
From: AAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Using Neural Networks in Agent Teams to Speed Up
Discovery for Hard Multi-Criteria Problems

Shaun Gittens
Dept. of Computer Science

AV Williams Bldg.
Univ of Maryland

College Park, MD 20782
sgittens@cs.umd.edu

Solution

Richard Goodwin
Jayant Kalagnanam

Sesh Murthy
IBM T3 Watson Research Center

Route 134 and Taconic Hwy
Yorktown Heights, NY 10598

(rgoodwin~jayant,smurthy)us.ibm.com

Hard multi-criteria (MC) problems are computa-
tionally intractable problems requiring optimization of
more than one criterion. However, the optimization of
two or more criteria tends to yield not just one optimal
solution, but rather a set of non-dominated solutions.
As a result, the evolution of a Pareto-Optimai set of
non-dominated solutions from some population of can-
didate solutions is often the most appropriate course
of action. The non-dominated set of a population of
solutions is comprised of those solutions whose criteria
cannot all be dominated by those of at least one other
solution in the current population.

The framework we use, called the Asynchronous
Team (A-Team) architecture (Talukdar, Souza,
Murthy 1993), deploys teams of optimizing agents to
evolve population(s) of candidate solutions to instances
of hard MC problems in order to develop very good
solutions. In this framework, agents embody specific
heuristics geared to create, modify, or destroy any of
a number of possible solutions to a problem instance.
These agents are capable of choosing when and on which
potential solutions they would like to work on. As a
result, as the system progresses in iterations, the pop-
ulation of possible solutions as a whole tends to im-
prove towards a Pareto-Optimal frontier of solutions.
The Pareto Optimal frontier would consist of solutions
whose individual criteria cannot be further optimized
without resulting in a decline in other criteria.

Currently, the method by which each agent chooses
to work on particular solutions must be hand coded
into the system. It can be very difficult to accomplish
this since one would have to determine ahead of time
which agents work best on which solutions, requiring
much time and effort. In addition, the developer may
introduce a ’teacher’s bias’ to the agent, hand coding
incorrect decision-making based on the developer’s in-
correct analysis of the agents improvement capability.
Furthermore, this approach is inflexible as the hand
coding done for one problem will not likely be appli-
cable to other problems.

Without hand coding this feature, agents are de-
ployed at random with an equal likelihood. This

Copyright ~) 1999, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

random deployment, however, often results in CPU cy-
cles being wasted as some agents may be invoked at
times when they are unlikely to yield improvements.
This problem is significant in that improved decision
making by agents should result in the evolution of very
good solutions in less time than was previously required.

Thus far we have attempted to remedy this shortcom-
ing by implementing neural network (NN) error back
propagation learning techniques (Mehrotra, K. Mohan,
&; R.anka 1997) to allow individual agents to learn when
and on what solutions they work well. We investigate
neural network strategies here since they can be trained
to approximate smooth functions which output, in con-
stant time, the likely improvement the agent can have
on each criterion of a problem instance. One way we im-
plement this is to assign one NN per agent and train it
based on the successes and failures that agent achieved
over many past runs. The agent’s neural network is
trained to report a +1 if some preset percentage of im-
provement (say 10%) in at least one important parame-
ter is expected in the event that the agent is applied to
a particular solution in the population. A second, and
seemingly more effective, method we use is to train each
agent NN until it can estimate the expected improve-
ment the agent could make on a particular solution.

Initial results obtained from testing on tough in-
stances of the Bicriteria Sparse Multiple Knapsack
Problem did indeed demonstrate that improved deci-
sion making on the part of agents using well-trained
neural nets often resulted in significant speedup and
overall improved solution quality over the population.
More work is being done to overcome drawbacks inher-
ent to neural network solutions such as generalization,
input parameter selection, etc. Further study should re-
veal how solving problems in this fashion fares against
the performance of other multiple objective optimiza-
tion approaches.

References
Mehrotra, K.; K. Mohan, C.; and Ranka, S. 1997.
Elements of Artificial Neural Networks. MIT Press.
Talukdar, S. N.; Souza, P. d.; and Murthy, S. 1993.
Organization for computer-based agents. Engineering
Intelligent Systems.




