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Abstract

Content-based image retrieval (CBIR) refers 
the ability to retrieve images on the basis of image
content. Given a query image, the goal of a CBIR
system is to search the database and return the n
most visually similar images to the query image.
In this paper, we describe an approach to CBIR
for medical databases that relies on human input,
machine learning and computer vision. Specifi-
cally, we apply expert-level human interaction for
solving that aspect of the problem which cannot
yet be automated, we use computer vision for only
those aspects of the problem to which it lends it-
self best - image characterization - and we employ
machine learning algorithms to allow the system
to be adapted to new clinical domains. We present
empirical results for the domain of high resolution
computed tomography (HRCT) of the lung. Our
results illustrate the efficacy of a human-in-the-
loop approach to image characterization and the
ability of our approach to adapt the retrieval pro-
cess to a particular clinical domain through the
application of machine learning algorithms.

Introduction
Content-based image retrieval (CBIR) refers to the abil-
ity to retrieve images on the basis of image content,
as opposed to on the basis of some textual description
(Salton, 1986) of the images. Given a query image,
the goal of a CBIR system is to search the database
and return the n most visually similar images to the
query image. A key element of this approach revolves
around the types of patterns that can be recognized by
the computer and that can serve as the indices of the
image retrieval algorithm. Our research addresses the
design and implementation of a CBIR system for med-
ical image databases. The success of such an approach
provides a unique opportunity to aid physicians in the
process of diagnosis.

In the past decade, the field of diagnostic medi-
cal imaging has experienced rapid growth and change
through both the introduction of new imaging modal-
ities and enhancement in the capabilities of existing
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techniques. The shift in technology from analog film
based methodologies to computer based digital tech-
nologies is creating large digital image repositories.
CBIR provides an opportunity to tap the expertise con-
tained in these databases in the following way: observ-
ing an abnormality in a diagnostic image, the physi-
cian can query a database of known cases to retrieve
images (and associated textual information) that con-
tain regions with features similar to what is in the im-
age of interest. With the knowledge of disease entities
that match features of the selected region, the physi-
cian can be more confident of the diagnosis. In our
approach to CBIR, an expert radiologist in each do-
main (anatomic region) selects images for the database,
provides the differential diagnosis and when available,
includes treatment information. As such, a less expe-
rienced practitioner can benefit from this expertise in
that the retrieved images, if visually similar, provide
the role of an expert consultant.

In this paper, we describe an approach to CBIR for
medical databases that relies on human input, machine
learning and computer vision. Fundamental to our ap-
proach is how images are characterized (indexed) such
that the retrieval procedure can retrieve visually simi-
lax images within the domain of interest. To aid in the
process of adding a new clinical domain, which we de-
fine to be a new image modality and anatomic region,
our system adapts its image characterization procedure
using machine learning algorithms.

In the remainder of this paper we first describe our
human-in-the-loop approach to image characterization
for medical images and explain why a totally automated
approach is not possible or even desirable. We give an
overview of a physician’s interaction with the system
and present salient aspects of the retrieval process. We
then outline the steps taken when adding a new clini-
cal domain to the system. This includes a description
of the general purpose low-level image features from
which our approach selects a customized set for a par-
ticular clinical domain. We present empirical results for
the domain of high resolution computed tomography
(HRCT) of the lung. Our results illustrate the efficacy
of a human-in-the-loop approach to image character-
ization and the ability of our approach to adapt the
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Figure 1: The User Interface

retrieval process to new clinical domains.

A Physician-in-the-Loop Approach

Given a query image, the goal of a content-based image
retrieval system is to return the n most visually similar
images to the query image in its database. The most
common approach is to characterize the images by a
global signature (Flickner, et al, 1995; Kelly, Cannon
and Hush, 1995; Stone, and Li, 1996; Pentland, Picard
and Sclaroff, 1994; Hou, et al. 1992). For example,
the CANDID system (Kelly, Cannon and Hush, 1995)
computes histograms from normalized gray levels for
image characterization and the QBIC system (Flickner,
et al, 1995) characterizes images by global characteris-
tics such as color histogram, texture values and shape
parameters of easily segmentable regions.

