
Initial Experiments in Stochastic Satisfiability

Michael L. Littman
Department of Computer Science

Duke University, Durham, NC 27708-0129
mlittman@cs, duke. edu

Abstract

This paper looks at the rich intersection be-
tween satisfiability problems and probabilistic
models, opening the door for the use of satisfi-
ability approaches in probabilistic domains. A
generic stochastic satisfiability problem is exam-
ined, which can function for probabilistic domains
as SAT does for deterministic domains. The paper
defines a Davis-Putnam-Logemann-Loveland-style
procedure for solving stochastic satisfiability prob-
lems, and reports on a preliminary empirical ex-
ploration of the complexity of the algorithm for
a collection of randomly generated probabilistic
problems. The results exhibit the familiar easy-
hardest-hard pattern for the difficulty of random
SAT formulae. Special cases of the stochastic satis-
fiability problem lie in different complexity classes,
and one counterintuitive result is that the compu-
tational complexity and the empirical complexity
of the problems examined do not track each other
exactly--problems in the hardest complexity class
are not the hardest to solve.

Introduction
There has been a recent focus in artificial intelli-
gence (AI) on solving problems exhibiting various
forms of uncertainty. In parallel, there is a great
deal of work in AI and computer science on solving
deterministic problems using techniques for testing
Boolean satisfiability. Some recent work has looked
at combinations of these ideas, viewing planning
under uncertainty as stochastic Boolean satisfiabil-
ity (Majercik & Littman 1998). This paper pro-
vides an approach for combining reasoning about
uncertainty and satisfiability by exploring a frame-
work that generalizes standard deterministic and
stochastic satisfiability problems.

The remainder of this section reviews determin-
istic satisfiability and the following section intro-
duces the stochastic satisfiability (SShW) frame-
work. The succeeding section describes the rela-
tionship between special cases of SSAT and plan-

Copyright (~)1999, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

ning and reasoning under uncertainty. The fi-
nal sections describe a Davis-Putnam-Logemann-
Loveland-based (DPLL) algorithm for solving SSAT
problems and present empirical results applying
this algorithm to randomly generated problems.

In deterministic satisfiability, or SAT, we axe
given a Boolean formula and wish to determine
whether there is some assignment to the variables
in the formula that results in the formula evaluating
to "true." This problem is connected to problems
throughout computer science from circuit design
and complexity theory to AI. The last several years
has seen tremendous progress in our ability to solve
SAT problems, spurring interest in finding efficient
ways to model problems such as planning (Kautz
Selman 1996) within the satisfiability framework.

Let x = (xl,x2,...,x~) be a collection of
Boolean variables, and ¢(x) be a k-CNF Boolean
formula on these variables with m clauses. For ex-
ample, (xl + ~ + x,l)(x2 X3-[- X4) (~- -{- ~ "~ - X-3)

is a k = 3-CNF formula with n -- 4 variables and
m = 3 clauses. This paper uses "1" and "0" for
true and false, multiplication for conjunction, and
addition for disjunction. Logical negation is writ-
ten ~ = 1 - x. With respect to a formula ¢(x),
an assignment to the Boolean variables xl,...,xu
is satisfying if ¢(x) = 1; a satisfying assignment
makes the formula true. The decision problem SAT
asks, given a Boolean formula ¢(x) in 3-CNF, does
it have a satisfying assignment? Or, symbolically,
we want to know Sxl,... ,~x~(¢(x) =

An interesting property of randomly generated
formulae (Kirkpatrick & Selman 1994) is that when
m is small relative to n, almost all formulae are sat-
isfiable, and most algorithms find it easy to show
this. When m is large relative to n, almost all for-
mulae are unsatisfiable, and this is often relatively
easy to show. For intermediate values of m (around
4.2n), approximately half of the resulting formulae
are satisfiable, and it is very difficult to show this.
Thus, with respect to m, random SAT instances ex-
hibit an "easy-haxdest-hard" pattern. This pattern
is consistent for various values of n, but becomes

From: AAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

more pronounced with larger n.

