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Abstract

We present a method of improving sound source separation
using vision. The sound source separation is an essen-
tial function to accomplish auditory scene understanding by
separating stream of sounds generated from multiple sound
sources. By separating a stream of sounds, recognition
process, such as speech recognition, can simply work on a
single stream, not mixed sound of several speakers. The per-
formance is known to be improved by using stereo/binaural
microphone and microphone array which provides spatial
information for separation. However, these methods still
have more than 20 degree of positional ambiguities. In
this paper, we further added visual information to provide
more specific and accurate position information. As a result,
separation capability was drastically improved. In addition,
we found that the use of approximate direction information
drastically improve object tracking accuracy of a simple
vision system, which in turn improves performance of the
auditory system. We claim that the integration of vision and
auditory inputs improves performance of tasks in each per-
ception, such as sound source separation and object tracking,
by bootstrapping.

Introduction
When we recognize scene around us, we must be able to
identify which set of perceptive input (sounds, pixels, etc)
constitutes an object or an event. To understand what is
in the visual scene, we (or a machine) should be able to
distinguish a set of pixels which constitutes a specific object
from those that are not a part of it. In auditory scene analysis,
sound shall be separated into auditory streams each of which
corresponds to specific auditory event (Bregman 1990;
Cookeet al. 1993; Rosenthal & Okuno 1998).

Separation of streams from perceptive input is nontrivial
task due to ambiguities of interpretation on which elements
of perceptive input belong to which stream. This is par-
ticularly the case for auditory stream separation. Assume
that there are two independent sound sources (this can be
machines or human speakers) which create their own au-
ditory stream, illustrated as harmonic structures shown in
Fig. 1 (a). When these sound sources create sound at the
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same time, two auditory streams come together to a listener,
superimposed harmonic structure may look like Fig. 1 (b).
In this case there are two possible ways to separate auditory
streams, only one of them is correct (Fig. 1 (c)).

While many research has been carried out to accurately
separate such auditory streams using heuristics, there are
essential ambiguities which cannot be removed by such a
method. The use of multiple microphones, such as stereo
microphone, binaural microphone, and microphone array
is known to improve separation accuracy (Bodden 1993;
Wanget al. 1997). However, so far there is no research to
use visual information to facilitates auditory scene analysis.

At the same time, there are many research on integration
of visual, auditory, and other perceptive information. Most
of these studies basically use additional perceptive input in
order to provide clue to shift attention of other perceptive
input. For example, research of sound-driven gaze are
addressing how sound source can be used to control gaze
to the object which generates sound (Ando 1995; Brooks
et al. 1998; Wolff 1993). Similarly, integration of vision
and audition to find an objects using active perception has
been proposed for autonomous robot (Wanget al. 1997;
Floreano & Mondada 1994). By the same token, touch-
driven gaze is the fusion of visuo-tactile sensing in order
to control gaze using tactile information (Rucci & Bajcsy
1995).

However, in these research the processing of each per-
ceptive input is handled separately except for gaze control.
Therefore, there is no effect of increased modality for each
perceptive input processing.

In this paper, we argue that the use of visual information
drastically improves auditory stream separation accuracy.
The underlying hypothesis is that ambiguities in stream
separation arise from two reasons:

� there are missing dimensions in the state-space which
represents perceptive inputs, and

� some constraints are missing which can be used to elim-
inate spurious trajectories in the state-space.

We will demonstrate viability of the hypothesis using
auditory stream separation of three-simultaneous speeches
carried out by (1) a monaural microphone system, (2) a bin-
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(a) Two Independent Streams (b) Superimposed sound (c) Two Possible Separations

Stream 1 Stream2

Stream 1 Stream2

Figure 1: Example of Overlapped Auditory Streams Separation

aural microphone system, and (3) a binaural microphone1

system with vision.
Separation of sound source is significant challenge for

auditory system for the real world. In real world envi-
ronment, multiple objects create various sounds, such as
human voice, door noise, automobile sounds, music, and
so forth. Human being with normal hearing capability can
separate these sounds even if these sounds are generated at
the same time, and understand what is going on. In this
paper, we focus on separation of multiple and simultaneous
human speeches, where up to three persons speak simulta-
neously. At first glance, it may look a bit odd to assume
three persons speak simultaneously. However, it turns out
that this situation has many potential applications. In many
voice-controlled devices, such as a voice-commanded car-
navigation system, the system needs to identify and separate
auditory stream of the specific speaker from environmental
noise and speeches of other people. Most of commer-
cial level speech recognition system built-in into portable
devices needs identify and separate owner’s voice from
background noise and voices of other person happened to
be talking to someone.

