of I to the variables of
Sb. Accordingly, our algorithms for DISTANCE-SAT can
directly be used to determine such repairs.

Proposition 1 (complexity of DISTANCE-SAT)
The complexity of DISTANCE-SAT and of several restric-
tions of it obtained by considering:

¯ a knowledge base ~ ]or which SAT is tractable,

¯ a fixed maximal distance d

are reported in the following table.

KB anyd I afixedd I

any 51 P-complete 51 P-complete
Horn NP-complete in P

reverse Horn NP-complete in P
Krom NP-complete in P

Clearly enough, SAT, the satisfiability problem of a
CNF formula is a restriction of DISTANCE-SAT (tak-
ing PI = ~ (or d = IVar(E)l) so as to reduce SAT
to DISTANCE-SAT is sufficient to prove the 51P-hardness
of DISTANCE-SAT). Hence, it is not surprising that
DISTANCE-SAT is intractable in the general case, i.e.,
there is no known polynomial algorithm to solve it (and
there can be no such algorithm unless P --- 51P). Never-
theless, DISTANCE-SAT is not much more difficult than
SAT since it belongs to 51P. Indeed, verifying that a
guessed interpretation disagrees with PI on at most d
variables can easily be achieved in polynomial time.

Contrastingly, focusing on the standard fragments of
propositional logic where SAT is known as tractable is
not sufficient to ensure the polynomiality of DISTANCE-
SAT in the general case. Both 51 P-hardness of the re-
strictions where ~ is Horn, reverse Horn or Krom are



consequences of the NP-hardness of DISTANCE-SAT un-
der the restriction where ~ is a 2-CNF monotone for-
mula, i.e., every literal of ~ has only either positive
occurrences or negative occurrences in ~. The 51P-
hardness of this last problem is a consequence of the fact
that the well-known HITTING SET problem - that is 51P-
complete (Karp 1972)- can be polynomially many-one
reduced to it. Thus, DISTANCE-SAT can be considered
at least as difficult as SAT.

As Proposition 1 illustrates it, focusing on tractable
KBs is sufficient to obtain tractable restrictions of
DISTANCE-SAT as long as d is considered as a fixed con-
stant. Some other restrictions can be considered so as
to achieve tractability. Thus, while imposing PI to be
a complete interpretation does not lower the complex-
ity of DISTANCE-SAT in the general case (even when
is s.t. SAT is tractable), determining whether ~ has 
model that disagrees with a complete interpretation I
on at most d variables, where d is a constant, is in P. To
be more precise, if k is the maximal length of clauses of
~, there exists a O(]Y.] * a) time algorithm that solves
this last problem (cf. Section 4).

Interestingly, as a by-product of Proposition 1, some
new results about the complexity of the satisfiability
issue for some extended propositional languages can
be derived. Given a propositional language PROPps,
let a cardinality constraint be an ordered pair ({/1, .-.,
lk }, m), where each li (i E 1 .. k) is a literal of PROPps
and m is a non-negative integer that is less than or equal
to k. Given an interpretation I, the semantics of such
a cardinality constraint in I is true iff at least m lit-
erals from {11 .... , Ik} belong to I (i.e., are interpreted
as true in I as well). A cardinality formula is a (finite)
conjunction of cardinality constraints (Benhamou, Sa’fs,
& Siegel 1994) (Van Henteryck & Deville 1991).

Clearly enough, expressing that we are looking for a
model of ~ that disagrees with PI -- {ll, ..., lk} on
at most d variables amounts to look for a model of the
formula obtained by adding to the clauses of ~ the sin-
gle cardinality constraint ((ll .... , Ik},k - d). Many
more clauses, but a polynomial number of it, are re-
quired to reduce DISTANCE-SAT to SAT in the general
case 2. Thus, as a direct consequence of Proposition 1,
checking whether a cardinality formula ~ is satisfiable
is NP-complete, even when ~ contains only (classical)
clauses (i.e., with m = 1) that form a Horn CNF for-
mula (or a reverse Horn CNF formula or a Krom one),
plus one cardinality constraint with m ~ 1.