Stochastic Satisfiability

Papadimitriou (1985) explored an extension of SAT
in which a randomized quantifier is introduced.
The stochastic SAT (SSAT) problem is to evaluate
a Boolean formula with both existential and ran-
domized quantifiers:

3xl, ~x2,..., 3x.-1, ~x.(E[¢(x)] > e).

In words, this formula asks whether there is a value
for Xl such that]or random values of x2 (choose
or 1 with equal probability), there exists a value of
x3, such that.., the expected value of the Boolean
formula ¢(x) is at least a threshold 8. This type
satisfiability consists of alternating between making
assignment choices for some variables and chance
selection of assignments for other variables. The
specification of an SSAT problem consists of the
Boolean formula ¢(x), the probability threshold
and the ordering of the quantifiers.

Note that the randomized quantifier ~l can be ex-
tended to allow arbitrary rational probability dis-
tributions over {0, 1}. The resulting generalization
does not change any of the complexity results de-
scribed in the next section, and is key to making
a connection between SSAT, planning under uncer-
tainty, and belief network inference.

Satisfiability and Uncertainty

As AI techniques are used more and more to at-
tack real-world problems, many researchers have
embraced probability theory as a way of repre-
senting the pervasive uncertainty they find. Two
specific examples of this trend are the increasing
use of Markov decision process models in planning
and learning, and belief networks in reasoning and
knowledge representation; however, the influence of
probabilistic models in AI is felt quite broadly.

Whereas many basic deterministic problems are
complete for the well-known complexity class NP,
and are therefore formally equivalent to SAT, many
planning and reasoning problems in probabilistic
models lie in other complexity classes, such as #P
or PP (Roth 1996; Littman, Goldsmith, & Mund-
henk 1998). This means that, with respect to the
current state of complexity theory, these problems
cannot be reduced to SAT. However, many stan-
dard uncertain reasoning problems can be reduced
to special cases of SSAT, which vary in complexity.

The NP-complete problem ShT is the SSAT prob-
lem obtained by using only existential quantifiers
and setting 8 -- 1. The problem of finding the
most probable explanation (MPE) in a belief net-
work (Dechter 1996) is equivalent to SAT. A related
problem from planning under uncertainty is deter-
mining whether there is some choice of actions such

that the most likely trajectory through state space
to the goal exceeds a given probability threshold.

We define PP, or probabilistic polynomial time,
by one of its complete problems, MAJSAT. In
its standard formulation, MAJSAT asks, given a
Boolean formula ¢(x) in CNF, are at least half
its assignments satisfying? Thus, MAJSAT is con-
cerned, not just with the existence, but the number
of satisfying assignments.

This connects satisfiability to probability in the
sense that, if we imagine that all assignments are
equally likely, MAJSAT asks whether the probabil-
ity of a satisfying assignment is at least 1/2. Thus,
MAJSAT can be expressed as an instance of SSAT:
~]Xl,...,~lx~,(E[¢(x)] 1/2) (or 8, moregener
ally). Thus, MAJSAT is obtained from SSAT by
using only randomized quantifiers.

This "decision" form of MAJSAT is polynomially
equivalent to the problem of actually computing the
probability of a satisfying assignment, since we can
use binary search on 8 to find the exact value of
8 for which the probability is at least as big, but
no bigger than 8. The class PP can be viewed as
the decision problem version of #P, which actually
counts the number of satisfying assignments.

