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Abstract

This paper deals with iterated belief change and pro-
poses a drastic revision rule that modifies a plausibility
ordering of interpretations in such a way that any world
where the input observartion holds is more plausible
that any world where it does not. This change rule
makes sense in a dynamic context where observations
are received, and the newer observations are considered
more plausible than older ones. It is shown how to
encode an epistemic state using polynomials equipped
with the lexicographical ordering. This encoding makes
it very easy to implement and iterate the revision rule
using simple operations on these polynomials. More-
over, polynomials allow to keep track of the sequence of
observations. Lastly, it is shown how to efficiently com-
pute the revision rule at the syntactical level, when the
epistemic state is concisely represented by a prioritized
belief base. Our revision rule is the most drastic one
can think of, in accordance with Darwiche and Pearl’s
principles, and thus contrasts with the minimal change
rule called natural belief revision.

Introduction

One of the most fascinating problems in reasoning
about knowledge is the one of belief change, and more
specifically the one of iterated belief change. The most
noticeable result obtained in the eighties by the AGM
school is that rational revision steps require an order-
ing on interpretations. This ordering represents an epis-
temic state which distinguishes between interpretations
which are more or less plausible. In the last ten years,
after noticing that AGM revision could not be iterated,
because it did not affect the underlying plausibility or-
dering, the focus point has been the construction of a
rational approach to iterated belief revision. Modifying
a plausibility ordering upon the arrival of a proposition
u that should be true can actually be done in several
ways, called transmutations by (Williams 1994). In or-
der to accept p in the new epistemic state, the minimal
requirement is that there are some models of p which
become more plausible than its countermodels. In nat-
ural revision, proposed by Boutilier (Boutilier 1993) but
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already pointed out by Spohn (Spohn 1988), only the
best models of ;1 are made the most plausible inter-
pretations. Alternative plausibility ordering revision
rules have been proposed by (Williams 1994), based on
Spohn’s ordinal conditional functions, where the plau-
sibility of all models of u is affected. At the opposite
of Boutilier’s natural revision, another possible change
rule, also evoked by Spohn (Spohn 1988), where upon
receiving p, each model of g becomes more plausible
than all countermodels of p. This rule respects Dar-
wiche and Pearl axioms (Darwiche & Pearl 1997) since
it does not affect the relative ranks of models of y, nor
the relative countermodels of p, and if a model of p
is more plausible than a countermodel, it remains so.
Such a belief change rule makes sense in a dynamic
context where observations are received, and the newer
observations are considered more plausible than older
ones. In this context, the meaning of the input obser-
vation suggests that at the time t when the observation
is received, the real situation is necessarily one of the
models of , so that p should remain accepted what-
ever additional assumption is made at time t. This
paper investigates this type of revision process from a
semantic and syntactic point of view. It is shown that
at the semantic level, the iterated belief change is made
very easy if the plausibility orderings are encoded by
means of lexicographical ordering of polynomials. The
dual change rule, where older observations take prece-
dence over newly acquired information, is studied and
encoded likewise. Lastly, assuming that an epistemic
state is represented by a prioritized set of formulas, it
is shown how to perform the belief revision rule at the
syntactic level, in full agreement with plausibility or-
dering change studied here.

Representation of epistemic states

Let W be the set of interpretations of propositional cal-
culus, denoted Lpc. An epistemic state, denoted V¥,
encoding a set of beliefs about the real world (based
on the available information), is represented by a to-
tal pre-order on W, denoted <g. w1 <y wa (resp.
wy <g wy) means that w; is preferred to (strictly pre-
ferred to) wy. Bel(¥) denotes a belief set associated
to W, representing agent’s current beliefs, obtained



from <g. It is a propositional formula ! whose mod-
els are the most preferred ones w.r.t. <y, namely:
Mod(Bel(¥)) = {w : Jw’ such that v’ <g w}.

Total pre-orders have been represented according
to different points of view: binary relations, kappa-
rankings which associate to each world an ordinal as in
(Spohn 1988), (Williams 1994), possibility distributions
(Dubois & Prade 1997) which associate to each world
a degree between [0,1], vectors, etc. Changing a binary
relation can’t be easily expressed, it requires the use of
another binary relation. Possibility distributions and
kappa-rankings need to verify a so-called normalization
condition (the existence of a world having a rank 0 in
kappa-distributions, or degree 1 in possibility distribu-
tions), after each revision operation, which makes the
process more complex. Moreover, these two represen-
tations in general are not reversible, namely there is no
operations to reinstall the old ranking. Vectors can’t be
used because after shift operations their length grows.
They involve difficulties for computation and compari-
son.