Two Algorithms for DISTANCE-SAT

In this section, two algorithms for DISTANCE-SAT are
presented. These algorithms are based on the standard
Davis / Putnam search procedure for SAT (Davis, Lo-
gemann, & Loveland 1962). This choice is motivated
by the two following facts:

2This comes from the fact that SAT is NP-complete: every
problem in NP can be polynomially reduced to it.

¯ A naive approach that would consist in enumerat-
ing in a successive way the interpretations that do
not disagree with PI on at most d variables is not
computationally feasible in the general case, even for
quite small values of n, the number of variables of E,
and d. For instance, with n = 100, d = 10 and PI
is any complete interpretation, more than 1013 inter-
pretations should be considered, which makes such a
naive enumerative technique far from being practical.

¯ The best complete algorithms for SAT that we can
find in the literature are based on the Davis /
Putnam search procedure, and SAT is a restriction
of DISTANCE-SAT. Especially, if ~ ¢ SAT, then
VPIVd, (E, PI, d) ¢ DISTANCE-SAT.
Our first algorithm, DPdistance, mainly is the stan-

dard Davis/Putnam search procedure, equipped with
a counter that indicates for every node of the search
tree the number of variables on which the partial in-
terpretation associated to that node disagrees with the
given configuration. As soon as the value of the counter
exceeds d, the algorithm backtracks.

Procedure DPdist .... : BOOLEAN
Input : an instance (E, PI, d) of DISTANCE-SAT.
Output : true iff (E, PI, d) E DISTANCE-SAT.
Begin

unit_propagate(E);
if disagree(Pie, PI) > d then return (false);
if the empty clause is generated then return (false);
else if all clauses axe satisfied then return (true)

else begin
x := branching(E, Pie);
return (DPdist .... (~ A x) or

DPdist .... (~ A ~X));
end;

End
In this algorithm, PIc is the current partial inter-

pretation, i.e., the one associated to the current node
of the search tree. PIc gathers all the variables that
have been fixed from the root of the tree to the cur-
rent node. unit_propagate is a function that per-
forms unit-propagation through ~. PIc is updated by
unit_propagate.

It is well-known that the design of a branching
rule is a critical factor in the performance of any
Davis/Putnam-like algorithm for SAT. Our branching
function implements the branching rule given in
(Dubois et al. 1996), that is one of the best performer
for SAT. To be more precise, the weight of a literal l
of a formula 12 is given by w(1) = ~-]~vce~,tec-ln(1 -

1/(21cl - 1)2) and the score of a variable x by s(x) 
w(x) + w(-~x) + 1.5min(w(x), w(~x) A variable max-
imizing s is elected as the branching variable.

Clearly enough, DPdistance is very close to the stan-
dard Davis / Putnam procedure. Actually, the unique
difference between them is the additional backtrack in-
struction that is triggered as soon as the current par-
tial interpretation PIc disagrees with PI on more than
d variables. Accordingly, the design of DPdistance is
mainly guided by the purpose of taking advantage of



a state-of-the-art algorithm for SAT. The distance con-
straint is not exploited in an aggressive way, but only
in a passive way.

Our second algorithm DPdistance+lasso is a variant
of DPdis*ance in which the branching function that is
used does not correspond to a standard branching rule
for SAT but has been especially tailored for DISTANCE-
SAT. The purpose is to take advantage of both the best
branching rules that are available for SAT but also to
exploit the distance constraint much more aggressively
than in DPdlstance. Unlike the branching function, all
the variables occurring in ~ (simplified by PIc) are not
considered by the branchingtasso function. Only the
variables that appear in the set Splc of the clauses of

simplified by PIc that are completely falsified by PI,
and are of minimal size, are taken into account. Then,
the weights of these variables are computed using the
same weight function as in branching, and a variable
with a maximal weight is elected. Remark that the
idea of choosing the branching variable among the vari-
ables which occur in clauses that are falsified by a refer-
ence interpretation appears in SCORE(FD/B), a local
search-based complete algorithm for SAT (Chabrier, Ju-
liard, & Chabrier 1995).