The problem of belief network inference--given
a belief network, values for its evidence nodes, and
the value for a query node, what is the probability
that the query node takes on the given value given
the evidence?--is #P-complete (Roth 1996). Any
belief network (with rational conditional probabil-
ity tables) can be represented as a Boolean formu-
lae. The reduction (Littman, Majercik, ~ Pitassi
1999) essentially consists of creating one variable
per node in the belief network and one per condi-
tional probability table entry. Clauses in the for-
mula select a value for each belief network node
depending on its parents’ values. From this, it fol-
lows that the belief network inference decision prob-
lem ("Does the query node take on the given value
with probability at least 8?’) can be reduced to
MAJSAT and is PP-complete. A PP-complete plan-
ning problem is plan evaluation in a probabilistic
domain (Littman, Goldsmith, & Mundhenk 1998).

The complexity class NPPP is formed by com-
bining NP and PP. It is the class of problems
that can be solved by guessing a solution (NP) and
then performing a PP calculation for verification.
A satisfiability problem that is complete for this
class is E-MAJSAT ("exists" MAJSAT) (Littman,
Goldsmith, & Mundhenk 1998), which combines
elements of SAT and MAJSAT. An E-MAJSAT in-
stance is defined by a CNF Boolean formula ¢(x)
on n Boolean variables, a threshold value 8, and a
number 0 < c < n. The decision problem is to re-
port whether there is an assignment to the "choice"
variables Xl,..., xc so that the probability that the
remaining chance variables xc+l,..., xn constitute

class
satisfiability problem belief network problem
Boolean formula planning problem

most probable explanationNP best trajectory
MAJSAT belief updating (inference)

PP ~lxl,..., ~tx~(E[¢(x)] > 0) plan evaluation

Nppp E-MAJSAT maximum a posteriori hypothesis
3xl,..., 3xc, ~lXc+l,. . . , ~lxn(E[¢(x)] > O) best polynomial size plan

PSPACE SSAT influence diagrams
3xl, ~lx2,..., 3xn-1, ~lx,~(E[¢(x)] > best polynomial horizon plan

SAT

3Zl,...,3xn(E[¢(x)] > o)

Table 1: Different arrangements of quantifiers result in SSAT problems complete for different complexity
classes and correspond to basic problems in uncertain reasoning and planning.

a satisfying assignment of ¢(x) is at least O. Thus,
E-MAJSAT is also an SSAT problem:

Note that, if c = n, E-MAJSAT is simply a version
of SAT, and, if c = 0, E-MAJSAT is exactly MAJSAT.
In terms of complexity classes, NP C_ PP C_ NPPP;
E-MAJSAT is at least as hard as MAJSAT, which is
at least as hard as SAT.

Other problems are NpeP-complete, such as
finding small satisfactory plans in uncertain do-
mains (Littman, Goldsmith, & Mundhenk 1998)
and generating "explanations" in belief networks.
The belief network problems of calculating a maxi-
mum a posteriori (MAP) hypothesis or a maximum
expected utility (MEU) solution (Dechter 1996)
also complete for NPPP. In these problems, the
choice variables correspond to the plan or explana-
tion and the chance variables to the uncertainty.

The class PSPACE consists of the problems solv-
able using a polynomial amount of space. All the
previously mentioned classes (NP, PP, NPPP) can
be solved in polynomial space by enumerating all
assignments and combining the results in the ap-
propriate way. The SSAT problem with alternat-
ing quantifiers and QBF are satisfiability problems
that are PSPACE-complete. Note that each exis-
tential quantifier in an SSAT problem can be viewed
as a type of maximization operator; the problem
then becomes one of maximizing the probability
that ¢(x) is satisfied, given that some of the vari-
ables are under the control of "nature." This is
equivalent to solving a finite-horizon partially ob-
servable Markov decision process (Papadimitriou ~z
Tsitsiklis 1987). The problem remains PSPACE-
complete when the domain is specified compactly
via probabilistic STRIPS operators or an equivalent
representation. Influence diagrams are a belief-
network-like representation for the same problem.

Table 1 summarizes the relations between com-
plexity classes and the stochastic satisfiability, be-
lief network, and planning problems discussed.