For medical images, global characterization fails to
capture the relevant information (Shyu, et al, to ap-
pear). In medical radiology, the clinically useful in-
formation consists of gray level variations in highly lo-
calized regions of the image. For example, for high-
resolution computed tomographic (HRCT) images 
the lung, a disease such as emphysema (shown in the
circled region in the image in the upper left of Figure
1) manifests itself in the form of a low-attenuation re-
gion that is textured differently from the rest of the
lung. Attributes characterizing a local region are re-
quired because the ratio of pathology bearing pixels to

the rest of the image is small, which means that global
characteristics such as texture measures cannot capture
such local variations.

A human is necessary because the pathology bearing
regions (PBRs) in our images cannot be segmented out
by any of the state-of-the-art segmentation routines due
to the fact that for many diseases, these regions often
do not possess sharp edges and contours. For example,
the PBR’s in Figure 2 lack easily discernible bound-
aries between the pathology bearing pixels and the rest
of the lung; however, these PBR’s are easily visualized
by the trained eye of a physician. Our system, there-
fore, enlists the help of the physician. Using a graphic
interface that we developed, it takes a physician only
a few seconds to delineate the PBRs and any relevant
anatomical landmarks. A benefit of this approach is
that when a query image has more than one pathology,
the physician can choose to circumscribe only one of the
regions in order to focus retrieval on that pathology.

A Hierarchical Approach

to Image Retrieval

In Figure 1 we show the retrieval results for a query
image (shown at left in the main window). The system
displays the four best matching images below the main
window. For convenience, the user can click on one of
these images, causing the system to display a magnified



Figure 2: All three images are from patients with Centrilobular Emphysema

version of the chosen image in the window to the right
of the query image. The user can provide feedback in
the text window, shown on the right of the enlarged
matching retrieved image. Shown in the rightmost col-
umn are the additional slices from the patient of the
enlarged matching image (for each patient, an HRCT
session produces on the order of 20-50 cross-section im-
ages, called slices). During image population, our ex-
pert radiologist identifies the "key" slices that we then
include in the database for indexing and retrieval. Be-
cause it can be helpful to view other cross-sections, we
retain the extra slices and give the user the ability to
browse through them.

Given a query image with an unknown medical diag-
nosis, we first classify the image as one of the known
disease classes. The system then uses the features as-
sociated with the predicted class to retrieve the n most
similar images, as defined by Euclidean distance, to the
query image. This approach is motivated by the obser-
vation that the features that are most effective in dis-
criminating among images from different classes may
not be the most effective for retrieval of visually similar
images within a class. This occurs for domains in which
not all pairs of images within one class have equivalent
visual similarity - i.e., subclasses exists. For example,
the features that we use to distinguish cats from dogs
are different than those that we use to distinguish an
Australian sheep dog from a collie.

Our approach, which we call Customized Queries,
is appropriate for many clinical domains, because al-
though each image is labeled with its disease class,
within one disease class images can vary greatly with
respect to visual similarity on account of the severity
of disease and other such factors. Figure 2 illustrates
this point. Notice that within the class Centrilobular
Emphysema Figure 2c is visually dissimilar to Figures
2a and 2b. Indeed, although a given set of features may
be ideal for the disease categorization of a query image,
those features may not always retrieve the images that
are most similar to the query image. We describe below
how machine learning methods are applied to obtain the
classifier and the customized feature subsets.

Handling a New Clinical Domain

Before describing each phase in detail, we give a gen-
eral overview of the steps needed to add a new clinical
domain to our system. The first step is to collect a
database of images for which the diagnoses are known.
An expert radiologist for that clinical domain provides
the images and interacts with our system to delineate all
of the PBRs in each image. Currently we are working
with experts in the areas of pulmonary lung disease,
hepatic disease (liver) and skeletal disease. Once 
have collected enough images to make using the system
beneficial, we apply our library of computer vision and
image processing routines to extract a feature vector
of the low level image characteristics for each archived
image. At this point we are ready to train the system
and to apply machine learning algorithms to build our
hierarchical retrieval procedure.