In addition, due to the complexity of the task, if we can
succeed in separation of multiple simultaneous speeches,
it would be much easier to apply the method to separate
various sounds that has drastically different from human
voice. ”Understanding Three Simultaneous Speeches”
(Okuno, Nakatani, & Kawabata 1997). is also one of the
AI challenge problem chosen at IJCAI.

Needs for Visual Information
There are many candidates for clues for sound source
separation; Some acoustic attributes include harmonics
(fundamental frequency and its overtones), onset (starting
point of sound), offset (ending point of sound), AM (Am-
plitude Modulation), FM (Frequency Modulation), timbre,
formants, and sound source localization (horizontal and

1A binaural microphone is a pair of microphones embedded in
a dummy head.

vertical directions, distance). Case-based separation with
sound database may be possible.

The most important attribute is harmonics, because it is
mathematically defined and thus easy to formulate the pro-
cessing. Nakataniet al. developed Harmonic Based Stream
Segregation System (HBSS) to separate harmonic streams
from a mixture of sounds (Nakatani, Okuno, & Kawabata
1994). HBSS extracts harmonic stream fragments from a
mixture of sounds by using multi-agent system. It uses
three kinds of agent; the event detector, the generator,
and tracers. The event detector subtracts predicted inputs
from actual input by spectral subtraction (Boll 1979) and
gives residue to the generator. The generator generates a
tracer if residue contains harmonics. Each tracer extracts a
harmonic stream fragment with the fundamental frequency
specified by the generator and predicts the next input by
consulting the actual next input. Then, extracted harmonic
stream fragments are grouped according to the continuity
of fundamental frequencies.

HBSS is flexible in the sense that it does not assume
the number of sound sources and extracts harmonic stream
fragments well. However, the grouping of harmonic stream
fragments may fail in some cases. For example, consider
the case that two harmonic streams cross (see Fig. 1 (b)).
HBSS cannot discriminate whether two harmonic streams
really cross or they come closer and then go apart, since it
uses only harmonics as a clue of sound source separation.

The use of sound source direction is proposed to over-
come this problem and Bi-HBSS (Binaural HBSS) is de-
veloped by Nakataniet al. (Nakatani, Okuno, & Kawabata
1994; Nakatani & Okuno 1999). In other words, the input
is changed from monaural to binaural. Binaural input is
a variation of stereo input, but a pair of microphone is
embedded in a dummy head. Since the shape of a dummy
head affects sounds, the interaural intensity difference is
enhanced more than that for stereo microphones.

Sound source direction is determined by calculating the
Interaural Time (or phase) Difference (ITD) and the Inter-
aural Intensity Difference (IID) between the left and right
channels. Usually ITD and IID are easier to calculate from
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Figure 2: Position of Three Speakers for Benchmark

binaural sounds than from stereo sounds (Bodden 1993).
Bi-HBSS uses a pair of HBSS to extract harmonic stream

fragments for the left and right channels, respectively.
The interaural coordinator adjusts information on harmonic
structure extracted by the both HBSS. Then, sound source
direction is determined by calculating ITD and IID be-
tween a pair of harmonic stream fragments. The sound
source direction is fed back to the interaural coordinator
to refine harmonic structure of harmonic stream fragment.
Finally, harmonic stream fragments are grouped according
to its sound source direction. Thus the problem depicted
in Fig. 1 (b) is resolved. Speech stream is reconstructed
by using harmonic streams for harmonic parts and substi-
tuting residue for non-harmonic parts (Okuno, Nakatani, &
Kawabata 1996).