An Algorithm for SSAT

The Davis-Putnam-Logemann-Loveland (DPLL)
algorithm for Boolean satisfiability (Davis, Loge-
mann, & Loveland 1962) works by enumerating
partial assignments and monitoring for opportuni-
ties to simplify the formula. The use of pruning
rules makes it possible to solve problems whose set
of assignments could not be fully enumerated.

DPLL is designed to solve SAT problems, and,
thus, only needs to deal with existential quanti-
tiers. The algorithm described in this section can
be viewed as an extension of the DPLL algorithm
to SSAT by providing pruning rules for randomized
quantifiers. Cadoli, Giovanardi, &: Schaerf (1998)
provide a set of pruning rules for universal quanti-
tiers (for solving QBF problems); the pruning rules
described below can be combined with theirs.

Define ¢~ = simplify(¢,xi, b), where ¢~ is the
(n - 1)-variable CNF formula obtained from as-
signing the single variable xi the Boolean value b
in the n-variable CNF formula ¢ and simplifying
the result (including any necessary variable renum-
bering). Variables are numbered so that xl corre-
sponds to the outermost quantifier and xn to the
innermost. Let Q(xi) be the quantifier associated
with variable x~.

An SSAT formula is defined by a set of numbered
variables, a CNF formula, a threshold 8, and a map-
ping Q from variables to quantitiers. We define the
value of an SSAT formula to be the value of the
expression obtained by taking the SSAT expression
and replacing 3 with max and ~t with average. This
quantity is useful because it is greater than or equal
to 0 if and only the SSAT formula is true and less
than or equal to 0 if and only if it is false.

The evalssat algorithm in Figure 1 is a general-
ization of DPLL. It takes formula ¢ and low and
high thresholds 0t and Oh (both initially set equal
to 0). It returns a value less than Ol if and only
if the value of the SSAT formula is less than 0t, a
value greater than Oh if and only if the value of the
SSAT formula is greater than Oh, and otherwise the
exact value of the SSAT formula. Thus, it can be

evalssat(¢, 0l, Oh) :=
if ¢ is the empty set, return 1
if ¢ contains an empty clause, return 0
/* Unit Resolution */
if xi is a unit variable with sign b and Q(xi) =
return evalssat(simplify(¢, xi, b), Or, Oh)

if xi is a unit variable with sign b and Q(xi) =
return evalssat(simplify(¢, xi, b), 2Or, 20h)/2

/* Purification */
if zi is a pure variable with sign b and Q(xi) =
return evalssat(simplify(¢, xi, b), Or, Oh)

I* Splitting *1
if Q(xi) = 3,
v0 = evalssat(simplify(¢, Xl, 0), Or, Oh)
if vo >_ Oh, return v0
vl ---- evalssat(simplify(¢, Xl, 1), max(Or, vo), Oh)
return max(vo, vl)

}
if Q(xl) = ~],
v0 = evalssat(simplify(¢, xl, 0), 28t - 1, 2Oh)
if (v0 + 1)/2 Or, return Vo/2
if Vo/2 > Oh, return vo/2
Vl = evalssat(simplify(¢, Xl, 1), 20t - v0, 20h -- VO)
return (v0 + Vl)/2

}
}

Figure 1: The DPLL algorithm for satisfiability can
be extended to solve SSAT problems.

used to solve the SSAT decision problem. Its ba-
sic structure is to compute the value of the SSAT
formula from its definition; this takes place in the
section labeled "Splittinff’, which enumerates all as-
signments, applying operators recursively from left
to right. However, it is made more complex (and
efficient) via pruning rules.

When a Boolean expression ¢ is evaluated that
contains a variable xi that appears alone in a clause
in ¢ with sign b (0 if ~7 is in the clause, 1 if xi is
in the clause), the normal right-to-left evaluation
of quantifiers can be interrupted to deal with this
variable. We call this case "Unit Resolution".