In this paper, we propose a suitable representation
of <g based on polynomials (Papini 1999), which allow
to easy formalize the change of <y according to the in-
coming observation. Each interpretation is assigned a
weight, defined as a polynomial. Polynomials allow to
keep track of the sequence of observations, they repre-
sent the history of the observations. They easily provide
the models or the countermodels of successive obser-
vations. They allow to come back to previous orders,
which is not possible with the other representations and
they are tailored to representing the right and left shifts
which formalize the change of total pre—orders in revi-
sion operations.

Weighting

Let B be the set {0, 1}, and Bz], the set of polynomials
which coefficients belong to {0 1}. Polynomlals p(x) i in
Blz] have the form: p(z) = 3, p—k 2 F+3 1mopi @
The use of negative and positive indices are necessarily
to facilating shifting steps. A right shift is simply ob-
tained with a multiplication by z, while a left shift is
obtained with a multiplication by £71. As we will see in
next sections, these shift operations are the basis for the
computing of the new weights in the revision process.
The following definition introduces the lexicographical
ordering used to compare polynomials.

Definition 1 Let p(z), p'(z) € Blz], p(z) <p p'(z) iff

Ji € Z such that Vj, j < i ,p; = p; and p; < pi.
Definition 2 A weighting distribution is a function
which associates to each epistemic state ¥ and w an in-
terpretation, a polynomial of B[z] denoted by p” (¥)(z).
The smaller is p* (¥)(z), w.r.t <p the more plausible
is w. When the initial epistemic state ¥ has no speci-

'As Katsuno and Mendelzon (Katsuno & Mendelzon
1991), we use a propositional formula instead of a belief
set which is a deductively closed set of formulas.

fied ranking on W, but only the belief set Bel(¥), the
weighting distribution is defined as follows:

Yw e W, if w € Mod(Bel(¥)) then pg = 0 else pg = 1.
Namely, the weight of the interpretations which are
countermodels of Bel(¥) is supposed to be lower than
the weight of the interpretations which are models of
Bel(¥).

Remark 1 If the initial epistemic state has a rank-
ing represented by ordinals, we encode this ranking with
polynomials using binary decomposition of ordinals.

Equivalences

Iterated revision requires a carefully definition of the
equivalence between two epistemic states, more for-
mally:

Definition 3 Let ¥ and ® be two epistemic states. ¥
and & are weakly equivalent, denoted ¥ =, ®, if
Bel(¥) = Bel(®), and ¥ and ® are strongly equiv-
alent, denoted ¥ =; @, iff ¥ =, ® and Vw € W,
p*(¥)(z) = p*(2)(x).

The weak equivalence expresses that two beliefs sets
are logically equivalent. The strong equivalence ex-
presses that two epistemic states have equivalent asso-
ciated beliefs sets and also have same weighting on W.
One of the problems arising with revision when epis-
temic states only consist in belief sets is that two equiv-
alent epistemic states are revised in the same way. The
definition of a weighting on W allows for the introduc-
tion of two kinds of equivalences, that makes it possible
to solve this problem. Two weakly equivalent cpistemic
states shall be differently revised, on the other hand two
strongly equivalent epistemic states shall be equally re-
vised. The notion of strong equivalence is analogous to
Darwiche and Pearl’s equality between epistemic states
(Darwiche & Pearl 1997) and to semantic equivalence
in possibility logic (Dubois & Prade 1992).

Note that the function that assigns to each epistemic
state ¥ the total pre-order on W, denoted <y, defined
by: wy <g we iff p*1(¥)(z) <p p“2(¥)(z) is a faithful
assignment, (Katsuno & Mendelzon 1991), with respect
to Bel(¥). Namely it satisfies:

(1) If wy, we |E Bel(¥) then wy =g wo;
(2) if w1 = Bel(%®) and wy [ Bel(¥) then wy <g ws;
3) ¥ =, @iff <g=

In (Katsuno & Mendelzon 1991) Condition (3) only

requires the logical equivalence.