Image Collection and Region Extraction

We rely on our medical experts to choose representa-
tive images. For a given clinical domain, our goal is to
ensure a good distribution over the various diseases for
two reasons. First, we would like to be able to retrieve
at least four images with the same pathology for each
query. Second, in order to select the features to use for
classification and for retrieval in our customized queries
approach we need to obtain sufficient data to make this
choice accurately. The ultimate test of whether we have
obtained a sufficient number of images in the database
is in part measured by the accuracy of our retrieval pro-
cess. This is best judged by clinicians, and therefore is
an inherently subjective measure.

To archive an image into the database, a physician
delineates the PBRs and any relevant anatomical land-
marks. This interaction takes only a few seconds for
a trained domain expert (a radiologist). The left hand
image in Figure 1 shows an HRCT image with PBRs
as delineated by a physician. The physician also delin-
eates any relevant anatomical landmarks, such as the
lung fissures. The information regarding the pathology
of the lung resides as much in the location of each PBR
with respect to the anatomical markers as it does in the
characteristics of the PBRs.



(a) (b) (c)

Figure 3: Region Extraction

(d)

The next step is to apply a region extraction algo-
rithm which segments out the tissue type of interest
from tissues irrelevant to the disease process. For each
new clinical domain, we must write a customized re-
gion extraction algorithm. Figure 3a shows the original
HRCT of a patient’s lungs and 3b depicts the extracted
lung region. Figure 3c shows the original CT image of a
patient’s liver and 3d shows the extracted liver region.
Details of these algorithms can be found in (Shyu, et
al, to appear).

General Purpose Image Attributes

To characterize each image, the system computes at-
tributes that are local to the PBRs and attributes
that are global to the entire anatomical region.1 The
PBRs are characterized by a set of shape, texture and
other gray-level attributes. For characterizing texture
within PBRs, we have implemented a statistical ap-
proach based on the notion of a gray-level co-occurrence
matrix (Haralick and Shapiro, 1992). This matrix rep-
resents a spatial distribution of pairs of gray levels and
has been shown to be effective for the characterization
of random textures. In our implementation, the specific
parameters we extract from this matrix are energy, en-
tropy, homogeneity, contrast, correlation, and cluster
tendency. In addition to the texture-related attributes,
we compute three additional sets of attributes on the
pixels within the PBR boundary. The first set com-
putes measures of gray-scale of the PBR, specifically,
the mean and standard deviation of the region, a his-
togram of the local region, and attributes of its shape
(longer axis, shorter axis, orientation, shape complex-
ity measurement using both Fourier descriptors and
moments). The second set computes the edginess of
the PBR using the Sobel edge operator. The extracted
edges are used to obtain the distribution of the edges.
We compute the ratio of the number of edge pixels to
the total number of pixels in the region for different
threshold channels, each channel corresponding to a
different threshold for edge detection. Finally, to an-

tNote that the sense in which we use the word "global"
is different from how it is commonly used in the literature
on CBIR. Our global attributes are global only to the extent
that they are based on all the pixels in the extracted region.

alyze the structure of gray level variations within the
PBR, we apply a region-based segmenter (Rahardja and
Kosaka, 1996). From the results we compute the num-
ber of connected regions in the PBR and histograms of
the regions with respect to their area and gray levels.

In addition to the texture and shape attributes, a
PBR is also characterized by its average properties,
such as gray scale mean and deviation, with respect
to the pixels corresponding to the rest of the extracted
region. The system also calculates the distance between
the centroid of a marked PBR and the nearest relevant
anatomical marker (e.g., the lung boundary for the do-
main of HRCT of the lung). For some domains, we
include this anatomical information because physicians
use this information to diagnose the patient.

The total number of low-level computer vision at-
tributes is 125. While this gives us an exhaustive char-
acterization of a PBR, for obvious reasons only a small
subset of these attributes can be used for database in-
dexing and retrieval. In the next two sections we de-
scribe how the retrieval procedure is customized for a
given clinical domain.

Feature Selection for Image Classification

To select the features that will be used to classify a
query image (the first level of our customized queries
retrieval scheme) our goal is to determine which features
provide maximal class separation. The pathology class
labels are confirmed diagnoses obtained from medical
records, hence we can consider these as ground truth
labels.

