From: AAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Querying Temporal Constraint Networks in PTIME

Manolis Koubarakis
Dept. of Informatics, University of Athens
Panepistimioupolis, TYPA Buildings
157 81 Athens, Greece
manolis@di.uoa.gr, www.di.uoa.gr/ “manolis

Abstract

We start with the assumption that temporal
knowledge usually captured by constraint net-
works can be represented and queried more ef-
fectively by using the scheme of indefinite con-
straint databases proposed by Koubarakis. Al-
though query evaluation in this scheme is in gen-
eral a hard computational problem, we demon-
strate that there are several interesting cases
where query evaluation can be done in PTIME.
These tractability results are original and sub-
sume previous results by van Beek, Brusoni, Con-
sole and Terenziani.

Introduction

When temporal constraint networks are used in appli-
cations, their nodes represent the times when certain
facts are true, or when certain events take place, or
when events start or end. By labeling nodes with ap-
propriate natural language expressions (e.g., breakfast
or walk) and arcs by temporal relations, temporal con-
straint networks can be queried in useful ways. For
example the query “Is it possible (or certain) that
event walk happened after event breakfast?” or
“What are the known events that come after event
breakfast?” can be asked (Brusoni et al. 1994,
van Beek 1991). Other kinds of knowledge cannot be
queried however, although they might have been col-
lected in the first place. For example, the query “Whois
certainly having breakfast before taking a walk?” can-
not be asked.

This situation has been understood by tempo-
ral reasoning researchers, and application-oriented
systems where temporal reasoners were combined
with more general knowledge representation sys-
tems have been implemented. These systems in-
clude the natural language systems EPILOG, Shocker
(see www.cs.rochester.edu/research/epilog/ and
kr-tools.html), Telos (Mylopoulos et al. 1990) and
TMM (Dean & McDermott 1987; Schrag, Boddy, &
Carciofini 1992). EPILOG uses the temporal reasoner

Copyright (©1999, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

Spiros Skiadopoulos
Dept. of Electrical and Computer Engineering
National Technical University of Athens
Zographou 157 73 Athens, Greece
spiros@dbnet.ece.ntua.gr

Timegraph (Gerevini & Schubert 1995), Shocker uses
TIMELOGIC, Telos uses a subclass of Allen’s interval
algebra (Allen 1983) and TMM uses networks of differ-
ence constraints (Dechter, Meiri, & Pearl 1991).

In this paper we start from the assumption that tem-
poral knowledge usually captured by a constraint net-
work can be represented more effectively if the network
is complemented by a database for storing the informa-
tion typically used to label the nodes of the network.
The combined system can then be queried using a first
order modal query language.

The above assumption has been made explicity in
the TMM system (Dean & McDermott 1987; Schrag,
Boddy, & Carciofini 1992) and the temporal relational
database models of (Koubarakis 1997b; Brusoni et al.
1995). Of these two database proposals the most
expressive one is the scheme of indefinite constraint
databases proposed in (Koubarakis 1997b). In this pa-
per we redefine the scheme of (Koubarakis 1997b) (us-
ing first order logic instead of relational database the-
ory) and take it as the formalism in which we present
our contributions.

We first point out that query evaluation in the pres-
ence of indefinite temporal information is a hard prob-
lem (it is NP-hard for possibility queries and co-NP-
hard for certainty queries). Motivated by this nega-
tive fact, we try to discover tractable subclasses of the
general query answering problem. To achieve this, we
adopt the following approach. We start with the as-
sumption that we have a class of constraints C with sat-
isfiability and variable elimination problems that can be
solved in PTIME. Under this assumption, we demon-
strate several general classes of indefinite constraint
databases and queries for which query evaluation can
be done with PTIME data complexity. Then we re-
state these results with C ranging over some interesting
classes of temporal constraints. The tractable query
answering problems identified in this way are bound to
be interesting for temporal reasoning researchers. Two
of them are significant extensions of tractable problems
identified previously in (Brusoni, Console, & Terenziani
1995; van Beek 1991).

The organization of this paper is as follows. The next
section presents some preliminaries. Then we present

the model of indefinite constraint databases. The last
two sections develop our contributions.

Preliminaries
In this paper we consider first order constraint lan-
guages. For each such language L¢, we assume an in-
tended structure Mc which interprets formulas of L¢.
Th(M¢c) will denote the theory of this structure. Fi-
nally, for each language L¢ a class of formulas called
Lc-constraints will be defined.