Let 7 be a clause of Splc and x a variable of 7- When
x will be assigned the sign it has in 7, 7 will become sat-
isfied by the updated partial interpretation PIc. When
x will be given the opposite sign, the resulting simpli-
fied clause (i.e., 7 in which the literal corresponding
to x has been removed) is still completely falsified by
PI, and necessarily is of minimal size. This will force
the remaining variables of 7 to be among the candi-
date variables for branching at the next choice node.
Interestingly, whenever PI is a complete interpretation
and the size of the longest clause of ~ is bounded by
a constant k, only O(kd) choice nodes are to be gen-
erated by DPdistance+tasso, provided that a variable of
SPIc is always elected as the branching variable. We
call such a property the lasso effect. When the lasso
effect works, DPd~8~ance+l .... runs in O(]~] * kd) time,
i.e., the number of clauses occurring in ~ influences
the computational performance of DPdistance+lasso by
only a linear factor. This is far from being expected for
DPdisfance. Though the lasso effect is not guaranteed
when PI is not a complete interpretation, we will show
in the following section that DPdis$ance+lasso neverthe-
less proves "efficient" in many situations where PI is
not complete.

The design of the branchingl~8,o function is done so
as to take advantage of both the lasso effect (consider-
ing only the variables of SPit), and the best branch-
ing rules for SAT (the variables are ordered so as to
select one that maximizes a standard weight function).
In particular, since the lasso technique simply consists
in filtering out some candidate variables before apply-
ing to them any branching function, several branching
functions for SAT Call be considered, giving rise to sev-
eral branchingl~**o functions. Let us also note that
the distance constraint can be exploited in a more in-

prop. sat ~

0.18 f /~x]~ ]
0.6 [~
(1.4

o.02

0 ~

~60

10.~ 30 distance

Figure 1: Proportion of satisfiable 100 variables 3-CNF in-
staa:lces of DISTANCE-SAT, as a function of both the number
of clauses and the bound d, given a complete reference in-
terpretation.

tegrated way within the branching function, especially
for the propagation-based ones, like the one used in
SATZ (Li & Anbulagan 1997). Propagating a literal
through a CNF formula results in a partial interpre-
tation (encoding the literals that have been fixed) and
a corresponding simplified CNF formula. The value of
the disagreement between such a partial interpretation
and the reference one, and the tightness of the asso-
ciated simplified formula are two parameters that can
be used to evaluate heuristically whether propagating
a literal is promising for DISTANCE-SAT.

Finally, it is worth noting that both DPdi**~ce and
DPdis$ance+lasso can be easily modified to address the
function problem associated to DISTANCE-SAT, i.e., to
return a model of ~ that disagrees with PI on at most
d variables whenever such a model exists. Instead of
returning true when an implicant of ~ is found, it is
sufficient to return any extension of the current partial
interpretation PIc.

Empirical Evaluation
All the results presented hereafter concern random 3-
CNF formulas ~ generated under the "fixed-length
clauses" model (Chvgtal & Szemer@di 1988): literals
are drawn under uniform conditions and clauses with
redundant variables are rejected. Without loss of gener-
ality, the variables of Dom(PI) are the first ones w.r.t.
the lexicographic order, and they are assigned to false.
Every DISTANCE-SAT instance can be turned into an in-
stance for which this assumption is satisfied, through a
simple renaming of its literals.