To find the best classifier, we first extract all 125 fea-
tures from each database image. We then run a series
of experiments using different classifiers coupled with a
forward sequential feature selection (SFS) wrapper (Ko-
havi and John, 1997) using MLC++. 2 SFS is a greedy
search algorithm that adds one feature at a time. It
adds the feature that when combined with the current
chosen set of features yields the largest improvement in
classification performance. Currently we are favoring
forward selection over backward selection as we have
found that for a given clinical domain a relatively small
set is required. Note that which features are included in

2Available at http://www.s~.com/Technology/mlc



this subset differs from domain to domain. The result-
ing feature subset and classifier that perform best, as
judged by a ten-fold cross-validation over the database,
are used to classify the query image during retrieval.
Currently we perform feature selection in conjunction
with the 1-NN, 5-NN and decision tree algorithms, but
there is no reason why other supervised learning algo-
rithms could not be added to the search. Finally, it
is important to note that this procedure should be pe-
riodically rerun because as we add more images and
disease pathologies the set of relevant features and the
best classifier may change.

Feature Selection for Retrieving Visually
Similar Images within a Disease Class
After we classify the query image, the next step is to
reformulate the query in terms of the feature subset cus-
tomized for the predicted disease class. In the absence
of subclass label information, we must simultaneously
find the features that best discriminate the subclasses
and at the same time find these subclasses. We resort
to unsupervised clustering, which allows us to catego-
rize data based on its structure. The clustering prob-
lem is made more difficult when we need to select the
best features simultaneously. To find the features that
maximize our performance criterion (e.g., retrieval pre-
cision), we need the clusters to be defined. Moreover, to
perform unsupervised clustering we need the features or
the variables that span the space we are trying to clus-
ter. In addition to learning the clusters, we also need
to find the optimal number of clusters, k. Hence, we
have designed an algorithm that for each disease class,
simultaneously finds k, the clusters and the feature set.

Our approach to feature selection is inspired by the
wrapper approach for feature subset selection for super-
vised learning (Kohavi and John, 1997). Instead of us-
ing feature subset selection wrapped around a classifier,
we wrap it around a clustering algorithm. The basic
idea of our approach is to search through feature sub-
set space, evaluating each subset, Ft, by first clustering
in space F~ using the expectation maximization (EM)
(Mitchell, 1997; Dempster, Laird, and Rubin, 1977) al-
gorithm and then evaluating the resulting cluster using
our chosen clustering criterion. The result of this search
is the feature subset that optimizes our criterion func-
tion. Because there are 2~ feature subsets, where n is
the number of available features, exhaustive search is
impossible. To search the features, sequential forward,
backward elimination or forward-backward search can
be used (Fhkunaga, 1990). Currently, our system ap-
plies sequential forward selection driven by criterion of
cluster separability. Because we do not know k, the
number of clusters, we adaptively search for the value
of k during clustering, using Bouman et al’s (1998) pro-
cedure, which applies a minimum description length
penalty criterion to the ML estimates to search for k.
In the remainder of this section, we provide an overview
of our application of the EM algorithm and our chosen
separability criterion (full details can be found in (Dy,

et al, 1999)).
We treat our data (the image vectors in our database)

as a d-dimensional random vector and then model its
density as a Ganssian mixture of the following form:

k

f(Z,l,I, ) = ~ ~~/.¢(Z~lO2)
j=l

where fj(X~[Oj) = ~e ½(x ~,)T~ l(x 

is the probability density function for class j, Oj =
(#j, ~j) is the set of parameters for the density function
fj(XdOj), #j is the mean of class j, ~j is the covariance
matrix of class j, 7rj is the mixing proportion of class
j, k is the number of clusters, Xi is a d-dimensional
random data vector, ff = (Th,~r2,.. "Tfk,Ol,02,’" "Ok) is
the set of all parameters, and f(Xi[ff) is the probabil-
ity density function of our observed data point Xi given
the parameters ¢.

