
Trap Escaping Strategies in Discrete Lagrangian Methods for Solving
Hard Satisfiability and Maximum Satisfiability Problems*

Zhe Wu and Benjamin W. Wah
Department of Electrical and Computer Engineering

and the Coordinated Science Laboratory
University of Illinois, Urbana-Champaign

Urbana, IL 61801, USA
E-mail: {zhewu, wah}Qmanip.crhc.uiuc.edu

URL: http://www.manip.crhc.uiuc.edu

Abstract

In this paper, we present efficient trap-escaping strate-
gies in a search based on discrete Lagrange multipli-
ers to solve difficult SAT problems. Although a basic
discrete Lagrangian method (DLM) can solve most
the satisfiable DIMACS SAT benchmarks efficiently, a
few of the large benchmarks have eluded solutions by
any local-search methods today. These difficult bench-
marks generally have many traps that attract local-
search trajectories. To this end, we identify the ex-
istence of traps when any change to a variable wilt
cause the resulting Lagrangian value to increase. Us-
ing the hanoi4 and par16-1 benchmarks, we illustrate
that some unsatisfied clauses are trapped more often
than others. Since it is too difficult to remember ex-
plicitly all the traps encountered, we propose to re-
member these traps implicitly by giving larger increases
to Lagrange multipliers of unsatisfied clauses that are
trapped more often. We illustrate the merit of this new
update strategy by solving some of most difficult but
satisfiable SAT benchmarks in the DIMACS archive
(hanoi4, hanoi4-simple~ par16-1 to par16-5,]2000, and
par32-1-c to par32-3-c). Finally, we apply the same
algorithm to improve on the solutions of some bench-
mark MAX-SAT problems that we solved before.

Introduction
A general satisfiability (SAT) problem is defined as fol-
lows. Given a set of n clauses (C1, C2, "., Cn} on
m variables x = (xl,x2,." ,Xm), xj (0,1}, an d a
Boolean formula in conjunctive normal form:

C1AC2A"’ACn, (1)

find a truth assignment to x for (1), where a truth as-
signment is a combination of variable assignments that
makes the Boolean formula true.

The maximum satis]iability (MAX-SAT) problem
a general case of SAT. In MAX-SAT, each clause C~

Research supported by National Science Foundation
Grant NSF MIP 96-32316.

Source code of DLM-98 is at http://manip.crhc.uiuc.edu.
Copyright (~)1999, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

is associated with weight w~. The objective is to find
an assignment of variables that maximizes the sum of
weights of satisfied clauses.

Search methods developed previously for solving SAT
can be classified into two types. Traditional ap-
proaches based on resolution, constraint satisfaction
and backtracking are computationally expensive and
are not suitable for solving large instances. Local-search
methods (Frank 1997; Selman, Kautz, & Cohen 1994;
1993), in contrast, iteratively perturb a trajectory until
a satisfiable assignment is found. These methods can
solve larger instances, but may have difficulty in solving
hard-to-satisfy instances.

Following the successful work of (Shang & Wah
1998), we formulate in this paper a SAT problem as
discrete, constrained optimization problem as follows:

n

min~e{oj}m N(x)=~-~Ui(x) (2)
i=1

subject to U~(x) = 0 Vi ¯ {1,2,...,n},

where U~(x) is a binary expression equal to zero when

the i th clause is satisfied and to one otherwise, and N(x)
is the number of unsatisfied clauses. Note that in the
above formulation, when all constraints are satisfied,
the objective function is automatically at its minimum.

In this paper, we extend the work of (Shang & Wah
1998; Wu 1998) on discrete Lagrange-multiplier method
to solve (2). After summarizing the theory of discrete
Lagrange multipliers and the basic approach of (Shang
& Wah 1998) for solving SAT problems, we identify
traps that limit the search trajectory. Intuitively, traps
are points in the search space that attract a search tra-
jectory and prevent it from escaping. We present a trap
escaping strategy that remembers traps implicitly by in-
creasing the Lagrange multipliers of unsatisfied clauses
found in traps, thereby forcing the search not to visit
the same traps repeatedly. Finally, we show our results
in solving some difficult and previously unsolved satis-
fiable SAT problems and some MAX-SAT benchmarks
in the DIMACS archive.