Preliminary Experiment

Since the direction determined above in Bi-HBSS may
contain an error of�10�, which is considered very large,
its influence on the error reduction rates of recognition is
investigated. For this purpose, we construct a direction-
pass filter which passes only signals originating from the
specified direction and cuts other signals. We measured
the IID and ITD in the same anechoic room for every 5�

azimuth in the horizontal plane. A rough procedure of
direction-pass filter is as follows:

1. Input signal is given to a set of filter banks for the
left and right channels and analyzed by discrete Fourier
transformation,

2. IID and ITD for each frequency band are calculated and
its direction is determined by comparing IID and ITD.
This is because ITD is more reliable in lower frequency
regions, while IID is more reliable in higher frequency
regions.

3. Then, each auditory stream is synthesized by applying
inverse Fourier transformation to the frequency compo-
nents originating from the direction.

� � First Speaker’s 1-best
� �  First Speaker’s 10-best
� �  Second Speaker’s 1-best
� �  Second Speaker’s 10-best
� �  Third Speaker’s 1-best
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Figure 3: Error Reduction rates for the 1-best and 10-best
recognition by assuming the sound source direction

Benchmark Sounds The task is to separate simultaneous
three sound sources using binaural microphone and vision.
(See Fig. 2) The benchmark sound set used for the evaluation
of sound source separation and recognition consists of 200
mixture of three utterances of Japanese words. The mixture
of sounds are created analytically in the same manner as
(Okuno, Nakatani, & Kawabata 1996). Of course, a small
set of benchmarks were actually recorded in an anechoic
room, and we confirmed that the synthesized and actually
recorded data don’t cause a significant difference in speech
recognition performance.

1. All speakers are located at about 2 meters from the pair
of microphones installed on a dummy head as is shown
in Fig. 2.

2. The first speaker is a woman located at 30� to the left
from the center.

3. The second speaker is a man located in the center.

4. The third speaker is a woman located at 30� to the right
from the center.

5. The order of utterance is from left to right with about
150ms delay.
This delay is inserted so that the mixture of sounds was
to be recognized without separation.

6. The data is sampled by 12KHz and the gain of mixture
of sounds is reduced if the data overflows in 16 bit. Most
mixtures are reduced by 2 to 3 dB.

Evaluation Criteria The recognition performance is
measured bythe error reduction rate for the 1-best and
10-best recognition. First,the error rate caused by interfer-
ing soundsis defined as follows. Let then-best recognition
rate be the cumulative accuracy of recognition up to the
n-th candidate, denoted byCA(n). The suffix,org, sep,



or mix is added to the recognition performance of the sin-
gle unmixed original sounds, mixed sounds, and separated
sounds, respectively. The error rate caused by interfering
sounds,E(n), is calculated asE (n)

= CA(n)
org � CA

(n)
mix.

Finally, the error reduction rate for then-best recognition,
R

(n)
sep, in per cent is calculated as follows:

R(n)
sep =

CA(n)
sep � CA

(n)
mix

CA(n)
org � CA

(n)
mix

�100=
CA(n)

seg � CA
(n)
mix

E(n)
�100:

Preliminary Results 200 mixtures of three sounds are
separated by using a filter bank with the IID and ITD data.
We separate sounds in every 10� azimuth (direction) from
60� to the left to 60� to the right from the center. Then each
separated speech stream is recognized by a Hidden Markov
Model based automatic speech recognition system (Kita,
Kawabata, & Shikano 1990).

The error reduction rates for the 1-best and 10-best
recognition of separated sound for every 10� azimuth are
shown in Fig. 3. The correct azimuth for this benchmark
is 30� to the left (specified by�30� in Fig. 3), 0�, and
30� to the right. For these correct azimuths (directions),
recognition errors are reduced significantly. The sensitivity
of error reduction rates to the accuracy of the sound source
depends on how other speakers are close to. That’s why the
curve of error reduction rates for the center speaker is the
steepest in Fig. 3.

This experiment proves that if the correct direction of the
speaker is available, separated speech is of a high quality at
least from the viewpoint of automatic speech recognition.
In addition, the error reduction rates is quite sensible to the
accuracy of the sound source direction if speech is interfered
by closer speakers.