If the quantifier associated with xi is existential,
xi can be eliminated from the formula by assigning
it value b and recursing. As in DPLL, this is be-
cause assigning xi = 1 - b is guaranteed to make ¢
false, so xi = b can be no worse. If the quantifier
associated with xi is randomized, one branch of the
computation will return a zero, so xi can be elimi-
nated from the formula by assigning it value b and
recursing. The resulting value is divided by two,
since it represents the value of only one branch.

The "Purification" pruning rule applies when
there is a variable xi that appears only with one
sign b in ¢. If Q(xi) = 3, the algorithm assigns
xi = b and recurses. This is valid because any

clause satisfied by an assignment with xi = 1 - b
will also be satisfied by assigning x~ -- b. Purifi-
cation pruning does not appear possible for ran-
domized variables as both assignments give some
contribution to the value of the SSAT formula and
must be considered independently.

Another useful class of pruning rules concerns the
threshold parameters Ot and Oh. While some care
must be taken to pass meaningful thresholds when
applying unit resolution, threshold pruning mainly
comes into play when variables are split to try to
prevent recursively computing the value of both as-
signments to Xl. If Q(xa) = S, after the first re-
cursive call computing vo, it is possible that Oh has
already been exceeded. In this case, the algorithm
can simply return v0 without ever computing Vl. In
particular, it is possible that Vl > v0, but all that
is significant is whether the larger of the two ex-
ceeds Oh. If Vo exceeds 8t but falls short of Oh, this
can be used to increase the lower threshold for the
recursive computation of Vl; since only the larger
of v0 and Vl matters, the precise value of Vl is not
crucial if it less than v0.

Threshold pruning is not as strong for random-
ized variables. There are two types of threshold
pruning that apply. First, if assigning 0 to Xl is suf-
ficient to meet the threshold Oh, then the algorithm
need not recurse on assigning 1 to the variable: if
Vo/2 > Oh, return vo/2.

If the first value v0 is so low that, even if vl = 1,
(Vo + Vl)/2 Or, then again vl need notbe com-
puted. If both tests fail, vl must be computed, but
the thresholds can be adjusted accordingly.

This algorithm bears a close resemblance to
searching AND/OP~ graphs, although this similar-
ity has not yet been exploited. Enhancements
based on variable-ordering heuristics are being ex-
plored.

Empirical Results

This section presents a set of preliminary experi-
mental results on using the DPLL-based SSAT al-
gorithm to solve random SSAT instances.

Throughout these experiments, the same SSAT
algorithm is used. A set of 1,000 formulae with
n = 20 variables and 141 clauses were randomly
generated using makewff from AT~T Research.
Thresholds were expressed as 0 -- 1/2n-t for in-
teger t in the range 0 to n; this defines t so that 2t

is the required number of satisfying assignments.
Formulae with m clauses were created using the
first m clauses from each of the 1,000 formulae.

The first experiment compares and contrasts
MAJSAT with SAT. Figure 2 illustrates the average
work required to solve random MAJSAT instances,
varying the number of clauses and values of the
threshold parameter 0.

