
Deliberation in Equilibrium:
Bargaining in Computationally Complex Problems

Kate Larson and Tuomas Sandholm
Department of Computer Science

Washington University
St. Louis, MO 63130-4899

{ksl2, sandholm}@cs.wustl.edu

Abstract
We develop a normative theory of interaction—
negotiation in particular—among self-interested com-
putationally limited agents where computational ac-
tions are game-theoretically treated as part of an agent’s
strategy. We focus on a 2-agent setting where each
agent has an intractable individual problem, and there
is a potential gain from pooling the problems, giving
rise to an intractable joint problem. At any time, an
agent can compute to improve its solution to its prob-
lem, its opponent’s problem, or the joint problem. At a
deadline the agents then decide whether to implement
the joint solution, and if so, how to divide its value (or
cost). We present a fully normative model for control-
ling anytime algorithms where each agent has statis-
tical performance profiles which are optimally condi-
tioned on the problem instance as well as on the path
of results of the algorithm run so far. Using this model,
we analyze the perfect Bayesian equilibria of the games
which differ based on whether the performance profiles
are deterministic or stochastic, whether the deadline is
known or not, and whether the proposer is known in
advance. Finally, we present algorithms for finding the
equilibria.

Introduction
Systems, especially on the Internet, are increasingly being
used by multiple parties—or software agents that represent
them—with their own preferences. This invalidates the tra-
ditional assumption that a central designer controls the be-
havior of all system components. The system designer can
only control themechanism(rules of the game), while each
agent chooses its ownstrategy. The economic efficiency that
a system yields depends on the agents’ strategies. So, to de-
velop a system that leads to desirable outcomes, the designer
has to make sure that each agent is incented to behave in the
desired way. This can be achieved by analyzing the game us-
ing theNash equilibriumsolution concept from game theory
(or its refinements): no agent is motivated to deviate from its
strategy given that the others do not deviate (Kreps 1990).

However, the equilibrium for rational agents does not gen-
erally remain an equilibrium for computationally limited
agents.1 This leaves a potentially hazardous gap in game

Copyright c© 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1In the relatively rare settings where the incentives can be de-
signed so that each agent is motivated to use the desired strategy
independent of what others do(dominant strategy equilibrium), a

theory as well as automated negotiation because computa-
tionally limited agents are not incented to behave in the de-
sired way. This paper presents a framework and first steps
toward filling that gap.

In this paper we begin to develop a theory of interaction—
negotiation in particular—where computation actions are
treated as part of an agent’s strategy. We study a 2-agent
bargaining setting where at any time, the agent can compute
to improve its solution to its own problem, its solution to
the opponent’s problem, or its solution to the joint problem
where the tasks and resources of the two agents are pooled.
The bargaining occurs over whether or not to use a solution
to the joint problem, and how to divide the associated value
(or cost). This is the first piece of research that seriously
treats computational actions game-theoretically.

Early on, it was recognized that humans have bounded ra-
tionality, e.g., due to cognitive limitations, so they do not act
rationally as economic theory would predict (Simon 1955).
He noted that there was a difference in the ways firmsdo
behave as opposed to how theyshouldrationally behave.

Since then, considerable work has focused on developing
normativemodels that prescribe how a computationally lim-
ited agentshouldbehave. Most of those methods resort to
simplifying assumptions such as myopic deliberation con-
trol (Russell & Wefald 1991; Baum & Smith 1997), con-
ditioning the deliberation control on hand-picked features,
assuming that an anytime algorithm’s future performance
does not depend on the run on that instance so far (Horvitz
1987; Boddy & Dean 1994; Zilberstein & Russell 1996;
Zilberstein, Charpillet, & Chassaing 1999; Horvitz 1997)
or that performance is conditioned on quality so far but not
the path (Hansen & Zilberstein 1996), resorting to asymp-
totic notions of bounded optimality (Russell & Subramanian
1995), or focusing on decision problems only (Sandholm &
Lesser 1994).