While binaural microphone provides direction informa-
tion at certain accuracy, it is not enough to separate sound
source in realistic situations. There are inherent difficulties
in obtaining high precision direction information by solely
depending on auditory information.

The fundamental question addressed in this paper is that
how the use of visual information can improve the sound
source separation by providing more accurate direction
information.

Integration of Visual and Auditory Stream
In order to investigate how the use of visual input can im-
prove auditory perception, we developed a system consists
of binaural microphone and CCD camera, as input devices,
and sound source separation system (simply,auditory sys-
tem) and color-based real time image processing system
(simply, vision system), that interacts to improve accuracy
of processing in both modalities. The concept of integrated
system is depicted in Fig. 4.

If auditory scene analysis module detects a new sound
source, it may trigger vision module to focus on it. If
vision module identifies the position of the sound source, it
returns the information to auditory scene analysis module
and conflict resolution module checks whether the both

Vision
Module

Auditory Scene
Analysis
Module

Sound
Source

Separation
Binaural
Microphone

CCD
Camera

Conflict
Resolution

Position
Information

Direction

Figure 4: Concept of Integrated Vision and Auditory Sys-
tems

information specifies the same sound source. In case of the
same sound source, the position information subsumes the
direction information as long as the sound source exists.

While there are several ways for vision and auditory
perceptions to interact, we focus on how information on
position of possible sound sources derived from both vision
and auditory perception interact to improve auditory stream
separation. In essence, a visual input provides information
on directions of possible sound sources, which can be used
to better separate auditory stream. At the same time, as
we will discuss in depth later, information of approximate
direction of sound sources significantly improve accuracy
of vision system in tracking possible sound sources by
constraining possible location of target objects.

Auditory Streams
The task of audition is to understandauditory events, or the
sound sources. An auditory event is represented byauditory
streams, each of which is a group of acoustic components
that have consistent attributes. Since acoustic events are
represented hierarchically (e.g. orchestra), auditory streams
have also a hierarchical structure.

Auditory system should separate auditory streams by
using the sound source direction and do the separation
incrementally and in real-time, but such a system has not
been developed so far. Therefore, as a prototype of auditory
system, we use Bi-HBSS, because it separates harmonic
structures incrementally by using harmonic structure and
the sound source direction.

Visual Streams
The task of vision is to identify possible sound sources.
Among various methods to track moving objects, we used
a simple color-based tracking. This is because we are also
interested in investigating how accuracy of visual track-
ing can be improved using information from the auditory
system, particularly sound source position.

Images are taken by a CCD camera (378K pixel 2/3”
CCD) with a wide conversion lens, video capture board in a
personal computer (Pentium II 450MHz, 384MB RAM), a
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Figure 5: Some Visual Images for Tracking Experiments

the rate of six frames per second for forty seconds. Captured
images are 640�480 pixels with 16 bit color. R, G and B in
a pixel is represented by 5 bit, respectively. The pixel color
(RGB) is translated into HSV color model to attain higher
robustness against small changes in lighting condition.

In this experiment, we assume that a human face, espe-
cially mouth is a possible sound source and that the mouth
is around the gravity center of face. Therefore, the vision
system computes clusters of skin colors, and their center of
gravity to identify the mouth.

Since there are multiple clusters of skin color, such as
face, hands, and legs, clusters that are not considered as
face shall be eliminated using various constraints. Such
constraints includes positional information from auditory
system, heights, velocity of cluster motion, etc.

Experiments
Test Data
Auditory Sounds and Criteria of Evaluation Since the
preliminary experiment is already reported in this paper, the
same benchmark sounds are used and the same evaluation
criteria for performance is adopted.

Visual Images The auditory situation described above
was realized in a visual image that has three people sitting
around the table and discussing some business issues. Image
is taken by a CCD camera positioned two meters from the
speakers. Excerpts of frames from the image are shown
in Fig. 5. Apart from face of each person, there are few
objects that causes false tracking. One is a yellow box just
left side of the person in the center, and the other is a knee
(under the table) of the person in the left. In addition, hands
can be mis-recognized as it has similar color with face.