The computational difficulty of a DISTANCE-SAT in-
stance w.r.t, any of our two algorithms is quantified
as the size of the corresponding search tree, where both
unary and binary nodes are taken into account; in other
words, it is evaluated as the number of variable assign-
ments that are required to solve the instance. This
difficulty measure does depend neither on the imple-
mentation of the algorithms nor on the computer used
to perform the experiments.

Figure 1 gives the proportion of satisfiable 100 vari-



]as$o m
standard ...........

#assignments

lo+006 ...----.. ..........:""" ’--..... .........
100000 ~0

1013
10

6l)

10~ ~30 distance

Figure 2: Average number of assignments required by
DPaistance and DPdist,~nce+lasso to solve random 100 vari-
ables 3-CNF instances of DISTANCE-SAT with complete ref-
erence interpretations.

ables instances, as a function of both the number of
clauses of ~ and the bound d, given a complete refer-
ence interpretation (IDom(PI)] = 100). A sharp tran-
sition appears between the satisfiable and the unsatis-
fiable regions. When d is large, the transition appears
at the well-known satisfiability threshold for SAT, i.e.,
when number of variables / number of clauses = 4.25
(Cheeseman, Kanefsky, & Taylor 1991) (Crawford 
Auton 1996). When d decreases, less clauses are re-
quired to produce unsatisfiable instances.

Figure 2 compares the average number of variable as-
signments required by DPdistance and DPdistance+tasso
to solve random 100 variables instances, for several
number of clauses and several d. PI is a fixed complete
interpretation (IDom(PI)l 100). Cl early enough, th
lasso branching rule outperforms the standard one for
many instances among the most difficult ones (100 and
200 clauses, d between 10 and 30).

This is confirmed by Figure 3, where the ratios be-
tween the number of variable assignments required by
DPdistance to the number of variable assignments re-
quired by DPdistance-t-lasso are reported for the same
instances as those considered in Figures 1 and 2. Con-
trastingly, for the largest values of d and the number
of clauses, the standard branching rule is slightly bet-
ter than the lasso one. As additional interesting infor-
mation, Figures 1 and 2 show that the most difficult
instances are near the transition from satisfiable to un-
satisfiable for DISTANCE-SAT, and are much more dif-
ficult than the corresponding SAT instances (i.e., those
obtained by ruling out the distance constraint).

Figure 4 gives the proportion of satisfiable 100 vari-
ables instances of DISTANCE-SAT for a fixed d = 20, as
a function of the number of clauses and IDom(PI)l.
Figure 5 compares the average numbers of variable as-
signments needed by DPaistance and DPdistance+l~88o to
solve the instances that have been considered in Figure
4. Figure 6 gives the ratio of the number of variable
assignments required by DPdista~e~ to the number of
variable assignments required by DPdistance+tasso for
solving the instances considered in Figures 4 and 5.

lasso gain

~006°

$ 30 distance

Figure 3: Ratio between the number of assignments re-
quired by DPdist .... to the number of assignments required
by DPdistance+t,~8~o, as a function of both the number of
clauses and the bound d. 100 variables 3-CNF formulas,
complete reference interpretation.

Figure 4: Proportion of satisfiable 100 variables 3-ONF
instances of DISTANOE-SAT, as a function of both the number
of clauses and the number of fixed variables in the reference
interpretation, given d = 20.

lassom
.-- standard ...........

#assignments
."- /7 f

I e+O06 ./" ../ ......
100000 /" ~ S .--" .... --

10000 .--" ~ : ---" .---’"
1 ~ " : .-./ ..--""

Figure 5: Average number of assignments required by
DPdi~t .... and DPdist,~nce+t .... to solve 100 variables 3-
CNF instances with partial reference interpretations, with
d=20.



lasso gain

lO

1

0.1

#clauses ~ ~

~100

~ 0~ #fixed

Figure 6: Ratio between the number of assignments re-
quired by DPdistance to the number of assignments required
by DPdistanee+t~sso, as a function of both the number of
clauses and the number of fixed variables in the reference
interpretation. 100 variables 3-CNF formulas, d = 20.

eo ....
//1I e+O07

i

le+006

c 100t700._~

IO0
40 60 80 100 120 140 160 180 200

#variables
Figure 7: Performances of DPdlstanee and DPdlstance+t ....
in solving 3-CNF instances of DISTANCE-SAT, as a function
of the number n of variables, d is fixed to n/lO and the
number of clauses to 2n.