From: AAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Discrete Lagrangian Formulations

(Shang & Wah 1998; Wu 1998) extended the theory
of Lagrange multipliers in continuous space to that of
discrete space. In contrast to methods in continuous
space, Lagrangian methods in discrete space do not re-
quire a continuous differentiable space to find equilib-
rium points. In this section, we summarize the the-
ory of these methods for solving discrete optimization
problems. Define a discrete constrained optimization
problem as follows:

min~eE~ f(x) (3)

subject to g(x) <_ x = (xl,x2,...,xm)

h(x) =

where x is a vector of m discrete variables, f(x) is
an objective function, g(x) [gl(x),...,gk(x)] T = 0
is a vector of k inequality constraints, and h(x) ---

[hi(x) ,hn(x)] T = 0 is a vector of n equality con-
straints.

As discrete Lagrangian methods only handle prob-
lems with equality constraints, we first transform an in-
equality constraint gi (x) <_ into anequality constraint
max(gi(x), O) = (Shang & Wah1998) form ulates the
resulting discrete Lagrangian function as follows:

k
Ld(x, ~, It) = f(x) + ~Th(x) + max(0,gi(x)), (4)

i=1

where A and It are Lagrange multipliers that can be
continuous.

The discrete Lagrangian function in (4) cannot
used to derive first-order necessary conditions similar
to those in continuous space (Luenberger 1984) be-
cause there are no gradients or differentiation in discrete
space. Without these concepts, none of the calculus in
continuous space is applicable in discrete space.

An understanding of gradients in continuous space
shows that they define directions in a small neighbor-
hood in which function values decrease. To this end,
(Wu 1998) defines in discrete space di rection of max-
imum potential drop (DMPD) for Ld(X, A, It) at point x
for fixed A and It as a vector1 that points from x to a
neighbor of x E Af(x) with the minimum Ld:

AxLd(x,A,#) =~ =y@x= (yl -xl yn -xn) (5)

where
yE.hf(x) U{x}andLd(y,A,#)= min Ld(X’, A, #). (6)

x’EAf(x)
u{~}

Here, (9 is the vector-subtraction operator for changing
x in discrete space to one of its "user-defined" neigh-
borhood points Af(x). Intuitively, fix is a vector point-
ing from x to y, the point with the minimum Ld value

tTo simplify our symbols, we represent points in the x
space without the explicit vector notation.

among all neighboring points of x, including x itself.
That is, if x itself has the minimum Ld, then fix = {3.

Based on DMPD, (Shang & Wah 1998; Wu 1998) de-
fine the concept of saddle points in discrete space simi-
lar to those in continuous space (Luenberger 1984).
point (x*, A*,It*) is a saddle point when:

L(x*,A, It) < L(x*,A*,It*) < L(x,A*,It*), (7)

for all (x*,A, It) and all (x,A*,It*) sufficiently close
to (x*,A*,It*). Starting from (7), (Wu 1998)
stronger first-order necessary and sufficient conditions
in discrete space that are satisfied by all saddle points:

AxLd(X,A, it) ---- O, \7~Ld(x,A, it) = 0, (8)

~Tt~Ld(x, A, It) = O.

Note that the first condition defines the DMPD of Ld
in discrete space of x for fixed A and It, whereas the
differentiations in the last two conditions are in contin-
uous space of A and It for fixed x. Readers can refer to
the correctness proofs in (Wu 1998).

The first-order necessary and sufficient conditions in
(8) lead to a discrete-space first-order search method
that seeks discrete saddle points. The following equa-
tions are discrete approximations to implement (8).

General Discrete First-Order Search Method

x(k + 1) = x(k) @ A~Ld(x(k),A(k),It(k)) (9)

A(k+ 1) = A(k) +clh(x(k)) (10)

It(k+l) It (k)+c2max(O,g(x(k))) (11)

where (9 is the vector-addition operator (x (9 y = (Xl
Yl,... xn+Yn)), and cl and c2 are positive real numbers
controlling how fast the Lagrange multipliers change.

