From: AAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.or!

. All rights reserved.

Learning Design Guidelines by Theory Refinement

Jacob Eisenstein

Stanford University
549 Lasuen Mall
Stanford, California 94305
jacob@redwhale.com

The automation of design decisions can be seen as a
problem of generating mappings between elements in an
abstract specification of the object to be designed and the
concrete parts of the object itself (Puerta and Eisenstein
1999). In some cases, it is difficult to discover a formalism
that takes all relevant variables into account; human
designers proceed by “intuition.” Individual designers may
have stylistic preferences that are purely idiosyncratic or
are common only to one particular “school.” By ignoring
such preferences, automatic design forfeits the flexibility,
creativity, and vitality of human design.

In short, automatic design algorithms suffer from a lack
of flexibility. Adaptation is offered as a solution to this
problem. By making automatic design algorithms adaptive,
we can begin to do automation without a complete
knowledge base—it can be developed and refined along the
way. Stylistic preferences can likewise be accommodated if
an automatic design algorithm can adapt to the user.

We add adaptation to an existing piece of automatic
design software: the TIMM module of the MOBI-D user-
interface design environment (Puerta 1997). MOBI-D
maintains explicit, formal representations of the abstract
and concrete sides of the interface. TIMM automates the
mappings between the abstract domain objects and
concrete presentation elements, using a decision tree.
Although there exists a body of work on using decision
trees to automate selection of interactors (Vanderdonckt
and Bodart 1996), most theory-refinement algorithms
involve neural nets (Maclin and Shavlik 1996). A theory-
refinement algorithm for decision trees is presented below.

An error occurs when the user disagrees with one of
TIMM’s design decisions. The system then searches for a
set of operations that can be performed on the decision tree
so as to yield the least number of errors, when applied over
the entire history of user interactions.

When multiple solutions produce the same number of
errors, operations that are reversible and do not affect the
structure of the decision tree are preferred. The most
preferred operation is to change the output of the leaf that
produced the error. Suppose that the decision tree dictates
that boolean domain eclements are best treated by a
checkbox, but the user selects radio buttons instead. This
stylistic preference can be satisfied by changing the output
of the leaf for boolean domain variables to radio buttons.

An alteration of the boundary conditions is the next most
preferred operation, because it can be reversed by altering

Copyright © 1999, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

the boundary conditions again. Suppose that the decision-
tree selects radio buttons for variables with less than four
allowed values, and list boxes when there are four or more
allowed values. If the user rejects the selection of list boxes
in cases where there are four allowed values, then a shift in
the boundary condition will produce more agreeable
output.

There is no facility for removing branches. Thus, the
addition of a new branch is the least preferred operation, as
it is irreversible. It is necessary to add a branch when there
is a relevant piece of information that the decision tree did
not consider. The designer’s selection of certain interactors
might be influenced by the size of their parent dialog
window. Adding a new discriminant to take that
information into account is the only way to properly
correct the decision tree.

Preliminary testing has shown that all of these operations
are useful. Local minima have not appeared, so the fact that
our search is a greedy hill-climb does not pose a problem.
Earlier, three advantages of adaptation were cited:
acquisition of new design knowledge, accommodation of
user preferences, and update of the automation algorithm in
response to changing technology. Testing has shown that
the theory-refinement algorithm described here can deliver
all three of those advantages.

Acknowledgements

I thank my advisor, Angel Puerta, for the direction and
support. The work is supported by RedWhale Software.

References

Maclin, R. and Shavlik, J. 1996. Creating Advice-Taking
Reinforcement Learners. Machine Learning, 22:251-281.

Puerta, A.R. and Eisenstein, J. 1999. Towards a General
Computational Framework for Model-Based Interface
Development Systems. In Proc. of IUI 1999, pp. 171-178.
Los Angeles: ACM Press.

Puerta, A.R. 1997. A Model-Based Interface Development
Environment. /[EEE Software, 14(4): 41-47.

Vanderdonckt, J. and Bodart, F. 1996. The "Corpus
Ergonomicus": a Comprehensive and Unique Source for
Human-Machine Interface Guidelines, in "Advances in
Applied Ergonomics.” In ICAE'96, p. 162-169. Istanbul —
West Lafayette: USA Publishing.