MAJSAT For n=20 Peak Work for E-MAJSAT For n=20

10000

1000

100

lO

~.~ (SAT) t--0
~.d .s’ "~." t--4
[- / ,*"’"@’-t-~ t=8
LL/ ...¢ .~’:~ t=12
]~-" 7 ,-’~a. (peak) t=16

~~~ g / i ....’......

20 40 60 80 100 120 140
Clauses

10000

1000

100
0 5 10 15 20

Number of Choice Variables (c)

Figure 2: The difficulty of solving random MAJSAT
instances varies with both the ratio of clauses to
variables and with the satisfaction threshold (t).

Figure 3: The difficulty of solving random
E-MAJSAT instances varies with the number of
choice variables c; more choice variables means eas-
ier problems.

The line on the plot labeled t = 0 is the curve for
SAT; this problem is asking whether the probability
of satisfaction is at least 1/2n, which is reached as
long as there is even a single satisfying assignment.
The classic easy-hardest-hard pattern is visible. In
fact, nearly all the threshold values produce the
same basic shape.

Note that the peak difficulty over all thresholds
occurs at t = 16; it is much higher than the peak
difficulty for SAT and occurs at a much lower setting
of m. Instances with high values of the threshold
are difficult because the threshold pruning rules for
randomized quantifiers rarely apply--it is almost
always necessary to check both branches to deter-
mine whether the probability threshold can be met.

That MAJSAT is more difficult to solve than
SAT is not surprising, since it belongs to a higher
complexity class. A more interesting pattern oc-
curs in E-MAJSAT formulae. As mentioned earlier,
the E-MAJSAT parameter c interpolates between
MAJSAT (C ---- 0) and SAT (C = n). In terms 
complexity theory, however, intermediate values of
c place E-MAJSAT in a more difficult complexity
class than either endpoint. This suggests analyzing
the peak difficulty of E-MAJSAT as a function of c.

The following experiment was carried out. For
each value of c from 0 to n = 20, the formulae were
solved for each clause size m from 1 to 141 by 5s and
threshold parameter t from 0 to 19. Work was av-
eraged separately for each combination of settings,
and the combination of values for t and m that re-
sulted in the maximum average work was selected
for each value of c. Figure 3 summarizes the results.

The results of these experiments are somewhat
counterintuitive. Instead of the peak difficulty be-
ing obtained for c = n/2 as might be assumed
from complexity theory, the difficulty is a logarith-
mic function of the number of choice variables. It

10000

lO00

100

10
0

Probabilistic Satisfiability For n=20

~
MAJSAT 0=16) 

SSAT (t=8) ........
SAT (c=10,t=7) ..........

i i

20 40 60 80 100 120 140
Clauses

Figure 4: The peak difficulty of solving different
SSAT instances varies with the structure of the op-
erators and the number of clauses.

appears that the main effect is that each random-
ized quantifier changed to an existential quantifier
results in a constant fraction of savings of work,
perhaps due to the reduction in effective branching
factor (see below).

Figure 4 plots the work versus number of clauses
for each of four types of SSAT problems described
earlier. For each problem class, the most difficult
(on average) setting of the threshold parameter ob-
served was used. There are several things to note
here. One is that all these randomized satisfia-
bility problems exhibit the same easy-hardest-hard
pattern described for SAT. However, the number
of clauses corresponding to the peak work differs
for each problem. Also, the higher the peak, the
smaller the number of clauses at the peak.

Another observation is that the relative peak dif-
ficulty of different problems does not match what
might be predicted by complexity theory. In pattie-



ular, as NP C PP C_ NPPP C_ PSPACE, we might
expect SAT <~ MAJSAT < E-MAJSAT <: SSAT in
terms of peak work. In fact, the experiments come
out with SAT < E-MAJSAT < SSAT <: MAJSAT.
That is, MAJSAT comes out as the hardest instead
of the second easiest. This pattern can be observed
with a range of values of n and k (Littman, Majer-
cik, & Pitassi 1999).

The facts that E-MAJSAT is easier than MAJSAT
and that SAT is easier than SSAT probably stem
from the fact that randomized quantifiers are
harder to prune than are existential quantifiers.