It is easy to see that the necessary condition for (9)-
(11) to converge is when h(x) = 0 and g(x) < O, imply-
ing that x is a feasible solution to the original problem.
If any of the constraints is not satisfied, then A and It
on the unsatisfied constraints will continue to evolve.
Note that, as in continuous Lagrangian methods, the
first-order conditions are only satisfied at saddle points,
but do not imply that the time to find a saddle point is
finite, even if one exists.

DLM for Solving SAT Problems

DLM-98-BASIC-SAT: A Basic DLM

The advantage of formulating the solution of SAT as
discrete Lagrangian search is that the method has a
solid mathematical foundation (Shang & Wah 1998;
Wu 1998). The theory of discrete Lagrange multipliers
also explains why other weight-update heuristics (Frank
1997; Morris 1993) work in practice, although these
heuristics were developed in an ad hoc fashion.

procedure DLM-98-BASIC-SAT
1. Reduce original SAT problem;
2. Generate a random starting point using a fixed seed;
3. Initialize Ai +---- 0;
4. while solution not found and time not used up do
5. Pick xj ~ TabuList that reduces Ld the most;
6. Maintain TabuList;
7. Flip xi;8. if ~UpHillMoves -[- ~:FlatMoves > 01 then
9. Xi ~ Ai "4- 60;
10. if #Adjust~O 02 ~- 0 then

11. Ai 4¢----- Ai -- (~d end_if

12. endAf
13. end_while
end

Figure 1: DLM-98-BASIC-SAT (Shang & Wah 1998):
implementation of the basic discrete first-order method for
solving SAT.

The Lagrangian function for the SAT problem in (2) is:

n

La(x, A) = N(x) + E AiUi(x) (12)
i~l

Figure 1 shows the basic Discrete Lagrangian Method
(DLM) of (Shang & Wah 1998) for solving SAT prob-
lems. It uses two heuristics, one based on tabu
lists (Glover 1989) and the other based on fiat (Selman,
Kautz, & Cohen 1993) and up-hill moves. We explain
these steps later when we present our improved DLM.

Although quite simple, DLM-98-BASIC-SAT can
find solutions to most satisfiable DIMACS benchmarks,
such as all problems in the aim-, ii-, jnh-, par&, ssa-
classes, within seconds. However, it takes a long time to
solve some DIMACS benchmarks and has difficulty in
solving a few of the large ones (Shang gz Wah 1998). For
example, it takes a long time to solve f2000 and par16-1-
c to par16-5-c and cannot solve hanoi4, hanoi,-simple,
hanoi5, par16-1 to par16-5, and all par32- problems.

To improve DLM-98-BASIC-SAT, we identify in the
next subsection traps that prevent DLM trajectories
from moving closer to satisfiable assignments. We then
propose new strategies to overcome these traps.

Traps to Local Search

By examining the output profiles when applying DLM-
98-BASIC-SAT to solve hard SAT problems, we find
that some clauses are frequently flipped from being sat-
isfied to being unsatisfied. A typical scenario is as fol-
lows. A clause is initially unsatisfied but becomes satis-
fied after a few flips due to increases of A for that clause.
It then becomes unsatisfied again after a few more flips
due to increases of A of other unsatisfied clauses. These
state changes happen repeatedly for some clauses and
are tremendously inefficient because they trap the tra-
jectory in an unsatisfiable assignment. To quantify the
observations, we introduce a new concept called traps.

2.5e~)6
g
--~ 2e+06

.~ 1.5e-~6

F
o

Avg=90938 Max=2419274

Clause Index
(a) Hanoi4: maximum = 2.4 x 106, average = 90, 938,

total number of flips = 1.11 x 108
Avg=120 Max=1601

1800

16oo
~, 141111

1200

2

Clause Index

(b) Par-16-1: maximum = 1.6 × 10s, average = 120,
total number of flips = 5 x 10°

Figure 2: Large disparity between the maximum and aver-
age numbers of times a clause is in traps.