Experiment 1: Effect of Modalities
In Experiment 1, we investigate the effect of three modali-
ties. They are listed in the order of increasing modalities:
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Figure 6: Experiment 1: Improvement of Error reduction
rates for the 1-best/10-best recognition of each speech by
incorporating more modalities
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Figure 7: Experiment 2: How average of error reduction
rates for the 1-best/10-best recognition of each speech by
incorporating modalities vary when the position of each
speaker varies.

1. Speech stream separation by monaural inputs,

2. Speech stream separation by binaural inputs, and

3. Speech stream separation by binaural inputs with visual
information.

We use HBSS, Bi-HBSS and simulator for integrated sys-
tems depicted in Fig. 4 for the three experiments, respec-
tively.

Error reduction rates for the 1-best and 10-best recogni-
tion of each speech is shown in Fig. 6. As more modalities
are incorporated in auditory system, error reduction rates
are improved drastically.

Experiment 2: Robustness of Modality against
Closer Speakers



In Experiment 2, we investigate the robustness of the
three speech stream separation algorithms by changing the
directions of each speakers. The azimuth between the first
and second speakers and that between the second and third
speakers are the same, say ”�”. We measured the average
error reduction rates for the 1-best and 10-best recognition
for 10�, 20�, 30�, and 60�.

The result of error reduction rates by the three algorithms
is shown in Fig. 7. Error reduction rates saturate around
the azimuth of more than 30�. For the azimuth of 10� and
20�, error reduction rates for the second (center) speaker
are quite poor compared with the other speakers (this data
is not shown in Fig. 7).

Experiment 3: Accuracy of Vision System with
Auditory Feedback

Experiments 1 and 2 assume that vision system provides
precise direction information, and thus the auditory system
can disambiguate harmonic structures without checking its
validity. However, question can be raised on the accuracy
of vision system. If the vision system provides wrong di-
rection information to the auditory system, the performance
of sound source separation may be drastically deteriorated,
because it must operate under wrong assumptions. There-
fore, Experiment 3 focuses on how the accuracy of vision
system is improved as more constraints are incorporated.

We measured tracking accuracy of a simple color-based
tracking system with (1) no constraints (purely rely on clus-
ter of color), (2) presumed knowledge on human heights,
(3) approximate direction information (�40� � �20�,
�10� � �10�, and 20� � 40�) from the auditory sys-
tem, and (4) using both height and direction information.
Fig. 8 shows actual tracking log for each case.

In this experimental data, speakers are sitting around the
table where they can be seen at�30�, 0�, and 20� in the
visual field of the camera.

The result of tracking accuracy is shown in Fig. 8.
As a reference for comparison, accurate face position is
annotated manually (Fig. 8 (R)). When only color is used
for tracking, there are numbers of spurious clusters that
are mistakenly recognized as face (Fig. 8 (a)). Using
knowledge on human height, some clusters can be ruled
out when it is located at position lower than table or higher
than2m. Nevertheless, many spurious clusters remains.
For example, clusters at azimuth�12� and�18� are a
yellow box at left of the person in the center. Imposing
direction information from the auditory system drastically
reduced spurious tracking (Fig. 8 (c)). However, there are
a few remaining mis-recognition. A cluster at�25� is
actually a knee of the person at the left. Use of direction
information cannot rule out possible cluster even if it
violate height constraints, because it cannot provide position
information on elevation in the current implementation.
Combining direction information and height constraints
drastically improve accuracy of the tracking (Fig. 8 (d)).
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(R) Accurate face position annotated manually.
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(c) By Color and Audio
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(d) By Color, Height, and Audio

Figure 8: Tracking Accuracy of the Vision System under
various Constraints.
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Figure 9: Spatial Feature of Auditory Streams

Observations on Experiments
Some observations on the experiments are summarized
below:

1. The error reduction rates for the 1-best and 10-best is
greatly improved by fixing the direction of sound sources
to the correct one. Since Bi-HBSS separates auditory
streams by calculating the most plausible candidate, the
direction of sound source is not stable. This is partially
because some acoustic components may disappear by
mixing sounds.