While such simplifications can be acceptable in single-
agent settings as long as the agent performs reasonably well,
any deviation from full normativity can be catastrophic in
games. If the designer cannot guarantee that the strategy
(including deliberation actions) is the best strategy that an
agent can use, there is a risk that an agent is incented to
use some other strategy. Even if that strategy happens to
be “close” to the desired one, the social outcome may be
far from desirable. Therefore, this paper introduces a fully
normative deliberation control method. Each agent uses all
the information it has available to control its computation,

rational agent is best off maintaining its strategy even if some other
agents are unable to act rationally, e.g. due to computational limi-
tations.

From: AAAI-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved. 



including conditioning on the problem instance and the path
of solutions found on the run so far.

Game theorists have also realized the significance of com-
putational limitations, but the models that address this is-
sue have mostly analyzed how complex it is to compute
the rational strategies (rather than the computation impact-
ing the strategies) (Koller, Megiddo, & Stengel 1996), or
memory limitations in keeping track of history in repeated
games (Rubinstein 1998), or limited uniform-depth looka-
head capability in repeated games (Jehiel 1995), or showing
that allowing the choice between taking one computation ac-
tion or not undoes the dominant strategy property in a Vick-
rey auction (Sandholm 1996). On the other hand, in this
paper, the limited rationality stems from the complexity of
each agent’s optimization problem (each agent has a com-
puter of finite speed, some anytime algorithm which might
not be perfect, and finite time), a setting which is ubiquitous
in practice.2

In the next section we present a quantitative model for
controlling computation where each agent has statistical per-
formance profiles of its anytime algorithm, which are opti-
mally conditioned on the problem instance as well as on the
path of results of the algorithm run so far. We also present
the bargaining settings we are studying. We then proceed
to analyze noncooperative equilibria and present algorithms
that agents can use to determine how to direct their com-
putation in equilibrium and how to bargain after the delib-
eration. In other words, these algorithms determine each
agent’s best-response deliberation strategy and bargaining
strategy. The paper ends with a discussion of future research
directions.

An Example Application

To make the presentation more concrete, we now discuss an
example domain where our methods are needed. Consider
a distributed vehicle routing problem (Sandholm & Lesser
1997) with two geographically dispersed dispatch centers
that are self-interested companies. Each center is respon-
sible for certain tasks (deliveries) and has a certain set of
resources (vehicles) to take care of them. So each agent—
representing a dispatch center—has its own vehicles and de-
livery tasks. Each agent’sindividual problemis to minimize
transportation costs (driven mileage) while still making all
of its deliveries. This problem isNP-complete.

There is a potential for savings in driven mileage by pool-
ing the agents’ tasks and resources—e.g., because one agent
may be able to handle some of the other’s tasks with less
driving due to adjacency. The objective in thisjoint problem
is to again minimize driven mileage. This problem is again
NP-complete.

2The samesourceof complexity has been addressed (Sandholm
& Lesser 1997), but that paper only studied outcomes, not the pro-
cess or the agents’ strategies. It was also assumed that the algo-
rithm’s performance is deterministically known in advance. Fi-
nally, the agents had costly but unlimited computation, while in
this paper the agents have free but limited computation.

The General Setting
The distributed vehicle routing problem is only one exam-
ple problem where the methods of this paper are needed. In
general, they are needed in any 2-agent setting where each
agent has an intractableindividual problem, and there is a
potential savings from pooling the problems, giving rise to
an intractablejoint problem. We also assume that the value
of any solution to an agent’s individual problem is not af-
fected by what solution the other agent uses to its individual
problem.

Applications with these characteristics are ubiquitous, in-
cluding transportation as discussed above, manufacturing
(where two potentially interacting companies need to con-
struct their manufacturing plans and schedules), electric
power negotiation between a custom provider and an indus-
trial consumer (where the participants need to construct their
production and consumption schedules), to name just a few.