A trap is a combination ofx and A such that a point in
it has one or more unsatisfied clauses, and any change
to a single variable in x will cause the associated Ld
to increase. Note that a satisfiable assignment is not
a trap because all its clauses are satisfied, even though
its Ld may increase when x is perturbed.

To show that some clauses are more likely to be un-
satisfied, we plot the number of times a clause is in a
trap. This is not the same as the number of times a
clause is unsatisfied because a clause may be unsatis-
fied when outside a trap. We do not consider the path a
search takes to reach a trap, during which a clause may
be unsatisfied, because the different paths to reach a
trap are not crucial in determining the strategy to es-
cape from it.

Figure 2 shows that some clauses reside in traps much
more often than average when DLM-98-BASIC-SAT
was applied to solve hanoi4 and par16-1, two very hard
SAT problems in the DIMACS archive. This behavior
is detrimental to finding solutions because the search
may be trapped at some points for a long time, and the
search is restricted to a small area in the search space.

Ideally, we like a trajectory to never visit the same
point twice in solving an optimization problem. This
is, however, difficult to achieve in practice because it

procedure DLM-99-SAT
1. Reduce original SAT problem;
2. Generate a random starting point using a fixed seed;
3. Initialize hi +--- 0 and tl +--- 0;
4. while solution not found and time not used up do
5. Pick xj ~ TabuList that reduces Ld the most;
6. If search is in a trap then
7. For all unsatisfied clauses u, t~ +--- tu -]- (~,~ end_if
8. Maintain TabuList;
9. Flip xj;
10. if ~UpHillM ~- ~FlatM

> 01 then
11. hi +-- hl + 50;
12. if ~Adjus~O02 ~ 0 then
13. hl +--- hl - 6d; end_if;
14. call SPECIAL-INCREASE;
15 end_if
16. end_while
end
procedure SPECIAL-INCREASE
17. Pick a set of clauses S;
18. if ~ > 83 then
19. For clause i in S with the largest ti, Ai <---- hi + 58;
20. end_if
end

Figure 3: Procedures DLM-99-SAT, an implementation of
the discrete first-order method for solving SAT problems,
and SPECIAL-INCREASE, special increments of A on cer-
tain clauses when their weights are out of balance.

is impractical to keep track of the history of an entire
trajectory. Alternatively, we can try not to repeat vis-
iting the same trap many times. The design of such a
strategy will depend on how we escape from traps.

There are three ways to bring a trajectory out of
traps; the first two maintains history information ex-
plicitly, while the last maintains history implicitly.

a) We can perturb two or more variables at a time to
see if Let decreases, since a trap is defined with respect
to the perturbation of one variable. This is not practical
because there are too many combinations to enumerate
when the number of variables is large.

b) We can restart the search from a random starting
point in another region when it reaches a trap. This will
lose valuable history information accumulated during
each local search and is detrimental in solving hard SAT
problems. Moreover, the history information in each
local search needs to be maintained explicitly.

c) We can update A to help escape from a trap. By
placing extra penalties on all unsatisfied clauses inside
a trap, unsatisfied clauses that are trapped more often
will have very large Lagrange multipliers, making them
less likely to be unsatisfied in the future. This strategy,
therefore, implicitly reduces the probability of visiting
that same trap again in the future and was used in our
experiments.

DLM-99-SAT: An Improved DLM for SAT

Figure 3 outlines the new DLM for solving SAT. It
defines a weight for each Lagrange multiplier and in-
creases the weights of all unsatisfied clauses every time
the search reaches a trap. This may, however, lead to
an undesirable out-of-balance situation in which some
clauses have much larger weights than average. To cope
with this problem, when the ratio of the largest weight
to the average is larger than a predefined threshold, we
increase the Lagrange multipliers of clauses with the
largest weight in order to force them into satisfaction. If
these increases are large enough, the corresponding un-
satisfied clauses are not likely to be unsatisfied again in
future, thereby resolving the out-of-balance situation.

We explain next in detail each line of DLM-99-SAT.
Line 1 carries out straightforward reductions on all

one-variable clauses. For all one-variable clauses, we set
the value of that variable to make that clause satisfied
and propagate the assignment.