For example let us consider Lpyn: the first order
language of linear constraints over the rationals. Its
intended structure is My = (@, +,*,<) where Q
is the set of rational numbers. We will deal with the
following classes of £ n-constraints:

e The class of linear inequalities LIN.

e The class of Horn disjunctive linear constraints HDL.
An HDL constraint is a disjunction of an arbitrary
number of linear disequations and at most one weak
linear inequality.

o The class of linear constraints with two variables per
inequality and unit coefficients UTVPI#. A UTVPT#
constraint is a linear constraint az + by ~ ¢ where
a,b€ {-1,0,1} and ~ is < or #.

HDL constraints were defined in (Koubarakis 1996;
Jonsson, P. and Bickstrém, C. 1996). They sub-
sume many interesting classes of temporal constraints.
UTVPI# constraints (without disequations) have been
considered in (Shostak 1981; Jaffar et al. 1994).
UTVPI# constraints subsume the temporal constraints
studied in (Koubarakis 1997a). They can also be used
in spatial applications to define many kinds of polygons
(e.g., arbitrary rectangles, several kinds of triangles and
octagons and so on). The disequations allowed by this
class give us more expressive power by allowing a lim-
ited form of negative information (e.g., they can be used
to remove points and straight lines from polygons).

We assume that the reader is familiar with the con-
cept of satisfiability of a set of constraints, and the con-
cept of variable elimination.

Theorem 1 The satisfiability of a set of HDL con-

straints can be decided in PTIME (Koubarakis 1996;

Jonsson, P. and Béckstrom, C. 1996).

Unfortunately we do not have a nice theorem like
the above concerning variable elimination for the class
HDL. In fact variable elimination cannot be done in
PTIME even for LIN. If we have a set C of linear in-
equalities, it might not be possible to describe the result
of a variable elimination operation on C by a set of lin-
ear inequalities with size less than exponential in the
number of eliminated variables (Yannakakis 1988).

The following result extends a similar result in

(Koubarakis 1997a).
Theorem 2 Let C be a set of UTVPIZ constraints.
We can eliminate any number of variables from C in
O(dn?) time where d is the number of disequations and
n is the number of variables in C.

The Scheme of Indefinite Constraint
Databases

In this section we present the scheme of indefinite con-
straint databases originally proposed in (Koubarakis
1997b). We follow the spirit (and details) of the original
proposal but use first order logic instead of relational
database theory.

Let Lo be a many-sorted first-order constraint lan-
guage and Mc be its intended structure. We assume
that the class of Lo-constraints admits veriable elim-
ination and is weakly closed under negation (i.e., the
negation of every Lc-constraint is equivalent to a dis-
junction of Lo-constraints). Many interesting con-
straint languages have this property e.g., the language
Lrrn defined previously.

We start by introducing some formal tools that make
our presentation easy to follow. Let £— be a first order
language with equality and a countably infinite set of
constant symbols. The intended structure M- for £_
interprets = as equality and constants as “themselves”.
L_-constraints or equality constraints are formulas of
the form £ = v or = # v where z is a variable, and v
is a variable or a constant. In the database formalism
to be developed below constants of L= will be used to
represent real-world entities with no special semantics
e.g., John or breakfast.

Now let Lo be any first order constraint language.
We will use Lo~ to denote the union of L and L_.
The intended structure for L& = is Mg U M= and will
be denoted by Mc¢,=. Finally let us define the first or-
der language L _. L _ is obtained by augmenting Lo
with the new sort symbol D (for real-world entities with
no special semantics), the equality symbol = for sort D,
a countably infinite set of database predicate symbols
P1,P2, ... of various arities, and a countably infinite set
of variables 1, T, . .. of sort D. In other words £ _ is
obtained from L¢ - by introducing a countably infinite
set of predicate symbols p;, ps, ... of various arities.

Databases And Queries
Let Lco be a first order constraint language. In this
section the symbols 7 and 7; will denote vectors of
sorts of Lo. The symbol D will denote a vector with
all its components being the sort D.

Indefinite Lo-constraint databases and queries are
special formulas of £ _ and are defined as follows.