In order to determine the gain generated by pooling in-
stead of each agent operating individually, agents need to
compute solutions to both agent’s individual problems as
well as to the joint problem. Say that the agents have any-
time algorithms that can be used to solve (vehicle routing)
problems so that some feasible solution is available when-
ever the algorithm is terminated, and the solution improves
as more computation time is allocated to the algorithm.

By computing on the joint problem, an agent reduces the
amount of time it has for computing on its individual prob-
lem. This may increase the joint value to the agents (reduce
the sum of the agents’ costs), but makes this agent’s fall-
back position worse when it comes to bargaining over how
the joint value should be divided between the two agents.
Also, if one agent is computing on the joint problem, would
it not be better for the other agent to compute on something
different so as not to waste computation? In this paper we
present a model where each agent strategically decides on
how to use its limited computation in order to maximize its
own expected payoff in such settings.

The Model
Let there be two agents, 1 and 2, each with its ownindividual
problem. They also have the possibility to pool, giving rise
to a joint problem. We assume that time is discretized into
T units and each computational step takes one time unit.

Normative Control of Deliberation
Each agent has an anytime algorithm that has a feasible so-
lution available whenever it is terminated, and improves the
solution as more computation time is allocated to the prob-
lem. Letv1(t) be the value of the solution to agent 1’s indi-
vidual problem after computing on it fort time steps. Sim-
ilarly, v2(t) is the value of the solution to agent 2’s individ-
ual problem after computing on it fort time steps. Finally,
v1∪2(t) is the value of the solution to the joint problem after
computing on it fort time steps.

The agents have statistical performance profiles that de-
scribe how their anytime algorithms increasev1, v2, and
v1∪2 as a function of the allocated computation time. As
will be discussed later, each agent uses this information to



decide how to allocate its computation at every step of the
game.

We index the problem (agent 1’s, agent 2’s, and the joint)
by z, z ∈ {1, 2, 1 ∪ 2}. For eachz there is a performance
profile treeT z , representing the fact that an agent can con-
dition its algorithm’s performance profile on the problem in-
stance. Figure 1 exemplifies one such tree. Each depth of

A

0

B

P(BjA)

10 CP(CjB)

12
13

12

11 12

8 10

13

11

7

9 10

8

10

9

depth 0 1 2 3

Figure 1:A performance profile tree.

the tree corresponds to an amount of timet spent on running
the algorithm on that problem. Each node at deptht of the
tree represents a possible solution quality (value),vz, that is
obtained by running the algorithm fort time steps on that
problem. There may be several nodes at a depth since the
algorithm may reach different solution qualities for a given
amount of computation depending on the problem instance
(and if it is a stochastic algorithm, also on random numbers).
We assume that the solution quality in the performance pro-
file tree,T 1, of agent 1’s individual problem is discretized
into a finite number of levels. Similarly, the solution quality
in T 2 is discretized into a finite number of levels, as is the
solution quality inT 1∪2.

Each edge in the tree is associated with the probability
that the child is reached in the next computation step given
that the parent has been reached. This allows one to compute
the probability of reaching any particular future node in the
tree given any node, by multiplying the probabilities on the
path between the nodes. If there is no path, the probability
is 0.

The tree is constructed by collecting statistical data from
previous runs of the algorithm on different problem in-
stances.3 Each run is represented as a path in the tree. As a
run proceeds along a path in the tree, the frequency of each
edge of that path is incremented, and the frequencies at the
nodes on the path are normalized to obtain probabilities. If
the run leads to a value for which there is no node in the
tree, the node is generated and an edge is inserted from the
previous node to it.

Definition 1 The state of deliberation of agent 1 at time
stept is θt

1 = 〈n1
1, n

2
1, n

1∪2
1 〉

3The more finely solution quality and time are discretized, the
more accurate deliberation control is possible. However, with more
refined discretization, the number of possible runs increases (it is
O(mT ) wherem is the number of levels of solution quality), so
more runs need to be seen to populate the space. Furthermore,
the space should be populated densely to get good probability esti-
mates on the edges of the performance profile trees.

wheren1
1, n2

1, andn1∪2
1 are the nodes where agent 1 is cur-

rently in each of the three performance profile trees. The
state of deliberation for agent 2 is defined analogously.