Line 2 generates a random starting point using a fixed
seed. This allows the experiments to be repeatable.

Line 3 initializes ti (temporary weight for Clause i)
and Ai (Lagrange multiplier for Clause i) to zero
order to make the experiments repeatable. Note that ti
increases Ai faster if it is larger.

Line 4 defines a loop that will stop when time (max-
imum number of flips) runs out or when a satisfiable
assignment is found.

Line 5 chooses a variable xj that will reduce Ld the
most among all variables not in TabuList. If such can-
not be found, then it picks xj that will increase La the
least. We call a flip an up-hiU move if it causes Ld
to increase, and a fiat move (Selman, Kautz, & Cohen
1993) if it does not change Ld. We allow fiat and up-hill
moves to help the trajectory escape from traps.

Lines 6-7 locate a trap and increase tu by 5~ (= 1)
for all unsatisfied clauses in that trap.

Line 8 maintains TabuList, a first-in-first-out queue
with a problem-dependent length tabu_len (100 for f,
10 for parl6 and par32, 16 for g, and 18 for hanoi4).

Line 9 flips the xj chosen (from false to true or vice
versa). It also records the number of times the trajec-
tory is doing flat and up-hill moves.

Lines 10-11 increase the Lagrange multipliers for all
unsatisfied clauses by 50 (= 1) when the sum of up-hill
and flat moves exceeds a predefined threshold 01 (50 for
f, 16 for parl6 and par32, 26 for g, and 18 for hanoi4).
Note that 5o is the same as cl in (10). After increasing
the Lagrange multipliers of all unsatisfied clauses, we
increase a counter #Adjust by one.

Lines 12-13 reduce the Lagrange multipliers of all
clauses by 5d (= 1) when ~Adjust reaches threshold 02
(12 for f, 46 for parl6, 56 for par32, 6 for g, and 40

for hanio4). These help change the relative weights of
all the clauses and may allow the trajectory to go to
another region in the search space after the reduction.

Line 14 calls Procedure SPECIAL-INCREASE to
handle the case when some clauses appear in traps more
often than other clauses.

Line 17 picks a problem-dependent set S of clauses
(for par16-1 to par16-5, the set of all currently unsatis-
fied clauses; for others, the set of all clauses).

Lines 18-19 compute the ratio between the maximum
weight and the average weight to see if the ratio is out
of balance, where n is the number of clauses. If the
ratio is larger than 0a (3 for parl6, par32, and f, 1 for
g, and 10 for hanoi4), then we increase the Lagrange
multiplier of the clause with the largest weight by 5s (1
for all problems).

Intuitively, increasing the Lagrange multipliers of un-
satisfied clauses in traps can reduce their chance to be
in traps again. Figure 4 illustrates this point by plotting
the number of times that clauses appear in traps after
using SPECIAL-INCREASE. Compared to Figure 2,
we see that SPECIAL-INCREASE has controlled the
large imbalance in the number of times that clauses are
unsatisfied. For hanoi4 (resp. par16-1), the maximum
number of times a clause is trapped is reduced by more
than 50% (resp. 35%) after the same number of flips.

Note that the balance is controlled by parameters 0a
and 5s. If we use smaller 03 and larger 5s, then better
balance can be achieved. However, better balance does
not always lead to better solutions because a search
may leave a trap quickly using smaller 0a and larger 58,
thereby missing some solutions for hard problems.

Results on SAT and MAX-SAT
We first apply DLM-99-SAT to solve some hard but sat-
isfiable SAT problems in the DIMACS archive. DLM-
99-SAT can now solve quickly]2000, par16-1-c to
par16-5-c, par16-1 to par16-5, and hanoi4 with a very
high success ratio. These problems had not been solved
well by any single method in the literature. Moreover,
it can now solve hanoi,-simple with a very high success
ratio, and par32-1-c to par32-3-c, although not with
high success ratios. These problems cannot be solved
by any other local search method today. For other sim-
pler problems in the DIMACS archive, DLM-99-SAT
has similar performance as the best existing method
developed in the past. Due to space limitation, we will
not present the details of these experiments here.

