
Intelligent Agents in Computer Games

Michael van Lent, John Laird, Josh Buckman, Joe Hartford,
Steve Houchard, Kurt Steinkraus, Russ Tedrake

Artificial Intelligence Lab
University of Michigan

1101 Beal Ave.
Ann Arbor, MI 48109
vanlent@umich.edu

As computer games become more complex and consumers
demand more sophisticated computer controlled
opponents, game developers are required to place a greater
emphasis on the artificial intelligence aspects of their
games. Our experience developing intelligent air combat
agents for DARPA (Laird and Jones 1998, Jones at al.
1999) has suggested a number of areas of AI research that
are applicable to computer games. Research in areas such
as intelligent agent architectures, knowledge
representation, goal-directed behavior and knowledge
reusability are all directly relevant to improving the
intelligent agents in computer games. The Soar/Games
project (van Lent and Laird 1999) at the University of
Michigan Artificial Intelligence Lab has developed an
interface between Soar (Laird, Newell, and Rosenbloom
1987) and the commercial computer games Quake II and
Descent 3. Techniques from each of the research areas
mentioned above have been used in developing intelligent
opponents in these two games.

The Soar/Games project has a number of goals from both
the research and game development perspective. From the
research perspective, computer games provide domains for
exploring topics such as machine learning, intelligent
architectures and interface design. The Soar/Games
project has suggested new research problems relating to
knowledge representation, agent navigation and human-
computer interaction. From a game development
perspective, the main goal of the Soar/Games project is to
make games more fun by making the agents in games more
intelligent. If done correctly, playing with or against these
AI agents will more closely capture the challenge of
playing online against other people. A flexible AI
architecture, such as Soar, will also make the development
of intelligent agents for games easier by providing a
common inference engine and reusable knowledge base
that can be easily applied to many different games.

 Copyright 1999, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

Quake II and Descent 3, both popular first person
perspective action games, include software hooks allowing
programmers to write C code that can access the game’s
internal data structures and agent controls. This has
allowed us to extract symbolic information from the games
without interpreting the image displayed on the computer
screen. A common approach to building intelligent agents
in computer games is to use C code and these
programming hooks to control agents via a large number of
nested if and switch statements. As the agents get more
complex, the C code becomes difficult to debug, maintain
and improve. A more constrained language that better
organizes the conditional statements could be developed
but we believe that language would be similar to the Soar
architecture. By using the Soar architecture, we are taking
advantage of the Soar group’s 15 years of research into
agent architectures.

Soar serves as the inference engine for the intelligent agent
(see figure 1). The job of the inference engine is to apply
knowledge to the current situation and decide on internal
and external actions. The agent’s current situation is
represented by data structures representing the states of
simulated sensors implemented in the interface and
contextual information stored in Soar’s internal memory.
Soar allows easy decomposition of the agent’s actions
through a hierarchy of operators. Operators at the higher
levels of the hierarchy explicitly represent the agent’s
goals, while the lower level operators represent sub-steps
and atomic actions used to achieve these goals.
Representing goals explicitly in internal memory
encourages agent developers to create goal directed agents.
Soar selects and executes the operators relevant to the
current situation that specify external actions, the agent’s
moves in the game, and internal actions, such as changes to
the agent’s internal goals. Soar constantly cycles through a
perceive, think, act loop, which is called the decision cycle.

1. Perceive: Accept sensor information from the game
2. Think: Select and execute relevant knowledge
3. Act: Execute internal and external actions

From: AAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

One of the lessons learned, as a result of the DARPA
project and the Soar/Games project, is the importance of
carefully designing the interface between the inference
engine and the simulated environment. The interface
extracts the necessary information from the game and
encodes it into the format required by Soar. Each game
requires a custom interface because the details of the
interaction and the content of the knowledge extracted vary
from game to game. For example, Descent 3 agent’s,
flying in a spaceship without gravity, must have the ability
to move and rotate in all six degrees of freedom. Quake II
agents, running normally with gravity, require only four
degrees of freedom. However, basing each interface on a
common template allows much of the knowledge
developed for one game to be reused in other games.

The Soar/Games project uses the standard Soar knowledge
representation of a hierarchy of operators each
implemented by multiple production rules. The operators
at the top level of the hierarchy represent the agent’s
general goals or modes of behavior. For example, the top-
level operators in a Quake II or Descent 3 agent might
include attack, explore, retreat and wander. The lower
levels of the hierarchy represent successively more specific
representations of the agent’s behavior. Sub-operators of
the top-level attack operator could include different styles
of attacking, such as pop-out-attack or circle-strafe, or
steps followed to implement an attack, like select-attack-
type and face-enemy. The operators at the bottom of the
hierarchy are atomic steps and actions that implement the
operators above, such as shoot, move-to-door and stop-
moving. The Quake II agent currently under development
consists of a five level operator hierarchy containing 57
different operators implemented with more than 400
production rules. Our hope is that many of these rules can
be reused in the development of a Descent 3 agent.
Because Quake II and Descent 3 are the same genre of
games, they share many similarities at the strategic and
tactical levels. We hope to take advantage of this by
creating a game independent, genre specific knowledge
base used by both games.

The game portion of our demonstration consists of six
workstations (200MHz or faster Pentium machines), three
for the Quake II demonstration and three for Descent 3.

For each game one workstation runs the game server and
AI system, a second displays the ongoing game from the
agent’s perspective and audience members can play the
game against the AI agent on the third. In addition to
understanding how the research has resulted in valuable
concepts and how those concepts are used, the audience
will also be able to evaluate the effectiveness of the
concepts by playing the games. Both games are easily
understood, action oriented and visually impressive, which
leads to an accessible, exciting demonstration of applied
artificial intelligence research.

Acknowledgements

The authors would like to thank Outrage Entertainment
Inc. for allowing us to work with Descent 3 while in
development and Intel for the donation of machines.

References

Laird, J. E. and Jones, R. M. 1998. Building Advanced
Autonomous AI systems for Large Scale Real Time
Simulations. In Proceedings of the 1998 Computer Game
Developers’ Conference, 365-378. Long Beach, Calif.:
Miller Freeman.

Laird, J. E., Newell, A. and Rosenbloom, P.S. 1987. Soar:
An architecture for general intelligence. Artificial
Intelligence 33:1-64.

Jones, Randolph M., Laird, John E., Nielsen, Paul E.,
Coulter, Karen J., Kenny, Patrick. and Koss, Frank V.
1999. Automated Intelligent Pilots for Combat Flight
Simulation. AI Magazine, 20(1):27-41.

van Lent, M. C. and Laird, J. E. 1999. Developing an
Artificial Intelligence Engine. In Proceedings of the 1999
Game Developers’ Conference, 577-587. San Jose, Calif.

Interface

DLL

Inference
Engine
(Soar)

Knowledge
Base

Actions

Sensor Data

Socket

Computer
Game

Figure 1: Soar is attached to the computer game through a socket connection to an interface that is compiled into the
computer game.