We denote bytime(n) the depth of noden in the perfor-
mance profile tree. In other words,time(n) is the number
of computation steps used to reach noden. So,time(n1

1) +
time(n2

1) + time(n1∪2
1 ) = t. We denote byV (n) the value

of noden.
In practice it is unlikely that an agent knows the solution

quality for every time allocation without actually doing the
computation. Rather, there is uncertainty about how the so-
lution value improves over time. Our performance profile
tree allows us to capture this uncertainty. The tree can be
used to determineP (vz|t) denoting the probability that run-
ning the algorithm fort time steps produces a solution of
valuevz.

Unlike previous methods for performance profile based
deliberation control, our performance profile tree directly
supports conditioning on thepathof solution quality so far.4

The performance profile tree that applies given a path of
computation so far is simply the subtree rooted at the cur-
rent noden. We denote this subtree byT z(n). If an agent
is at a noden with valuev, then when estimating how much
added deliberation would increase the solution value, the
agent need only consider paths that emanate from noden.
The probability,Pn(n′), of reaching a particular future node
n′ in T z(n) given that the current node isn is simply the
product of the probabilities on the path fromn to n′. Simi-
larly, given that the current node isn, the expected solution
quality after allocatingt more time steps to this problem is

∑

{n′|n′ is a node inT z(n) with deptht}
Pn(n′) · V (n′)

This can be easily computed using depth-first-search with a
depth limitt in T z(n).

Computation plays several strategic roles in the game.
First, it improves the solution that is available—for any one
of the three problems. Second, it resolves some of the uncer-
tainty about what future computation steps will yield. Third,
it gives information about what solution qualities the oppo-
nent has encountered and can expect. This helps in estimat-
ing what solution quality the other agent has available on
any of the three problems. It also helps in estimating what
computations the other agent might have done and might
do. Therefore, in equilibrium, an agent may want to allo-
cate computation on its individual problem, the joint prob-
lem, and even on the opponent’s problem. We will show
how agents use the performance profile trees to handle these
considerations.

Special Case: Deterministic Performance Profiles In a
deterministic performance profile,vz(t) ∈ < is known for
all t. In this setting, the tree that represents the performance

4Our results apply directly to the case where the conditioning
on the path is based on other solution features in addition to solu-
tion quality. For example, in a scheduling problem, the distribution
of slack can significantly predict how well an iterative refinement
algorithm can further improve the solution.



profile has only one path. Before using any computation,
the agents can determine what the value will be after any
number of computation steps devoted to any one of the three
problems. So, computation does not provide any informa-
tion about the expected results of future computations. Also,
computation does not provide any added information about
the performance profiles, which could be used to estimate
the other agent’s computational actions.

In settings where the performance profiles are not deter-
ministic, we assume that the agents have the same perfor-
mance profile treesT 1, T 2, andT 1∪2 which are common
knowledge. One scenario where the agents have the same
performance profile trees is where the agents use the same
algorithm and have seen the same training instances. This
is arguably roughly the case in practice if the parties have
been solving the same type of instances over time, and the
algorithms have evolved through experimentation and publi-
cation. In settings where the performance profiles are deter-
ministic, all of our results go through even if the agents have
different performance profile treesT 1

1 , T 2
1 , T 1∪2

1 , T 1
2 , T 2

2 ,
andT 1∪2

2 —assuming that these are common knowledge.