Table 1 lists the experimental results on all the hard
problems solved by DLM-99-SAT and the experimen-
tal results from WalkSAT and GSAT. It lists the CPU
times of our current implementation on a Pentium-Pro
200 MHz Linux computer, the number of (machine in-

Avg=10982J Max=1098206

Clause Index

(a) Hanoi,: maximum : 1.1 × 106, average : 109, 821,
total number of flips ---- 1.11 × 10s

Avg--~7 Max=1032
12GO

1000

g

0

(b)
Par16-1: maximum -- 1,032, average = 97,

total number of flips ---- 5 x 106

Figure 4: Reduced disparity between the maximum and av-
erage numbers of times a clause is in traps using SPECIAL-
INCREASE.

dependent) flips for our algorithm to find a feasible so-
lution, the success ratios (from multiple randomly gen-
erated starting points), and in the last two columns the
success ratios (SR) and CPU times of WalkSAT/GSAT.
For most problems, we tried our algorithm from 10 ran-
dom starting points. For hanoi4 and hanoi4-simple,
we only tried 6 starting points because each run took
more than 50 hours of CPU time on the average to
complete. Note that hanoi4, hanoi4-simple and par32-
problems are much harder than problems in the par16
and f classes because the number of flips is much larger.

Table 1 also lists the results of applying DLM-99-
SAT to solve the g-class problems that were not solved
well by (Shang ~ Wah 1998). The number of flips used
for solving these problems indicate that they are much
easier than problems in the par16 class.

So far, we are not able to find solutions to eight satis-
fiable problems in the DIMACS archive (hanoiS, par32-
4-c to par32-5-c and par32-1 to par32-5). However,
we have found assignments to hanoi5 and par32-2-c to
par32-5-c with only one unsatisfied clause. These re-
sults are very encouraging from the point view of the
number of unsatisfied clauses.

Next, we apply the same algorithm to improve on
the solutions of some MAX-SAT benchmark problems

Table 1: Comparison of performance of DLM-99-SAT for
solving some hard SAT problems and the g-class problems
that (Shang & Wah 1998) did not solve well before. (All
experiments were run on a Pentinum Pro 200 computer with
Linux. WalkSAT/GSAT experiments were run on an SGI
Challenge with MPIS processor, model unknown. "NA" in
the last two columns stands for "not available.")

Problem Succ. CPU Num. of WalkSAT/GSAT
ID Ratio Sec. Flips SR Sec.

parl6-1 10/10 216.5 1.3.10T NA NA
parl6-2 10/10 406.3 2.7.107 NA NA
parl6-3 10/10 309.2 2.1 ̄ l0T NA NA
parl6-4 10/10 174.8 1.2.107 NA NA
parl6-5 10/10 293.6 2.0.107 NA NA

parl6-1-c 10/10 79.9 5501464 NA NA
parl6-2-c 10/10 124.4 8362374 NA NA
parl6-3-c 10/10 116.0 7934451 NA NA
parl6-4-c 10/10 111.3 7717847 NA NA
par16-5-c 10/10 81.9 5586538 NA NA

f600 iO/lO 1.4 39935 NA 35*
flO00 10/10 8.3 217061 NA 1095"
f2000 10/10 44.3 655100 NA 3255*
hanoi4 5/6 1.85" 10a 4.7" 10~ NA NA
hanoi4s 5/6 2.58.105 9.9.100 NA NA

par32-1-c 1/10 5.36.104 6411650 NA NA
par32-2-c 1/20 2.16.105 9.2.100 NA NA
par32-3-c 1/303.27.105 1.4.101° NA NA
g125-17 10/10 231.5 632023 7/10"* 264**
g125-18 10/10 10.9 8805 10/10"* 1.9"*
g250-15 10/10 25.6 2384 i0/i0"* 4.41"*
g250-29 10/10 412.1 209813 9/10"* 1219"*

*: Result, Selman, Kantz, & Cohen 1993 for similar
but not the same problems in the DIMACS archive

**: Results from (Selman 1995)

solved by (Shang & Wah 1997) before. Recall the
weight on Clause i is wi, and the goal is to maximize
the weighted sum of satisfied clauses. In solving MAX-
SAT, we set initial values in DLM-99-SAT (Figure 3)
to be /91 +-- 20, 02 +-- 74, 03 +-- 10 and for Clause i,
Ai 4-- wi + 1, 6o 4-- 2wi, 6d 4- Wi/4, and 6s 4-- 5wi/4.