2. If the precise direction of visual information is avail-
able, the error reduction rates are drastically improved.
Allowable margin of errors in the direction of speaker
is narrower for the second (center) speaker than for the
others, because he is located between them.

3. The direction of sound source can be obtained with�10�

errors by Bi-HBSS, while our simple experiments with
cameras show that error margin is about�2 � 3� even
using rather simple vision system when combined with
direction information from auditory system and height
constraints.
Therefore, information fusion of visual and auditory
information is promising.

4. By fixing the direction supplied by vision module, pre-
calculated IID and ITD data are required. However, this
prerequisite may not be fulfilled in actual environments.
Online adjustment of IID and ITD data is required to be
apply to more realistic environment.

5. Another problem with Experiment 3 is that the number
of auditory streams and that of visual streams differ. For
example, some sound sources may be occluded by other
objects. Or some possible sound source (speaker) does
not speak actually but listens to other people’s talk. In
this paper, the latter case is excluded, but the former case
remains as future work.

Discussions
The central issue addressed in this paper is that how different
perceptive inputs affect recognition process of a specific
perceptive input. Specifically, we focused on the issue of

auditory scene analysis in the context of separating streams
of multiple simultaneous speeches, and how visual inputs
affects the performance of auditory perception.

As briefly discussed already, the difficulties in the au-
ditory stream separation lies in the fact that trajectories of
independent streams overlap in the state space, so that clear
discrimination cannot be maintained throughout the stream.
Perception based on monaural auditory input has very lim-
ited dimension as it can only use amplitude and frequency
distribution. There is no spatial axis. As illustrated in
Fig. 9 (a), auditory streams overlap on the same spatial
plane. Using binaural inputs expands dimension as it can
now use amplitude and phase difference of sound sources,
which adds spatial axis to the state space.

However, spatial resolution based on sound is limited
due to velocity of sounds and limitation in determining
amplitude and phase differences between two microphones.
This is particularly difficult in reverberant environment,
where multiple paths exist between sound sources and
microphone due to reflection of room walls. Thus, as
illustrated in the Fig. 9 (b), there are significant overlap in
the auditory streams. (Ambiguities are shown as shaded
boxes.)

Introduction of visual inputs, when appropriately used,
adds significantly large dimensions, such as precise position,
color, object shape, motion, etc. Among these features,
information on positions of objects contribute substantially
to the auditory perception. With visual information, the
location of sound sources can be precisely determine with
an accuracy of few degrees for a point source at 2-meter
distance. With this information, overlap of trajectories
are significantly reduced (Fig. 9 (c)). Experimental results
clearly demonstrates this is actually the case for sound
source separation.

By the same token, the performance of the vision system
can be improved with the information from the auditory
system. As the third experiments demonstrates, even a
simple color-based visual tracking system can be highly
accurate if approximate position information on possible
sound source were provided from the auditory system,
together with other constraints such as height constraints
for human face positions.

These results suggests that interaction between different



perception can bootstrap performance of each perception
system. This implies that even if performance of each
perception module is not highly accurate, an integrated
system can exhibit much higher performance than simple
combination of subsystems. It would be a major open
issue for future research to identify what are conditions and
principles which enables such bootstrapping.

Conclusion
The major contribution of this work is that the effect of
visual information in improving auditory stream separation
was made clear. While many research has been performed
on integration of visual and auditory inputs, this is the
first study to clearly demonstrate that information from a
sensory input (e.g. vision) affects processing quality of
other sensory inputs (e.g. audition). In addition, we found
that accuracy of the vision system can be improved by
using information derived from the auditory system. This
is a clear evidence that integration of multiple modality,
when designed carefully, can improve processing of other
modalities, thus bootstrap the coherence and performance
of the entire system.

Although this research focused on vision and audition, the
same principle applies to other pairs of sensory inputs, such
as tactile sensing and vision. The important research topic
now is to explore possible interaction of multiple sensory
inputs which affects quality (accuracy, computational costs,
etc) of the process, and to identify fundamental principles
for intelligence.
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