The Xi’s are the data vectors we are trying to clus-
ter. To compute the maximum likelihood estimate of
f(X~[~) we use the expectation-maximization (EM) 
gorithm. The missing data for this problem is the
knowledge about to which cluster each data point be-
longs. In the EM algorithm, we start with an initial es-
timate of our parameters, if, and then iterate using the
update equations until convergence. The exact form of
the update equations can be found in (Dy, et al, 1999).

The EM algorithm can get stuck at a local max-
ima, hence the initialization values are important. We
used r = 10 random restarts on k-means and pick the
run with the highest maximum likelihood to initialize
the parameters (Smyth, 1997). We then run EM until
convergence (likelihood does not change by more than
0.0001) or up to n iterations whichever comes first for
each feature selection search step. (In practice, raising
n above 20, does not influence the results). We limit
the number of iterations because EM converges only
asymptotically, i.e., convergence is very slow when you
are near the maximum. Moreover we often do not re-
quire many iterations, because initializing with k-means
starts us at a high point on the hill of the space we are
trying to optimize.

Fundamental to any clustering algorithm is the cri-
terion used to evaluate the quality of the cluster-
ing assignment of the data points. We applied the
trace(S~,lSb) criterion (Fukunaga, page 446, 1990). 
is the within-class scatter matrix and measures how
scattered the samples are from their cluster means and
Sb is the between class scatter matrix and measures how
scattered the cluster means are from the total mean.
Ideally, the distance between each pair of samples in a
particular cluster should be as close together as possible
and the cluster means should be as far apart as possi-
ble with respect to the chosen similarity metric. We use
the trace(S~lSb) as our criterion because it is invari-
ant under any nonsingular linear transformation, which
means that once m features are chosen, any nonsingular
linear transformation on these features does not change



the criterion value.
The trace criterion is used to evaluate each candidate

feature subset in our feature subset selection search.
Note that this procedure selects features that partition
the images within a disease class, but that these features
do not necessarily correspond to clinically meaningful
features. In other work we are investigating whether
computer vision methods can capture the perceptual
features that physicians say they use to discriminate
among different diseases (Shyu, et al, to appear).

HRCT of the Lung: An Empirical
Evaluation of the Approach

Ultimately the true test of a CBIR system is whether
it is used by practitioners. To measure whether such
a system would be useful, evaluation of an information
retrieval system is done by measuring the recall and
the precision of the queries. Recall is the proportion
of relevant materials retrieved. Precision quantifies the
proportion of the retrieved materials that is relevant to
the query. In our approach, the precision and recall are
functions of 1) the attribute vector used to character-
ize the images, 2) the delineation of the PBR by the
physician, and 3) the retrieval scheme.

The experimental results presented in this section
were designed to meet two goals. First to evaluate
the contribution made by local characterization, which
comes at the price of needing human interaction. Sec-
ond, to evaluate the ability of the supervised and unsu-
pervised machine learning methods to correctly identify
the features used in our hierarchical retrieval scheme.
In this paper, we present results using the image modal-
ity of high resolution computed tomography images and
the clinical domain of pulmonary lung disease.

Our current HRCT lung database consists of 312
HRCT lung images from 62 patients. These im-
ages yield 518 PBRs. A single image may have sev-
eral PBR’s and these PBR’s may have different di-
agnoses. Throughout the experiments we considered
each PBR as a data point, i.e., a single image with
three PBPJs gives us three data points. These im-
ages were identified by radiologists during routine med-
ical care at Indiana University Medical Center. Cur-
rently, the diseases in the database are centrilobular
emphysema (CE), paraseptal emphysema (PE), 
coid (SAR), invasive aspergillosis (ASP), broncheitasis
(BR), eosinophilic granuloma(EG), and idiopathic 
monary fibrosis (IPF). The number of PBRs of each
disease is shown in the first column of Table 1.

Local versus Global Image
Characterization

This experiment is designed to test the utility of charac-
terizing medical images using local rather than global
attributes. To ensure a situation that would mirror
its use in a clinical setting, we omit the query-image
patient’s images from the database search (each pa-
tient may have more than one image in the database to

Table 1: Retrieval Accuracy of Global versus Localized
Attributes.