Preferring newer information

The revision operation, first defined here, prefers the
last item of information. The general philosophy here
is that an old assertion is less reliable than a new one.
We believe that in many cases it seems reasonable to
decrease the confidence that one has in an item of infor-
mation, as time goes by. However, this revision opera-
tion attempts to satisfy as many previous observations
as possible. That is, an old observation persists until
it becomes contradictory with a more recent one. The



revision operation uses the history of the sequence of
previous observations to perform revision.

Definition 4 The revision of an epistemic state ¥ by a
formula i € Lpe, leads to a new epistemic state denoted
Vo, u. The modification of the weighting after revision
by p is:
f w € Mod(p) then p* (¥ o, p)(z) = xp”(¥)(z),
otherwise p* (¥ o, p)(z) = zp*(¥)(z) +1
The weights corresponding to the models of i are right

shifted and the weights corresponding to the counter-
models of p are right shifted and translated by 1.

Remark 2 If p = L then Mod(Bel(¥ o, p)) =
Mod(¥) and the total pre-order on W is preserved.

Example 1 Let U be an epistemic state with a total
pre-order <g such that, wy =g w3 =gy wy <y wy and
with associated belief set Bel(¥) = aVb. Let p =
—b and o = —a be propositional formulas. Let denote
r(z) = p*(¥)(2), q() = p°(¥ o, p)(a) and p(z) =
P ((¥ o ) op a)(z). The following array shows the
changes of the total pre-order after a revision first by p

then by a:
Wlla bllir(e)|roll a(=) | goqr || p(z) | popip2
wy o off1 1l 01 z? 001
wy |0 1o o |l 1 10 || = 010
w1 offo oo 00 |j1 100
wy|[1 1o ol 1 10 [[1+=] 110

In the above example, the columns pg p; p2 give the
total pre-order corresponding to the current epistemic
state (U o, p) o, e, the columns p; pa give the total
pre-order corresponding to the previous epistemic state
WU o, p and the columns of p; gives the total pre-order
corresponding to the initial epistemic state ¥. The val-
ues of coeflicients of the polynomials show whether the
interpretation satisfies (value 0) or not (value 1) the
successive observations. For example, wy satisfies o
and Bel(¥) but does not satisfy p. Hence, the use of
polynomials allows to come back to previous epistemic
states. Indeed, let ¥’ be the actual epistemic state ob-
tained after revising ¥ by u. Then, & can be recovered
from ¥’ by defining models of p in the following way:
Mod(y) = {w : p*(¥’) <p 1}, and the weighting distri-
bution associated to the previous epistemic state ¥ can
be recovered from ¥’ as follows: p¥(¥) = 2~ 1p¥ (V) if
(9"} <p 1 otherwise p¥ (¥) = z~1(p¥ (V') — 1).

In our framework, the AGM postulates for epistemic
states are rephrased as follows (Alchourron, Garden-
fors, & Makinson 1985), (Katsuno & Mendelzon 1991),
(Papini & Rauzy 1995):

Modified AGM postulates for epistemic states
(R1v) Bel(¥ o, p) = p.
(R2v) If Bel(¥) A p is satisfiable, then ¥ o, s =, ¥ A p.
(R3v) If i is satisfiable, then so is Bel(¥ o, p).

(R4v)  If ¥y =, ¥3 and py = pa, then, ¥ 0p g1 =, ¥3 05 p2.

(R50) Bel(¥ op ) A ¢ |= Bel(¥ 0 (1 A 8)).
(R6p) If Bel(T o, 1) A ¢ is satisfiable,
then Bel(¥ oo (4 A ¢)) |= Bel(¥ 0o p) A ¢4

(R1b), (R2v), (R3>), (R5>) and (R6r) are the straight-
forward translation of the corresponding original AGM
postulates. For (R5>) and (R6r) we assume that j£
—i. In contrast, (R4ve) is a weaker version of original
AGM postulate; it requires that the epistemic states be
strongly equivalent in order to be equally revised.