Definition 1 Let Lo be a first order constraint lan-
guage. An indefinite Lo-constraint database is a for-
mula DB(@) of LE _ of the following form:

ConstraintStore(w) A

m 3
N\ z/D)VE/T3)(\] Local;(F, 1, 0) = pi(Ti, 1))
i=1 j=1

where

e ConstraintStore(w) s a conjunction of
Lc-constraints in Skolem constants w.

o Local;(F:,1;,@) is a conjunction of L¢-constraints
in variables T; and Skolem constants @, and L—-
constraints in variables T;.

The first part of the above formula defining a
database is a constraint store. This store is a con-
junction {or a set) of L¢-constraints and corresponds
to a constraint network. @ is a vector of Skolem con-
stants denoting entities (e.g., points and intervals in
time) about which only partial knowledge is available.
This partial knowledge has been coded in the constraint
store using the language Lo

The second part of the database formula is a set of
equivalences defining the database predicates p;. These
equivalences may refer to the Skolem constants of the
constraint store. For temporal reasoning applications,
the constraint store can be used instead of a constraint
network while the predicates p; can be used to encode
the events or facts usually associated with the nodes of
temporal constraint networks.

For a given database DB the first conjunct of the
database for-
mula will be denoted by ConstraintStore(DB), and
the second one by EventsAndFacts(DB). For clarity
we will sometimes write sets of conjuncts instead of con-
junctions. In other words a database DB can be seen
as the following pair of sets of formulas:

(EventsAndFacts(DB), ConstraintStore(DB)).

We will feel free to use whichever definition of database
fits our needs in the rest of the chapter.

The new machinery in the indefinite constraint
database scheme (in comparison with relational
or Prolog databases) is the Skolem constants in
EventsAndFacts(DB) and the constraint store which
is used to represent “all we know” about these Skolem
constants. Essentially this proposal is a combination
of constraint databases (without indefinite information)
as defined in (Kanellakis, Kuper, & Revesz 1990), and
the marked nulls proposal of (Imielinski & Lipski 1984;
Grahne 1991).

Example 1 The following is an indefinite Lprn-
constraint database:

({wl <wsg, W1 < W3z, wg < w4 },
{ (¥z/D)(Vt1,82/Q)
((z=mary A t1 = w1 A ts =ws) = walk(z,t1,12)),
(Vz/D)(Vts, t4/Q)
((x =mary A t3 = ws Aty = wy) = paper(z,t1,t2)) })
This database contains information about the events
walk (talking a walk) and paper (reading a paper) in
which Mary participates. The temporal information is
indefinite since we do not know the exact constraint be-
tween Skolem constants we and ws.

Let us now define queries. The concept of query de-
fined here is more expressive than the query languages
for temporal constraint networks proposed in (Brusoni
et al. 1994; van Beek 1991). It is very similar to the
query language used in TMM (Schrag, Boddy, & Car-
ciofini 1992).

Definition 2 A first order modal query over an indefi-
nite Lo -constraint database is an ezpression of the form
Z/D,t/T : OP §(%,t) where ¢ is a formula of L} _
and OP is the modal operator & or O.

Modal queries will be distinguished in certainty or
necessity queries (O) and possibility queries (O).

Example 2 The following query asks “Who is possibly
having a walk before reading the paper?”:

a:/D <>(3t1,t2,t3,t4/Q)
(walk(z,t1,t2) A paper(z,t3,t1) A t2 < t3)

We now define the concept of an answer to a query.

Definition 3 Let q be the query T/D,t/T : O¢(Z,T)
over an indefinite L -constraint database DB. The an-
swer to q is a database ({answer(z,?)}, §) such that

1. answer(%,%) is a formula of the form

k
V Local;(z,1)

j=1

where Local;(%,1) is a conjunction of Lc-constraints
in variables t and L—-constraints in variables T.

2. Let V' be a variable assignment for variables T and
t. If there exists a model M of DB which agrees
with Mg on the interpretation of the symbols of
Lo, and M satisfies ¢(T,t) under V then V satis-
fies answer(z,%) and vice versa.

The definition of answer in the case of certainty queries
is defined accordingly. No Skolem constant (i.e., no
uncertainty) is present in the answer to a modal query.
Although our databases may contain uncertainty, we
know for sure what is possible and what is certain.

Example 3 The answer to the query of Example 2 is
({z = mary}, 0).