Bargaining
At some point in time,T , there is a deadline at which time
both agents must stop deliberating and enter the bargain-
ing round. The agents perform their computational actions
in parallel with no communication between them until the
deadline is reached. Call the value of the solution computed
by that time by agenti to agent 1’s problemv1

i , to agent 2’s
problemv2

i , and to the joint problemv1∪2
i . At that time,

the agents decide whether to pool or not, and in the former
case they also have to decide how to divide the value of the
solution to the joint problem. These decisions are made via
bargaining. One agent,α, α ∈ {1, 2}, makes a take-it-or-
leave-it offer,xo

α, to the other agent,β, about how much
agentβ’s payoff will be if they pool. Agentβ can then ac-
cept or reject. If agentβ accepts, the agents pool and use
agentα’s solution to the joint problem. Agentβ’s payoff is
xo

α as proposed and agentα gets the rest of the value of the
solution: v1∪2

α − xo
α. If agentβ rejects, both agents imple-

ment their own computed solutions to their own individual
problems, in which case agent 1’s payoff isv1

1 and agent2’s
payoff isv2

2 .
Before the deadline, the agents may or may not know who

is to make the offer. The probability that agent 1 will be the
proposer isPprop, and this is common knowledge. When
agents reach the bargaining stage, each agent’s strategy is
captured by anoffer-accept vector. An offer-accept vec-
tor for agent 1 isOA1 = (xo

1, x
a
1) ∈ R2, wherexo

1 is the
amount that agent 1 would offer if it had to make the pro-
posal, andxa

1 is the minimum value it would accept if agent
2 made the proposal. The offer-accept vector for agent 2 is
defined similarly.

The agents strategies incorporate actions from both parts
of the game. For the deliberation part of the game, an agent’s
strategy is a mapping from the state of deliberation to the
next deliberation action (i.e., selecting which solutionz,
z ∈ {1, 2, 1∪2} to compute another time step on—in words,
whether to compute on the agent’s own problem, the other

agent’s problem, or the joint problem). At the deadline,T ,
each agent has to decide its offer-accept vector. Therefore,
the strategy at timeT is a mapping from the state of deliber-
ation at timeT to an offer-accept vector.

Definition 2 A strategy, S1 for agent 1 with deadlineT is

S1 = ((SD,t
1 )T

t=0, S
B
1 )

where the deliberation strategy

SD,t
1 : θt−1

1 → {a1, a2, a1∪2}
is a mapping from the deliberation stateθt−1

1 at timet−1 to
a deliberation actionaz whereaz is the action of computing
one time step on the solution for problemz ∈ {1, 2, 1∪ 2}.

The bargaining strategySB
1 : θT

1 → <2 is a mapping
from the final deliberation state to an offer-accept vector
(xo

1, x
a
1). A strategy,S2, for agent 2 is defined analogously.

Our analysis will also allowmixed strategies. A mixed

strategy for agent 1 isS1 = ((S̃1
D,t

)T
t=0, S

B
1 ) whereS̃1

D,t

is a mapping from a deliberation stateθt
1 to a probability dis-

tribution over the set of deliberation actions{a1, a2, a1∪2}.
We letp1 be the probability that an agent takes actiona1, p2

be the probability that an agent takes actiona2, and there-
fore,1− p1− p2 is the probability that an agent takes action
a1∪2. It is easy to show that in equilibrium, each agent will
use a pure strategy for picking its offer-accept vector5 (i.e.,
the agent plays one vector with probability 1), so in the in-
terest of simplifying the notation, we defineSB

1 as a pure
strategy as before.

Proposer’s Expected Payoff
Say that at timeT the proposing agent,α, is in deliberation
stateθT

α = 〈n1
α, n2

α, n1∪2
α 〉 and the other agent,β, is in de-

liberation stateθT
β = 〈n1

β , n2
β , n1∪2

β 〉. Each agent has a set
of beliefs (a probability distribution) over the set of delibera-
tion states in which the other agent may be. If agentα offers
agentβ valuexo