Theorem 1 Let ¥ be an epistemic state, p be a for-
mula of Lpc and let <g be the total pre-order on W
defined as in proposition 1. Then, the operator o, veri-
fies the postulates (R1) — (R6) and Mod(Bel(¥o, 1)) =
min(Mod(), <¢). 2

Darwiche and Pearl (Darwiche & Pearl 1997) for-
mulated postulates which constrain the relationships
between two successive epistemic states, the straight-
forward translation of the corresponding original DP
postulates in our framework, are the following:

DP postulates for iterated revision
(C1v) If o f= p then (T op p) 06 & =4 ¥ 0p
(C2v) If o f= ~p then (Yo, ) 0p o =4 T op, .
(C3p) If Bel(® o, a) |= 1 then Bel((® oy p) 0p a) = n.
(C4v) If Bel(¥ op ) [£ ~u then Bel((¥ o, p) 0 a) J =p.

The postulates (C'ly), (C2>), (C3p) and (C4p) in re-
lationship with total pre-orders associated to two suc-
cessive epistemic states are the following:

(CRlp) IHw lEpandwz=p

then w; <y w2 iff w1 <wopp wa-
(CR2v) Ifw)|=-pand wa = -p

then w1 <¢ w2 iff w1 <yopp w2
(CR3v) Ifw)|=pand wz = —p

then w) <y w3 only if w) <wopp wa-
(CR4v) IHfw | pand we =y

then wy <v w2 only if w1 <wyopp wa.

Theorem 2 The operator o, wverifies {Clp) — (C4v)
and 1its corresponding faithful assignment verifies
(CR1p) — (CR4v).

The defined o, revision operation preserves the rela-
tive ordering between the models of the added formula.
Furthermore, the relative ordering between the counter-
models of the added formula is preserved, and the or-
dering between models and countermodels of the added
formula does not change. Moreover, this operation pro-
vides a stronger constraint because each model of the
added formula is preferred to all its countermodels.

Preferring oldest information

Preferring the last item of information is not always
desirable, it may, in certain cases, lead to unaccept-
able conclusions. We define a new revision operation
which is a dual revision operation of the one previously
introduced. The general philosophy here is that a new
observation is less reliable than an old one. We increase
the confidence that one has in an item of information, as
time goes by. However, this revision operation attempt
to satisfy as many new observations as possible.

2min(Mod(p), <¢) contains all models that are minimal
in Mod(u) according to the total pre-order <y.



Definition 5 The revision of ¥ by a formula y, leads
to a new epistemic state denoted ¥ o4 t. The modifica-
tion of the weighting after revision by p is:

if w € Mod(u) then p* (¥ o, p)(z) = =~ 1p* (¥)(z),
otherwise p* (¥ o, p)(z) = 7 1p¥(¥)(x) + 1

This is different from the previous revision operation,
since we now use left shifts (i. e. multiplication by
-1

Theorem 3 The operator o4 verifies the postulates
(R2), (R4) and (Rb).

The postulates (R1), (R3) and {R6)3 are not satis-
fied, because the new observation is not preferred in
the next epistemic state. As older observations are pre-
ferred in the next epistemic state, the part of Bel(¥)
and the part of u are inverted and hence new postulates
can be formulated :

Proposition 1 The operator o4 verifies:
(R1b) Bel(¥ 04 p) |= Bel(¥).

(R2b) If Bel(¥) A p is not satisfiable, then ¥ oq p =y V.

(R3b) Bel(?) is satisfiable iff Bel(¥ o4 u) is satisfiable.

Concerning iterated revision the following result
holds:

Proposition 2 The operator o4 verifies (C3) and
(C4), and its corresponding faithful assignment verifies
(CR1), (CR2), (CR3) and (CR4).

Although the last observations are not preferred in
the next epistemic state, the postulates (C3) and (C4)
are satisfied. In contrast, the postulate (C1) does not
hold when Bel(¥)Ap is satisfiable and Bel(¥)A« is not
satisfiable because (Vo p)oqa =y YAp and Yo, =y
V. (C2) does not hold when Bel(¥)Ap is satisfiable and
Bel(¥) A « is satisfiable because (¥ o4 p)oqa =y YA p
and Yo, =, ¥Aca. (CR1)— (CR4) are satisfied since
the defined o, revision operation preserves the relative
ordering between the models of the added formula.