Disease Correct Retrievals Percent of Total
Class FL + Fo F~ FL+Fc I Fc
CE 314 2.92 :t= 0.18 2.12 =t= 0.85 73 53
PE 54 3.04 =t= 0.27 1.68 =t= 1.07 76 42
IPF 51 2.88 =l: 0.32 2.08 =t= 0.14 72 52
EG 57 2.72 =t= 0.15 1.92 ± 0.32 68 48
SAR 16 2.76 q- 0.71 1.96 ~= 0.75 69 49
ASP 12 1.92 =t: 0.80 1.64 ± 0.36 48 41
BR 14 3.00 =t= 0.32 2.32 :t= 0.55 75 58
Total 518 2.88 ± 0.23 2.03 =t= 0.72 72 51

ensure a distribution over the different ways in which
the disease can appear in an image). Our statistics
were generated from the four highest ranking images
returned by the system for each query.

Table 1 shows results for two different sets of at-
tributes. The first is a combination of attributes ex-
tracted from the PBR region (EL) and attributes con-
trasting the PBR to the rest of the lung region (Fc).
The combined set FL + Fc was chosen by the SFS al-
gorithm wrapped around a one-nearest neighbor clas-
sification algorithm. The second set of attributes FG
was customized to a global approach to image charac-
terization. The FG attributes were chosen by the SFS
algorithm when optimizing performance for the entire
lung region. For this experiment we used the nearest-
neighbor retrieval method, which retrieves the four im-
ages closest to the query image as measured by the Eu-
clidean distance of the chosen features. For each disease
category in our database, we show the mean and stan-
dard deviation of the number of the four highest rank-
ing images that shared the same diagnoses as the query
image, and percentage of the four retrieved images that
have the same diagnosis as the query image.

The attributes in FL are: the gray scale deviation
inside the region, gray-level histogram values inside the
region, and four texture measurements (homogeneity,
contrast, correlation and cluster). The attributes in set
Fc contrasting the PBR to the entire lung are: the
area of the PBR, the Mahalanobis distance from the
centroid of PBR to the nearest lung boundary point,
the difference of gray-scale mean of the PBR and the
entire lung, and the difference of gray-scale deviation
of the PBR and the entire lung. The attributes in set
FG are: gray scale mean and deviation, histogram dis-
tribution, histogram distribution after gamma correc-
tion, and four texture measures (cluster, contrast after
gamma, cluster after gamma, and edginess of strength
after gamma). From the table we see that the lo-
calized image characterization method (FL + -Pc) has
higher precision than the global image characterization
method, illustrating that local attributes significantly
improve retrieval performance in the domain of HRCT
of the lung.



Table 2: Retrieval Results for the Domain of HRCT of the Lung.

Disease Number of k Traditional Method Customized Queries
Class Queries SA A NS D SD SA A NS D SD
CE 18 5 28 9 5 2 28 69 2 1 0 0
PE 3 4 0 0 4 0 8 10 0 1 0 1
IPF 2 3 5 0 0 0 3 3 2 2 0 1
EG 1 4 0 0 0 0 4 4 0 0 0 0
SAR 1 5 0 0 0 0 4 0 0 0 0 4
ASP 1 5 0 0 0 0 4 3 1 0 0 0
BR 1 2 0 0 0 0 4 3 1 0 0 0
total 27 33 9 9 2 55 92 6 4 0 6

One concern of a physician-in-the-loop approach is
that precision is a function of PBR delineation. To
address this concern, we have performed a sensitiv-
ity analysis of our ability to classify PBR to physician
subjectivity. Using the same experimental setup, we
compared the retrieval results of the physician marked
PBRs to larger and smaller PBRs. An empirical anal-
ysis illustrated that shrinking or growing the PBR by
50% had a less than 3% impact on the classification
accuracy of our method.

The Traditional Approach versus
Customized Queries
This experiment illustrates that customized queries3 re-
sults in better retrieval precision than the traditional
approach to CBIR, which retrieves the n closest images
in the database as measured using the Euclidean dis-
tance of the features selected to optimize the accuracy
of a 1-NN classifier. In assessing the performance of
customized queries we assumed an 100% accurate clas-
sifier was used to classify a query as its disease class.
We did this to isolate the effect of using the appropri-
ate customized features in retrieving the images, i.e.,
the utility of customizing a query. This assumption
is not too limiting since the classification accuracy we
obtained from a ten-fold cross-validation applied to a 1-
NN classifier of the disease classes is 93.33% :E 0.70%.4
In our conclusions we address what steps we take when
unacceptable retrieval results are obtained due to an
inability to classify the image correctly.