α, then the expected payoff to agentα is

E[πα(θT
α , xo

α, Sβ)]=Pa(xo
α)[V (n1∪2

α )−xo
α]+(1−Pa(xo

α))V (nα
α)

wherePa(xo
α) is the probability that agentβ will accept an

offer of xo
α. These probabilities are determined by agentα’s

beliefs.
We can determine the proposer’s expected payoff of fol-

lowing a particular strategy as follows. Assume agentα
is following strategySα = ((p1,i, p2,i)T

i=1, (x
o
α, xa

α)) and
agentβ is following strategySβ . At time t, if agentα is in
deliberation stateθt

α, the expected payoff is

E[πα(θt
α, ((p1,i, p2,i)T

i=t, xo
α), Sβ)] =

p1,t
∑

θ
t+1
α ∈Θ(θt

α,a1)

P (θt+1
α )E[πα(θt+1, ((p1,i, p2,i)T

i=t+1, xo
α), Sβ)]

+p2,t
∑

θ
t+1
α ∈Θ(θt

α,a2)

P (θt+1
α )E[πα(θt+1, ((p1,i, p2,i)T

i=t+1, xo
α), Sβ)]

+(1 − p1,t− p2,t)
∑

θ
t+1
α ∈Θ(θt

α,a1∪2)

P (θt+1
α )E[πα(θt+1, ((p1,i, p2,i)T

i=t+1, xo
α), Sβ)]

5This holds whether or not the proposer is known in advance.



where

Θ(θt
α, az) = {θt+1

α |θt+1
α is reachable fromθt

αvia actionai}.
Overloading the notation, we denote the expected payoff to
agentα from following strategySα, given that agentβ fol-
lows strategySβ by

E[π1(Sα, Sβ)] def= E[πα(θ0
α, ((p1,i, p2,i)T

i=1, Sβ))]

Equilibria and Algorithms
We want to make sure that the strategy that we propose
for each agent—and according to which we study the
outcome—is indeed the best strategy that the agent has from
its self-interested perspective. This makes the system be-
have in the desired way even though every agent is designed
by and represents a different self-interested real-world party.
One approach would be to just require that the analysis
shows that no agent is motivated to deviate to another strat-
egy given that the other agent does not deviate (i.e.,Nash
equilibrium). We actually place a stronger requirement on
our method. We require that at any point in the game, an
agent’s strategy prescribes optimal actions from that point
on, given the other agent’s strategy and the agent’s beliefs
about what has happened so far in the game. We also re-
quire that the agent’s beliefs are consistent with the strate-
gies. This type of equilibrium is called aperfect Bayesian
equilibrium(PBE) (Kreps 1990).

An agent’s offer-accept vector is affected by the solutions
that it computes and also what it believes the other agent has
computed for solutions. Thefallback value of an agent is
the value it obtained for the solution to its own problem. An
agent will not accept any offer less than its fallback.

In making a proposal, agentα must try to determine agent
β’s fallback value and then decide whether, by making an
acceptable proposal to agentβ, agentα’s payoff would be
greater than or less than its own fallback.6

The games differ significantly based on whether the pro-
poser is known in advance or not, as will be discussed in the
next sections.

Known Proposer
For an agent that is never going to make an offer, we can
prescribe a dominant strategy independent of the statistical
performance profiles:

Proposition 1 If an agent,β, knows that it cannot make a
proposal at the deadlineT , then it has a dominant strategy
of computing only on its own problem, and accepting any
offer xo

α such thatxo
α ≥ V (n) wheren is the node in the

performance profileT β that agentβ has reached at timeT .
If the performance profile does not flatten before the dead-
line (V (n′) < V (n) for every noden′ on the path ton), then
this is the unique dominant strategy.

Proof: In the event that an agreement is not reached, agent
β could not have achieved higher payoff than by comput-
ing on its individual problem (even if it knows that further

6Since solution values are discretized, the offer-accept vectors
are also from a discrete space.

computation will not improve its solution). In the event
that an agreement is reached, agentβ would have been best
off by computing so as to maximize the minimal offer it
will accept,V (nβ

β). Since solution quality is nondecreas-
ing in computation time, if agentβ deviates and computes
t steps on a different problem, then the value of its fallback
is V (n′β

β) ≤ V (nβ
β) wheretime(n′β

β) = time(nβ
β) + t. If

V (n′) < V (n) for every noden′ on the path ton, then this
inequality is strict.