Query evaluation over indefinite Lco-constraint
databases can be viewed as quantifier elimination in the
theory Th(Mc¢=). Th(Mc,=) admits quantifier elim-
ination as a consequence of the assumptions given at
the beginning of this section. The following theorem is
essentially from (Koubarakis 1997b).

Theorem 3 Let DB be the indefinite Lo-constraint
database
ConstraintStore(W) A

m {

N\ EDYE/T:)(\ Local;(z3,5,®) = pi(@,5))

i=1 i=1
and q be the query §/D,Z/T : ©¢(7,z). The answer
to q is ({answer(y,%)}, 8) where answer(y,z) is o dis-
junction of conjunctions of L—-constraints in variables
7 and Lo-constraints in variebles Z obtained by elimi-
nating quantifiers from the following formule of L;—:

(3w/T)(ConstraintStore(@) A %(7,%,o))

In this formula the vector of Skolem constants @ has
been substituted by a vector of appropriately quanti-
fied variables with the same name (T is a vector of
sorts of Lc). ¢(T,Z,W) is obtained from ¢(y,Z) by sub-
stituting every atomic formula with dataebase predicate
p;i by an equivalent disjunction of conjunctions of Lo~
constraints. This equivalent disjunction is obtained by
consulting the definition

l
\/ LOCGlJ(.m—,, t_i> w) = p’t(m—t)m
j=t
of predicate p; in the database DB.
If q is a certainty query then answer(7,z) is obtained
by eliminating quantifiers from the formula

(V&) T)(ConstraintStore(@) D ¥(¥,z,o))

where ConstraintStore(w) and ¥(7,Z,w) are defined as
above.

Due to lack of space we do not give any examples of
this procedure. Examples can be found in (Koubarakis
1997b).

Let us close this section by pointing out that what
we have defined is a database scheme. Given various
choices of L one can use the developed formalism to
study any kind of databases with indefinite information
(e.g., temporal or spatial). The complexity results of
the next section have been developed in a similar spirit.
They talk about arbitrary constraint classes that satisfy
certain properties. The instantiation of these results
to classes of temporal constraints is given in the final
section of the paper.

Tractable Query Evaluation in
Indefinite Constraint Databases

In this paper the complexity of database query eval-
uation is measured using the notion of date complez-
ity (Vardi 1982). When we use data complexity, we
measure the complexity of query evaluation as a func-
tion of the database size only; the size of the query is
considered fized. This assumption has also been made
in previous work on querying constraint networks (van
Beek 1991). In our case we also assume that the size of
any integer constant in the database is logarithmic in
the size of the database (Kanellakis, Kuper, & Revesz
1990).

Evaluating possibility queries over indefinite con-
straint databases can be NP-hard even when we only
have equality and inequality constraints between atomic
values (Abiteboul, Kanellakis, & Grahne 1991) (simi-
larly evaluating certainty queries is co-NP-hard). It is
therefore important to seek tractable instances of query
evaluation.

In this paper we start with the assumption that we
have classes of constraints with some nice computa-
tional and closure properties. Under these assumptions,
we show that there are several classes of indefinite con-
straint databases and modal queries, for which query

evaluation can be done with PTIME data complex-
ity. We will reach tractable cases of query evaluation
by restricting the classes of constraints, databases and
queries we allow in our framework. We introduce the
concepts of query type and database type to allow us
to make these distinctions.

Query Types
A gquery type is a tuple of the following form:

Q(Open/Closed, M odality,

PositiveExistential [Single Predicate, Constraints)

The first argument of a query type distinguishes be-
tween closed and open queries. A query is called closed
or yes/no if it does not have any free variables. Queries
with free variables are called open. The argument
Modality can be © or O representing possibility or ne-
cessity queries respectively.

The third argument can be PositiveExistential or
SinglePredicate. We use PositiveEzistential to de-
note that the query is a positive ezxistential one i.e.,
it is of the form OP (3%/3)¢(F) where ¢ involves
only the logical symbols A and VvV . We use
SinglePredicate to denote that the query is of the form
/31 : OP (3t/3:2)p(u,t) where T and ¥ are vectors of
variables, 3;, 32 are vectors of sorts, p is a database
predicate symbol and OP is a modal operator.

The fourth argument Constraints denotes the class
of constraints that is used as query conditions. For
example the query

: 03z, y,t,u/Q)(r(z,t) A py,u) A 2t+3u<4)
is in the class Q(Closed, O, Positive Ezistential, LIN).