To determine which method is best, the lung spe-
cialist in our team was asked to evaluate the retrieval
results of the two approaches. Throughout the test,
the radiologist was not informed as to which method
produced the retrieved images.5 In Table 2 we show

3Note that for the results presented here, k was chosen
using a separability criterion (Dy, et al, 1999).

4Note that the retrieval precision in Table 1 was not 90%
because in the table we are measuring how many of the four
nearest neighbors have the same disease label, whereas here
the 93.33% reports the percentage of time that the nearest
neighbor has the same disease label as the query image.

5To keep the radiologist from guessing, we randomly in-
terleaved the two methods.

the number of queries evaluated for each disease. We
chose eighteen from C-Emphysema because it is the
largest class in our collection (51% of our database is
of class C-Emphysema). The number of clusters cho-
sen for each class is shown in column 2. The four im-
ages ranked most similar to the query image were re-
trieved for each method. Note that all images of the
query patient are excluded from the search. To evalu-
ate the system, the user can choose from five responses:
strongly-agree (SA), agree (A), not sure (NS), disagree
(D) and strongly-disagree (SD) for each retrieved 
age. To measure the performance of each method, the
following scoring system was used: 2 for SA, 1 for A, 0
for NS, -1 for D and -2 for SD.

The traditional approach received a total of -37
points, whereas customized queries received 178 points.
If SA and A are considered as positive retrievals and
the rest as negative retrievals, The traditional approach
resulted in 38.89% retrieval precision and customized
queries resulted in 90.74% precision. Notice that for
the traditional approach precision is not the same as
the accuracy obtained for the disease class classifier be-
cause there were cases for which the radiologist did not
mark SA or A even though the retrieved images had
the same diagnosis as the query image. From these re-
sults, we can see that customized queries dramatically
improves retrieval precision compared to the traditional
approach for this domain.

Conclusions and Future Work

In this paper we presented our approach to content-
based image retrieval for medical images, which com-
bines the expertise of a human, the image character-
ization from computer vision and image processing,
and the automation made possible by machine learning
techniques. We believe that our system combines the
best of what can be gleaned from a physician, without
burdening him or her unduly, and what can be accom-
plished by computer vision and machine learning.

In an empirical evaluation, we demonstrated that
local attributes significantly improve retrieval perfor-
mance in the domain of HRCT images of the lung over
a purely global approach. A sensitivity study showed
that physician subjectivity in PBR delineation impacts



performance by only a negligible amount. In a clini-
cal trial, we illustrated that customized queries signif-
icantly improve retrieval prevision over the traditional
single vector approach to CBIR as evaluated on the do-
main of HRCT of the lung.

We are working on several fronts to improve our ap-
proach. In addition to the domain of HRCT of the lung,
we are in the process of populating databases in the do-
mains of CT of the liver, MRI of the knee and MRI of
the brain. One potential drawback of the customized
queries approach is that when the classifier misclassifies
a query image, the retrieval procedure customizes the
query to the wrong class. To mitigate this effect, when
a physician does not enter agree (or strongly agree) for
at least two of the retrieved images, we try again by
resorting to the traditional method of retrieval which
searches the entire database. Furthermore, although
we have an overall classification accuracy of approxi-
mately 93%, this accuracy is not uniform across disease
classes. For less populous disease classes, the accuracy
can be far lower. One reason for this is that the super-
vised feature selection process does not take this uneven
distribution into account. We are currently working
on how to select features such that classification accu-
racy on the less populous classes is not sacrificed for the
dominant classes. To help in this endeavor we will in-
vestigate how to combine other text-based information
about the patient to aid in the initial classification of
the pathology bearing region in the image, such as the
results of blood tests, age, etc. Finally, we are inves-
tigating how to best use user feedback when retrieval
results are judged unsatisfactory.
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