Revision using o, and o, together

In certain situations it seems reasonable to prefer a
new observation and in others, the oldest observation
has to be preferred. In order to use the two opera-
tions together, the definition of the weights associated
to countermodels of g are slightly modified in the fol-
lowing way: p“(¥ o, p)(z) = :cp"’(\ll‘!)&a}:) + «MIN and
(¥ oq p)(z) = 2 p¥(¥)(z) + = , where MIN
and M AX are respectively the minimum and the max-
imum element of the set {i, ¢ € Z, such that p? (¥) #
0, and w € W}. When using only o, {resp. o) then
MIN =0 (resp. MAX = 0) then we recover the pre-
vious definitions. Using these modifications, we have:

Proposition 3 Let ¥ be an epistemic state, and two
formulas pt, o € Lpc, (U op p) oqa =5 (Y oq )05 .

3(R6) requires an additional condition to be satisfied that
is Bel(¥os (A P)) Eo.

This result shows that the order with wich the oper-
ators are used has no importance, since the o, revision
operation uses right shifts and the o4 revision operation
uses left shifts.

In previous sections we gave methods for construct-
ing a new total pre-order on the interpretations. We
now have to provide a syntactic counterpart of these
semantical methods.

A syntactic representation of epistemic
states

In this section, we give an alternative (but equivalent)
representation of an epistemic state ¥. Instead of ex-
plicitely specifying the total pre-order <g, the agent
specifies a set of weighted formulas, called a weighted
{or stratified) belief base and denoted by Yg. Then we
define a function  which allows to recover <g from Xy
by also associating to each interpretation w a polyno-
mial of Bfx], that we denote by kg, (w)(2x). When this
polynomial is equal to p*(¥)(z) for each w we say that
Yg is a compact (or syntactic) representation of <g.

Given this compact representation, we are interested
in defining syntactic counterpart of o, (resp. o), which
syntactically transforms a weighted belief base g and
a new information p, to a new weighted base, denoted
by Ywo, x corresponding to the new epistemic state ¥o,
p. This new weighted base should be such that: Vw
P (¥ 0, 1)(z) = iz, , () 2).

In the following, we formally define the notion of
weighted belief bases, and the function .

Definition 6 A weighted belief base Ly is a set of pairs
{(¢:, p?(¥)(z)) : i = 1,...,n} where ¢; is a proposi-
tional formula, and p%: (¥)(z) is a non-null polynomial
of Bfz] (i.e., different from the polynomial 0).

Polynomials associated to formulas are compared ac-
cording to Definition 1. When p?(¥)(z) >g5 p¥(¥)(z),
we say that ¢ is more important (certain, recent, has a
higher priority etc) than the belief 9. A weighted base
Y. is said to be consistent (resp. to entail @) if its clas-
sical base (by forgetting the weights) is also consistent
(resp. enmtails ¢). Note that Ly is not necessarily de-
ductively closed. Moreover, nothing prevents Yg from
containing two weighted formulas (¢,p?(¥)(z)) and
(¥, p¥ (¥)(z)) such that ¢ and ¢ are classically equiva-
lent, but having different weights p?(¥)(z) # p¥ (¥)(z).
In this case, we will see later that the least important
belief can be removed from the weighted belief base.

Definition 7 Let g be a weighted belief base. The
total pre-order <y, associaled to Ly, is obiained by
attaching to each w a weight Kz, (w)(x) defined by:
rzg(W)(2) = maz{p®(¥)(z) : (¢:, p*(¥)(v)) € e
and w [~ ¢;}, where by convention maz()=0.

This semantics is basically the same as the one used
in possibilistic logic (Dubois et al., 1994), in System Z
(Pearl 1995) and for generating a complete epistemic
entrenchment relation from a partial one (Williams
1994). Indeed, all these approches share the same idea,
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where they associate to each interpretation the weight
of the most important formula falsified by the interpre-
tation. The lowest is the weight of an interpretation,
the most plausible it is and the preferred it is. In partic-
ular, models of £¢ (namely those with a weight equal
to 0) are the most preferred ones.