Database Types
A database type is a tuple of the form

DB(Arity, LocalCondition, ConstraintStore)

where Arity is the arity of the database predicates,
LocalCondition is the constraint class used in the def-
inition of these predicates, and ConstraintStore is the
class of constraints in the constraint store. Arity can
have values N-ary and Monadic.

In one of our results we consider the type of a
database which consists of a single N-ary predicate de-
fined by constraints in some class C, and the constraints
in the constraint store belong to the same class C. This
is a special database type and is represented by

SinglePredDB(N-ary, Single-C,C).

Complexity Results

The following definitions are needed below.
Definition 4 IfC is a class of constraints then VC is
a new class of constraints defined as follows. A con-
straint ¢ is in VC iff ¢ is a disjunction of negations of
C-constraints.

Definition 5 LetC be a class of constraints. The prob-
lem of deciding whether a given set of constraints from C
is satisfiable will be denoted by SAT(C). The problem
of eliminating an arbitrary number of variables from
a given set of constraints from class C will be denoted
by VAR-ELIM(C). If the number of variables is fixed
then the problem will be denoted by FV AR-ELIM(C).

In the lemmas and theorems of this section
we often assume that SAT(C), VAR-ELIM(C) or
FV AR-ELIM/(C) can be done in PTIME. The implicit
parameter of interest here is the size of the input con-
straint set.

Let us now present our results assuming the data
complexity measure. We first consider closed queries.

Lemma 1 Let C be a class of constraints. Fvaluating
a query of the class

Q(Closed, ©, PositiveExistential,C)

over an indefinite constraint database of the class
DB(N-ary,C,C) is equivalent to deciding the consis-
tency of a set of m formulas of the form

CS@)Abiw), i=1,...,m
where CS and 8; are conjunctions of C-constraints.

Theorem 4 Let C be a class of constraints such
that SAT(C) and FVAR-ELIM(C) can be solved in
PTIME. Let DB be an indefinite constraint database
of the class DB(N-ary,C,C) and q be a query of the
class Q(Closed, ©, PositiveExistential,C) The prob-
lem of deciding whether q(DB) = yes can be solved
with PTIME data complezity.

Lemma 2 Let £,C be two classes of constraints such
that £ C C and VE C C. Evaluating a query of the class
Q(Closed, D, PositiveExistential ,£) over an indefi-
nite constraint database of the class DB(N-ary,&,C)
is equivalent to deciding the consistency of a formula of
the form

CS@W)AM(@)A...A0L)

where CS is a conjunction of C-constraints and 0;, 1 <
1 < m are C-constraints.

Theorem 5 Let £,C be two classes of constraints
such that € C C, VE C C and SAT(C) and
FVAR-ELIM(E) can be solved in PTIME. Let DB
be an indefinite constraint database of the class
DB(N-ary,£,C) and q be a query of the class
Q(Closed, O, PositiveExistential ,£). The problem of
deciding whether q(DB) = yes can be solved with
PTIME data complezity.

We now turn our attention to tractable query evalu-
ation for open queries.

Lemma 3 Let C be a class of constraints. Evaluating
a query of the class

Q@(Open, ©, Positive Existential,C)

over an indefinite constraint dotabase of the class
DB(N-ary,C,C) is equivalent to eliminating quantifiers
from a set of m formulas of the form

(@)(CS@) A bi(m,w)), i=1,...,m

where CS and 0; are conjunctions of C-constraints and
T is the vector of free variables of the query.

Theorem 6 Let C be a class of constraints such
that VAR-ELIM(C) can be done in PTIME. Let
DB be an indefinite constraint database of the class
DB(N-ary,C,C) and q be a query of the class
Q(Open, ©, PositiveEzistential ,C). The problem of
evaluating q(DB) can be solved with PTIME data com-
plezity.

Lemma 4 Let C be a class of constraints which is
closed under negation. Fualuating a query of the class
Q(Open, O, SinglePredicate, None) over an indefinite
constraint database of the
class SinglePredDB(N -ary, Single-C,C) is equivalent
to eliminating quantifiers from a formula of the form
CS@)A6 (T, B)A... N6 (u,w) where CS is a conjunc-
tion of C-constraints, 6;, 1 < i <l are C-constraints,
T is the vector of free variables of the query and l is
the number of disjuncts in the disjunction defining the
single predicate referred in the query.