Corollary 1 In the games where the proposer is known,
there exists a pure strategy PBE.

Proof: By Proposition 1, the receiver of the offer has a dom-
inant strategy. Say the proposer were to use a mixed strategy.
In general, every pure strategy that has nonzero probability
in a best-response mixed strategy has equal expected pay-
off (Kreps 1990). Since mixing by the proposer will not
affect the receiver’s strategy, the proposer might as well use
one of the pure strategies in its mix.

The equilibrium differs based on whether or not the dead-
line is known, as discussed in the next subsections.

Known Proposer, Known Deadline In the simplest set-
ting, both the deadline and proposer are common knowl-
edge. Without loss of generality we assume that agent 1
is the proposer. The game differs based on whether the per-
formance profiles are deterministic or stochastic.
Deterministic Performance Profiles In an
environment where the performance profiles are determin-
istic, the equilibria can be analytically determined.

Proposition 2 There exists a PBE where agent 2 will only
compute on its own problem, and agent 1 will never split its
computation. It will either compute solely on its own prob-
lem or solely on the joint problem. The PBE payoffs to the
agents are unique, and the PBE is unique unless the per-
formance profile that an agent is computing on flattens, af-
ter which time it does not matter where the agent computes
since that does not change its payoff or bargaining strategy.
The PBEs are also the only Nash equilibria.

Proof: Let η1∪2
1 be the node inT 1∪2 that agent 1 reaches

after allocating all of its computation on the joint problem.
Letη1

1 be the node inT 1 that agent 1 reaches after allocating
all of its computation on its own problem. Letη2

2 be the
node inT 2 that agent 2 reaches after allocating all of its
computation on its own problem.

By Proposition 1, agent 2 has a dominant strategy to com-
pute on its own solution (unless its performance profile flat-
tens after which time it does not matter where the agent com-
putes since that does not change its payoff). Agent 1’s strate-
gies are more complex since they depend on agent 2’s final
fallback value,V (η2

2), and also on what potential values the
joint solution and1’s individual solution may have.

1. Case 1: V (η1∪2
1 ) − V (η2

2) > V (η1
1). Agent 2 will ac-

cept any offer greater than or equal toV (n2
2) since that

is its fallback. If agent 1 makes an offer that is accept-
able to agent 2, then the highest payoff that agent 1 can
receive isV (η1∪2

1 ) − V (η2
2). If this value is greater than



V (η1
1)—i.e., the highest fallback value agent 1 can have—

then agent 1 will make an acceptable offer. To maximize
the amount it will get from making the offer, agent 1 must
compute only on the joint problem. Any deviation from
this strategy will result in agent 1 receiving a lesser pay-
off (and strictly less if its performance profile has not flat-
tened).

2. Case 2:V (η1∪2
1 )− V (η2

2) < V (η1
1). Any acceptable of-

fer that agent 1 makes results in agent 1 receiving a lesser
payoff than if it had computed on its own solution solely,
and made an unacceptable offer (and strictly less if its per-
formance profile has not flattened). Therefore agent 1 will
compute only on its own problem until that performance
profile flattens, after which it does not matter where it al-
locates the rest of its computation.

3. Case 3: V (η1∪2
1 ) − V (η2

2) = V (η1
1). By comput-

ing only on its own problem, agent 1’s payoff isV (η1
1).

By computing only on the joint problem, the payoff is
V (η1∪2

1 )− V (η2
2). These payoffs are equal. However, by

dividing the computation across the problems, both pay-
offs decrease (unless at least one of the two performance
profiles has flattened, after which it does not matter where
the agent allocates the rest of its computation).