At the light of these three figures, it appears that the
most difficult instances for DISTANCE-SAT are near its
transition from satisfiable to unsatisfiable. The lasso
branching rule outperforms the standard one when the
number of clauses is small, even when the partial inter-
pretation PI is far from being complete (e.g., d = 150
and IDom(PI)l = 60).

Finally, Figure 7 compares the performances of
DPdistance and DPdistance+lasso in solving instances of
DISTANCE-SAT, as a function of the number n of vari-
ables occurring in them. d is fixed to n/lO, and the
number of clauses to 2n. These instances of DISTANCE-
SAT appear as extremely difficult; in particular, they
are much more difficult than their corresponding SAT
instances. Clearly enough, the lasso branching rule
pushed back the intractability of these instances.

Conclusion

The main contribution of this paper is the identifica-
tion of the complexity of DISTANCE-SAT and of several
restrictions of it, as well as two algorithms for solving

it. An empirical evaluation of these two algorithms has
been conducted, allowing some conclusions about their
respective applicability to be drawn.

Because instances of DISTANCE-SAT can be easily
encoded as instances of the satisfiability problem for
propositional cardinality formulas, it would be interest-
ing to extend our algorithms so as to make them able
to take simultaneously several distance constraints into
account. This is an issue for further research.

Acknowledgements

This work has been supported in part by the Ganymede
II project of the "Contrat de Plan Etat/R4gion Nord
Pas-de-Calais" and by the IUT of Lens.

References

Benhamou, B.; SKis, L.; and Siegel, P. 1994. Two proof
procedures for a cardinality based langage in proposi-
tional calculus. In Proe. o/STACS’94, 71-84.
Chabrier, J.; Juliard, V.; and Chabrier, J. 1995.
SCORE(FD/B) an efficient complete local-based
search method for satisiability problems. In Proc. of
the CP’95 Workshop on Solving Really Hard Problems,
25-30.
Cheeseman, P.; Kanefsky, B.; and Taylor, W. 1991.
Where the really hard problems are. In Proc. o/IJ-
CAI’91, 331-337.
Chv~tal, V., and Szemer~di, E. 1988. Many hard
examples for resolution. JACM 35(4):759-768.

Crawford, J., and Auton, L. 1996. Experimental re-
sults on the crossover point in random 3SAT. Artificial
Intelligence 81:31-57.
Davis, M.; Logemann, G.; and Loveland, D. 1962. A
machine program for theorem proving. CACM 5:394-
397.
Dubois, O.; Andre, P.; Boufkhad, Y.; and Carlier, J.
1996. SAT versus UNSAT. Trick and Johnson. 415-
436.
Garey, M., and Johnson, D. 1979. Computers and in-
tractability: a guide to the theory of NP-completeness.
Freeman.
Ginsberg, M.; Parkes, A.; and Roy, A. 1998. Super-
models and robustness. In Proc. o/AAAI’98, 334-339.
Karp, R. 1972. Reducibility among combinatorial prob-
lems. New York: Plenum Press. chapter Complexity
of Computer Computations, 85-103.

Li, C., and Anbulagan. 1997. Heuristics based on
unit propagation for satisfiability problems. In Proc.
o/ IJCAI’97, 366-371.
Reiter, R. 1987. A theory of diagnosis from first prin-
ciples. Artificial Intelligence 32:57-95.
Van Henteryck, P., and Deville, Y. 1991. The cardinal-
ity operator: A new logical connective for constraint
logic programming. In Proc. o/ICLP’91, 745 749.