Theorem 7 Let C be a class of constraints such that
C is closed under negation and VAR-ELIM(C) can be
done in PTIME. Let DB be an indefinite constraint
datebase of the
class SinglePredDB(N -ary, Single-C,C) and g be a
query of the class Q(Open, 0, Single Predicate, None).
The problem of evaluating q(DB) can be solved with
PTIME data complezity.

Applications to Temporal Reasoning
We will now specialize the general complexity results
presented in the previous section to some interesting
temporal and spatial domains. We will need the follow-
ing classes of constraints:

e HDL, LIN and UTVPI# defined earlier.

e LINEQ. This is the subclass of LIN which contains
only linear equalities.

e IA. This is the Interval Algebra of Allen (Allen 1983).

e STA. This is the subalgebra of IA which includes only
interval relations that can be translated into conjunc-
tions of order constraints £ < y or £ # y on the
endpoints of intervals (van Beek & Cohen 1990).

¢ ORDHorn. This is the subalgebra of IA which in-
cludes only interval relations that can be translated
into conjunctions of ORD-Horn constraints on the
endpoints of intervals (Nebel & Biirckert 1995). An
ORD-Horn constraint is a disjunction of weak in-
equalities of the form x < y and disequations of the
form z # y with the additional constraint that the
number of inequalities should not exceed one (Nebel
& Biirckert 1995).

¢ PA and CPA. PA is the Point Algebra of (Vilain,
Kautz, & van Beek 1989). CPA is the subalgebra of
PA which does not include the relation #.

s None. This is used when we only have the trivial
constraints true and false.

Theorem 8 FEuvaluation of

1. Q(Closed, ©, PositiveExistential, HDL)
over DB(N-ary, HDL, HDL) databases,

2. Q(Closed, O, PositiveExistential, LINEQ) queries
over DB(N-ary, LINEQ, HDL) databases,

3. Q(Open, O, PositiveExistential, UTVPI#) queries
over DB(N-ary, UTVPI# UTVPI#) databases and

4. @(Open, O, SinglePredicate, None) queries over
SinglePredD B(N -ary, Single-UTVPI#, UTVPI#)
databases

can be performed in PTIME (using the data complezxity
measure).

The first part of Theorem 8 is a significant extension
of the PTIME result of (Brusoni, Console, & Terenziani
1995) on possibility queries over networks of temporal
constraints of the form z —y < c.

Theorem 8 does not mention constraints on higher-
order objects (e.g., intervals) explicitly so one might
think that it useful for temporal reasoning problems
involving only points. Luckily this is not true. For ex-
ample, results for interval constraint databases can be
deduced immediately by taking into account the sub-
sumption relations between classes of interval and point
constraints. For example, the first part of Theorem 8
implies that evaluating

Q(Closed, ©, Positive Existential, ORDHorn)

queries over DB(N-ary, None, ORDHorn) databases
can be done with PTIME data complexity. This is a
significant extension of the PTIME result of (van Beek
1991) on possibility queries over networks of SIA con-
straints. We can also derive an extension of the PTIME
results of (van Beek 1991; Brusoni, Console, & Teren-
ziani 1995) for certainty queries with a simple modi-
fication of the definition of query (Definition 2). The
details will be given in the long version of this paper.
Theorem 8 does not constrain the arity of database
predicates. (van der Meyden 1992) has shown that eval-
uating Q(Closed, O, Positive Existential, CPA)
queries over D B(Monadic, None, CPA) databases can
be done in PTIME (compare with Part 2 of Theorem
8). If we move to databases with binary predicates, the
corresponding query answering problem becomes NP-
complete (van der Meyden 1992). Unlike (van der Mey-
den 1992), we have not proven any lower bound results
in this paper. More research is necessary for drawing
an informative picture of tractable vs. intractable query
answering problems for indefinite constraint databases.

queries

Acknowledgements

This research has been partially supported by project
CHOROCHRONOS funded by EU’s 4th Framework

Programme. Spiros Skiadopoulos has also been sup-
ported by a postgraduate fellowship from NATO. Most
of this work was performed while both authors were
with the Dept. of Computation, UMIST, U.K.

References

Abiteboul, S.; Kanellakis, P.; and Grahne, G. 1991. On the Represen-
tation and Querying of Sets of Possible Worlds. Theoretical Computer
Science 78(1):159-187.