SSAT and E-MAJSAT (c = n/2) both consist of half
existential and half randomized quantifiers, and
have very similar curves in Figure 4.

Conclusion and Future Work
This paper described a stochastic satisfiability
framework, relating it to existing problems in rea-
soning and planning under uncertainty. It de-
scribed a DPLL-based algorithm for solving satisfi-
ability problems in this framework and showed that
the algorithm exhibits interesting empirical behav-
ior on randomly generated formulae.

Deterministic satisfiability problems can be
solved in a number of different ways, includ-
ing DPLL-based algorithms, resolution-based algo-
rithms, and stochastic search. Dechter (1996) ex-
plores resolution-based solvers for an analogous set
of problems to the ones described here. The prac-
tical utility of resolution-based methods for SSAT
is not clear at present; unlike DPLL-style deriva-
tions, a resolution proof does not appear to yield
an efficient procedure for value calculation. An im-
portant direction for research is combining random
sampling (randomized quantifiers) and stochastic
search (existential quantifiers) to solve SSAT prob-
lems (Littman, Majercik, & Pitassi 1999).

Another fruitful direction for studying SSAT
problems is extending existing theoretical SAT re-
sults to the probabilistic setting. This would in-
clude probing critical behavior and scaling phe-
nomena in random formulae (Kirkpatrick & Selman
1994) and proof-size-based lower bounds for exact
algorithms (Beame & Pitassi 1996). The "stochas-
tic satisfiability" approach is already producing
probabilistic planners with state-of-the-art perfor-
mance (Majercik & Littman 1999). This type 
research promises insight into understanding what
makes many uncertain reasoning problems hard to
solve and identifying faster ways to solve them.

Acknowledgments. Thanks to Judy Gold-
smith, Toni Pitassi, Pankaj Agarwal, Henry Kantz,
Don Loveland, Julien Basch, John Reif, Bart Sel-
man, Moises Goldszmidt, Toby Walsh, Ian Gent,
Steve Majercik, and the reviewers for feedback and
suggestions.

References
Beame, P., and Pitassi, T. 1996. Simplified and
improved resolution lower bounds. In 37th Annual
Symposium on Foundations of Computer Science,
274-282. IEEE.

Cadoli, M.; Giovanardi, A.; and Schaerf, M. 1998.
An algorithm to evaluate quantified Boolean for-
mulae. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence (AAAI-98),
262-267. The AAAI Press/The MIT Press.
Davis, M.; Logemann, G.; and Loveland, D. 1962.
A machine program for theorem proving. Com-
munications of the A CM 5:394-397.
Dechter, R. 1996. Bucket elimination: A unify-
ing framework for probabilistic inference. In Pro-
ceedings of the 12th Conference on Uncertainty in
Artificial Intelligence (UAI-96), 211-219. Morgan
Kanfmann Publishers.

Kantz, H., and Selman, B. 1996. Pushing
the envelope: Planning, propositional logic, and
stochastic search. In Proceedings of the Thir-
teenth National Conference on Artificial Intelli-
gence, 1194-1201. AAAI Press/The MIT Press.
Kirkpatrick, S., and Selman, B. 1994. Critical
behavior in the satisfiability of random Boolean
expressions. Science 264:1297-1301.

Littman, M. L.; Goldsmith, J.; and Mundhenk,
M. 1998. The computational complexity of prob-
abilistic plan existence and evaluation. Journal of
Artificial Intelligence Research 9:1-36.
Littman, M. L.; Majercik, S. M.; and Pitassi, T.
1999. Stochastic Boolean satisfiability. Submitted.
Majercik, S. M., and Littman, M. L. 1998. MAX-
PLAN: A new approach to probabilistic planning.
In Simmons, R.; Veloso, M.; and Smith, S., eds.,
Proceedings of the Fourth International Confer-
ence on Artificial Intelligence Planning, 86-93.
AAAI Press.

Majercik, S. M., and Littman, M. L. 1999. Contin-
gent planning under uncertainty via probabilistic
satisfiability. In Proceedings of the Sixteenth Na-
tional Conference on Artificial Intelligence.

Papadimitriou, C. H., and Tsitsiklis, J. N. 1987.
The complexity of Markov decision processes.
Mathematics of Operations Research 12(3):441-
450.
Papadimitriou, C. H. 1985. Games against nature.
Journal of Computer Systems Science 31:288-301.

Roth, D. 1996. On the hardness of approximate
reasoning. Artificial Intelligence 82(1-2):273-302.