Example 2 Let: Ly = {(-aVv-b, z+1), (—a, 1), (-bV
a, 1),(ma Vb, z),(=b, z),(aVb, z?)}

Then: &gpy(ad) = maz{l,z,z + 1,2} = =z + L
Kz (ab) = maz{l} = 1. kx,(—ab) = maz{z,1} = 1.
K5y (ma-b) = max{z?} = 22. Using Definition 1, =a—b
is the preferred one, then —ab and —ba are less preferred
than —a-b and lastly ab is the least preferred one. Note
that there is no w such that ks, (w)(z) = 0. This ex-
presses the fact that the belief base Ty is inconsistent.

Computing Bel(¥) syntactically
Given Ly as a compact representation of <g, we pro-
pose to compute Bel(¥) directly from Xg, such that:
Mod(Bel(¥)) = {w : o’ 5. t. kx(w') < kz(w)(z)}
But first, we proceed to some pre-processing steps
which make the computation easier, and which re-
duce the size of revised knowledge bases. These pre-
processing steps consist in removing useless (or redun-
dant) formulas. These formulas are tautologies and the
so-called subsumed beliefs are defined by:

Definition 8 A formula (¢, p?(¥)(z)) is subsumed in
By if it can be classically entailed from formulas of Xy
having a weight greater than p®(¥)(z).

Theorem 4 Let Xy be a weighted base. Let XY be a
new base obtained from g by removing tautologies and
subsumed formulas. Then Ty and Xj are equivalent,
in the sense that Yw we have: kg, (w)(2) = £, (w)(2).

We denote by ¥} the weighted subbase obtained by
removing tautologies and subsumed formulas from Xg.
Xy is a partial epistemic entrenchment in the sense of
(Williams 1995). It is easy to imagine an algorithm that
computes g from Xy

Example 3 Let us consider the weighted belief base of
the previous ezample. The only subsumed formulas are
(ma V b, z) (which is entailed by (—a V —b, z + 1))
and (—b, z) (which is entailed by (—bV a, 1)). The
previous algorithm returns the final subbase:

v ={(rav-b, z+1),(ma, 1),(-bVae, 1),(aV, z3)}.

The removing of tautologies and subsumed formulas al-
lows us a direct computation of Bel(¥).

Theorem 5 If X3 is consistent, then Bel(W) is the
classical base (i.e., without weights) associated to Xg.
If £y is not consistent, then let Minweight be the set of
beliefs in ©* having minimal weights. Then Bel(¥) is
the classical base of ¥ - Minweight.

Example 4 (continued) Since L is inconsistent,
then: Minweight = {(a V b, z%)}. Therefore, Bel(¥)
is the classical base (by forgetting weights) of: X§ —

Minweight = {(—aV -b, 2+ 1),(-a, 1),(=bVa, 1)}.
Clearly, Bel(U) has ezactly one model which is —a—b.
Moreover, it is easy to check that ~a—b has the minimal
weight in Ky, computed previously in Example 2.

Syntactic counterpart of o, and o,

This section gives the syntactic counterpart of o,. Let
us illustrate the construction of Xg,,, when Ly only
contains one formula {(¢, 1)} representing the initial
belief set. Given a new observation p, let the reader
check that the new ordering <y, ,, in the semantical
construction, is encoded by: p*(¥ o, p)(z) =0 ifw |
Al p¥ (Yoo p)(z) = zifw = gAp; p*(To, p)(z) = 1
fwhEoApp?(To p)(z) =z+1ifwkE¢A-p
Now, let us see how to recover this ordering by building
a weighted belief base Xg,, , and using the function «.
Recall that & is defined with respect to the strongest
falsified belief. Therefore, in order to recover <wo, ,,
one should assign to ¢ V p the highest weight (therefore
each countermodel of ¢ V u, namely each model of ¢ A
—p, gets the highest weight hence the least preferred
interpretation), then —¢ V p will get a smaller weight,
which has a weight greater than ¢ V —p. Therefore, we
get the following weighted base:

Zwou={(¢Vep, z+1),(~¢ V1), (oV-p,z)}

It is easy, to check that: Yw, kgo,,(w)(z) = p* (¥ o,
(@),

Note that models of this weighted base are those
which satisfy ¢ A p, and by definition of the function
x they get lowest rank and hence there is no need for
additional beliefs. Besides, we can easily check that the
above base can be simplified into an equivalent one (in
the sense that they have the same ) which is:

Zopn = {(4’ vy, z+ 1)a (l‘» 1)) (¢ VT, m)}
Intuitively, replacing (=¢ V p, 1) by (p, 1) is justified by
the fact that we already have ¢ V u with the highest
rank, and from (¢ V 4,z + 1) and (—¢ V p,1) we de-
duce (g, 1), hence adding (—¢ V u, 1) is equivalent to
only add (p,1). Moreover, from (p,1) and (¢ V =g, z)
we also deduce (¢, z) To summarize, the new weighted
base contains three parts: first, the old formula ¢, with
the smallest weight equal to x p?(¥)(x) = x, then the
new formula p, with a weight equal to 1, and finally,
the disjunction ¢ V p, with the highest weight equal to
x p?(¥)(z) + 1=x+1.

The following definition generalizes the previous re-
sult to the case where the weighted belief base g con-
tains more than one belief.

Definition 9 The weighted base Yo, , associated to
the epistemic state ¥ o, u is composed of:

o the new observation p with a rank: p*(Vo, p)(z) = 1.
e all the pieces of information of Xg however with the
new rank, namely for each belief ¢ in Lg:
PH(¥ o p)(z) =z p*(¥)(2)
o all the possible disjunctions between beliefs ¢ of Ly
and p with the following weights:
pPE(T 05 p)(x) =z p?(T)(z) +1



Once Yy, , is built we remove tautologies and sub-
sumed beliefs. The following proposition shows that
Ygo,u allows us to recover the total pre-order associ-
ated to the epistemic state ¥ o, u syntactically.

Theorem 6 Let Yy be the weighted base associated

to an epistemic state ¥, such that Yw, p*(¥)(z) =

kxg(w)(z). Let p be a new formula. Then for each w:
pY(¥ 0o p)(2) = Kz, , (W)()

The following definition gives the syntactic counter-
part of ¥ o, ¢ and characterizes the structure of Xy, ,,
which is exactly the same as the one of Xg,,, except
that the weighting is not the same.

Definition 10 The weighted base g,y associated to

the epistemic state W o4 pt is composed of:

o the new observation p with a rank: p*(Vop)(z) = 1.

o all the pieces of information ¢ of Xy with the rank:
PP oq p)(2) = 2~ p?(¥)(2)

o all the possible disjunctions between beliefs ¢ of
B¢ and p with the weights: p®VH (U o, p)(z) =
=~ lp?(T)(x) +1
The following proposition shows that Yg,,, also al-

lows us to recover the total pre-order associated to the

epistemic state ¥ o4 p syntactically.

Theorem 7 Let Xy be the weighted base associated to
an ¥, and p be a formula. Then for each w:

(¥ oq p)(2) = Kxy,,, (W)(2)

Concluding discussions

This paper proposes a revision rule, with a practical
syntactic counterpart, that operates a maximal shift of
all models of a new observation, while retaining their
relative ordering. This type of belief change rule is the
most drastic one can think of, in accordance with Dar-
wiche and Pearl’s principles, while Boutilier’s natural
revision is the least refined change rule, whereby only
the best models of p are made maximally plausible.
Our changing rule considers that the input is strongly
believed (but its strength decreases as time goes by),
since each model of y is preferred to all countermodels
of p. In contrast, Boutilier’s natural revision the input
is only weakly believed, since only the best models of
u are preferred to p. Milder changing rules have been
proposed by Williams (1994) and {Dubois and Prade,
1997) where they explicitely specify the level of accep-
tance of the input.

The proposed change rule can be viewed as based
on the ceteris-paribus principle, that has been applied
to representing preferences (C. Boutilier & al. 1997),
whereby preferring g means that any choice satisfying
4 is better than any choice satisfying —p. It suggests
that our revision approach might be relevant as well,
not only for encoding a sequence of timed obsevations,
but also for the update preference.

The use of polynomials allows to solve the drawback
addressed by Spohn (Spohn 1988) concerning the re-
versibility of the changing rules. Indeed, we have shown

that it is always possible to go back to previous epis-
temic states, while this is not be possible if WOP (well-
ordered partitions) or ordinals have been used. It might
be interesting to see if other revision tools can be effi-
ciently encoded by means of simple operations on poly-
nomials. Boutilier’s natural belief revision can be easily
encoded by shift operations on polynomials and syntac-
tic counterpart to Boutilier’s natural belief revision can
be provided.
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