Allen, J. 1983. Maintaining Knowledge about Temporal Intervals. Com-
munications of the ACM 26(11):832-843.

Brusoni, V.; Console, L.; Pernici, B.; and Terenziani, P. 1994. LaTeR: a
general purpose manager of temporal information. In Proceedings of the
8th ISMIS, vol. 869 of LNCS. Springer-Verlag.

Brusoni, V.; Console, L.; Pernici, B.; and Terenziani, P. 1995. Extending
temporal relational databases to deal with imprecise and qualitative tem-
poral information. In Clifford, J., and Tuzhilin, A., eds., Recent Advances
in Temporal Databases, Workshops in Computing. Springer.

Brusoni, V.; Console, L.; and Terenziani, P. 1995. On the computa-
tional complexity of querying bounds on differences constraints. Artificial
Intelligence 74(2):367--379.

Dean, T., and McDermott, D. 1987. Temporal Data Base Management.
Artificial Intelligence 32:1-55.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal Constraint Networks.
Artificial Intelligence 49(1-3):61-95.

Gerevini, A., and Schubert, L. 1995. Efficient Algorithms for Qualitative
Reasoning about Time. Artificial Intelligence 74:207-248.

Grahne, G. 1991. The Problem of I plete Information in Relational
Databases, vol. 554 of LNCS. Springer Verlag.

Imielinski, T., and Lipski, W. 1984. Incomplete Information in Relational
Databases. Journal of ACM 31(4):761-791.

Jaffar, J.; Maher, M. J.; Stuckey, P.; and Yap, R. 1994. Beyond Finite
Domains. In Borning, A., ed., Proceedings of PPCP’94, vol. 874 of LNCS,
86-94. Springer Verlag.

Jonsson, P. and Bickstrém, G. 1996. A Linear Programming Approach
to Temporal Reasoning. In Proceedings of AAAI-96.

Kanellakis, P.; Kuper, G.; and Revesz, P. 1990. Constraint Query Lan-
guages. In Proceedings of PODS-90, 299-313.

Koubarakis, M. 1996. Tractable Disjunctions of Linear Constraints. In
Proceedings of the 2nd International Conference on Principles and Practice
of Constraint Programming (CP’96). 297-307.

Koubarakis, M. 1997a. From Local to Global Consistency in Temporal
Constraint Networks. Theoretical Computer Science 173:89-112.
Koubarakis, M. 1997b. The Complexity of Query Evaluation in Indefinite
Temporal Constraint Databases. Theoretical Computer Science 171:25-60.
Mylopoulos, J.; Borgida, A.; Jarke, M.; and Koubarakis, M. 1990. Te-
los: A Language for Representing Knowledge About Information Systems.
ACM Transactions on Information Systems 8(4):325-362.

Nebel, B., and Biirckert, H.-J. 1995. Reasoning about temporal relations:
A maximal tractable subclass of Allen’s interval algebra. Journal of the
ACM 42(1):43-66.

Schrag, R.; Boddy, M.; and Carciofini, J. 1992. Managing Disjunction for
Practical Temporal Reasoning. In Proceedings of KR’92, 36-46.

Shostak, R. 1981. Deciding Linear Inequalities by Computing Loop
Residues. Journal of the ACM 28(4):769-779.

van Beek, P. 1991. Temporal Query Processing with Indefinite Informa-
tion. Artificial Intelligence in Medicine 3:325-339.

van Beek, P., and Cohen, R. 1990. Exact and Approximate Reasoning
about Temporal Relations. Computational Intelligence 6:132-144.

van der Meyden, R. 1992, The Complexity of Querying Indefinite Data
About Linearly Ordered Domains (Preliminary Version). In Proceedings
of PODS-92, 331-345. Full version appears in JCSS, 54(1), pp. 113-135,
1997.

Vardi, M. 1982. The Complexity of Relational Query Languages. In
Proceedings of PODS-82, 137-146.

Vilain, M.; Kautz, H.; and van Beek, P. 1989. Constraint Propagation
Algorithms for Temporal Reasoning: A Revised Report. In Weld, D.,
and de Kleer, J., eds., Readings in Qualitative Reasoning about Physical
Systems. Morgan Kaufmann. 373-381.

Yannakakis, M. 1988. Expressing Combinatorial Optimization Problems
by Linear Programs. In Proc. of STOC-88, 223-288.