Using these empirically set parameters, we were able
to find optimal solutions to all the MAX-SAT bench-
mark problems within 20 runs and 10,000 flips. Table 2
presents the results with respect to the number of suc-
cesses from 20 randomly generated starting points and
the average CPU seconds when optimal solutions were
found. For cases that did not lead to optimal solutions,
we show in the third column the average deviation from
the optimal solutions. The last column shows the in-
dices of the jnh problems in the MAX-SAT benchmarks
achieving the results.

Our algorithm solves MAX-SAT better than (Shang
& Wah 1997) and GRASP, but our average number of
successes of 14.77 is slightly worse than the average of
16.64 in (Mills & Tsang 1999). This could be due
the fact that our algorithm was originally designed for
solving SAT rather than MAX-SAT.

Table 2: Performance of DLM-99-SAT in solving the 44
MAX-SAT DIMACS benchmark problems (Shang & Wah
1997). (Each problem were solved on a Sun Ultra-5 com-
puter from 20 randomly generated starting points and with
a limit of 10, 000 flips. CPU sec. is the average CPU time
for runs that led to the optimal solution. Deviation from
optimal solution is the average deviation for runs that did
not lead to the optimal solution.)

of~
Succ.

2
4 -

6 }l 0.11 [-83.4
9

n ~:11~ I -~9.841012 II _;v.-4
14 II o.all -4o.3
15 II 0.10 [-15.6
16 II 0.111 -13.9
17
18 II
19 -1:1

List of jnh-? Benchmark
Problems Achieving Performance

18
4, 5, 11, 303, 305, 307
15
310
16
19, 208
302
215, 216, 219, 309
6, 8, 203

i211, 212, 308
14, 207, 220
301 304
1, 7, 10, 12, 13, 17, 201, 202, 205,

209, 210, 214, 217, 218, 306

References

Frank, J. 1997. Learning short-term weights for
GSAT. Proc. 15’th Int’l Joint Conf. on AI384-391.
Glover, F. 1989. Tabu search -- Part I. ORSA J.
Computing 1(3):190-206.
Luenberger, D. G. 1984. Linear and Nonlinear Pro-
gramming. Addison-Wesley Publishing Company.

Mills, P., and Tsang, E. 1999. Solving the MAX-SAT
problem using guided local search. Technical Report
CSM-327, University of Essex, Colchester, UK.

Morris, P. 1993. The breakout method for escaping
from local minima. In Proc. of the 11th National Conf.
on Artificial Intelligence, 40-45.

Selman, B.; Kantz, H.; and Cohen, B. 1993. Local
search strategies for satisfiability testing. In Proc. of
2nd DIMA CS Challenge Workshop on Cliques, Color-
ing, and Satisfiability, Rutgers University, 290-295.
Selman, B.; Kautz, H.; and Cohen, B. 1994. Noise
strategies for improving local search. In Proc. of 12th
National Conf. on Artificial Intelligence, 337-343.

Selman, B. 1995. Private communcation.
Shang, Y., and Wah, B. W. 1997. Discrete lagrangian-
based search for solving MAX-SAT problems. Proc.
15’th Int’l Joint Conf. on AI 378-383.
Shang, Y., and Wah, B. W. 1998. A discrete La-
grangian based global search method for solving satis-
fiability problems. J. Global Optimization 12(1):61-99.
Wu, Z. 1998. Discrete Lagrangian Methods for Solving
Nonlinear Distrete Constrained Optimization Prob-
lems. Urbana, IL: M.Sc. Thesis, Dept. of Computer
Science, Univ. of Illinois.