The above arguments also hold for Nash equilibrium.
Stochastic Performance Profiles If the perfor-
mance profiles are stochastic, determining the equilibrium
is more difficult. By Proposition 1, agent 2 has a dominant
strategy,S2, and only computes on its individual problem (if
that performance profile has flattened and agent 2 has com-
puted on agent 1’s or the joint problem thereafter, this does
not change agent 2’s fallback, and this is the only aspect of
agent 2 that agent 1 cares about).

However, based on the results it has obtained so far,
agent 1 may decide to switch the problem on which it is
computing—possibly several times. We use a dynamic pro-
gramming algorithm to determine agent 1’s best response to
agent 2’s strategy. The base case involves looping through
all possible deliberation statesθT

1 for agent 1 at the dead-
line T . EachθT

1 determines a probability distribution over
the set of nodes agent 2 reached by computingT time steps.
For any offerxo

1 that agent 1 may make, the probability that
agent 2 will accept is

Pa(xo
1) =

∑

{n2|n2in subtreeT 2(n2
1) at depthT−time(n2

1) s.t.V (n2)≤x}

P (n2)

Using this expression forPa(x), the best offer,xo
1, that agent

1 can make to agent 2 is

xo
1(θ

T
1 ) = argmax

x
[E[π1(θT

1 , x, S2)]]

For each deliberation state,θT
1 , we can compute the ex-

pected payoff for agent 1, if at timet agent 1 is in delib-
eration stateθt

1 and then executes the sequence of actions
((az,i)T

i=t, x
o
1(θ

T
1 )). The expected payoff is

E[π1(θt
1, ((a

z,i)T
i=t, x

o
1), S2)] =

∑
P (θt+1

1 )E[π1(θt+1
1 , ((az,i)T

i=t+1, x
o
1), S2)]

The sum is over the set{θt+1
α |θt+1

1 is reachable fromθt
1 via

actionaz}. The algorithm works backwards and determines
the optimal sequence of actions,(a∗,i)T

i=1, for agent 1. For
every timet it solves

a∗t = max
a

[E[π1(θt
1, ((a, (a∗i)T

i=t+1), x
o
1), S2)]]

It returns the optimal sequence of actions,(a∗i)T
i=1, and the

expected payoffE[π1(((a∗i)T
i=1, x

1
o), S2)].

Algorithm 1 StratFinder1(T )
For each deliberation stateθT

1 at timeT

x1
o(θ

T
1 )← argmax

x
[E[π1(θT

1 , x, S2)]]

For timet = T − 1 down to1
For each deliberation stateθt

1

a∗t ← max
a

[E[π1(θt
1, ((a, (a∗i)T

i=t+1), x
o
1), S2)]]

Return(a∗i)T
i=1 andE[π1(((a∗i)T

i=1, x
1
o), S2)]

Proposition 3 Algorithm 1 correctly computes a PBE strat-
egy for agent 1.7 Assume that the degree of any node inT 1 is
at mostB1, the degree of any node inT 2 is at mostB2 and
the degree of any node inT 1∪2 is at mostB1∪2. Algorithm 1
runs inO((B1B2B1∪2)T 2

) time.

Known Proposer, Unknown Deadline There are situa-
tions where agents may not know the deadline. We repre-
sent this by a probability distributionQ = {q(i)}Ti=1 over
possible deadlines.Q is assumed to be common knowledge.

Whenever timet is reached but the deadline does not ar-
rive, agents update their beliefs aboutQ. The new distribu-
tion isQ′ = {q′(i)}Ti=t whereq′(t) = q(t)∑T

j=t
q(j)

.

Stochastic Performance Profiles The algo-
rithm differs from Algorithm 1 in that it considers the prob-
ability that the deadline might arrive at any time.

Algorithm 2 StratFinder2(Q)
For each deliberation stateθT

1 at timeT

x1
o(θ

T
1 )← argmax

x
[E[π1(θT

1 , x, S2)]]

For t = T − 1 down to1 q′(t)← q(t)∑T

j=t
q(j)

For each deliberation stateθt
1

x1
o(θ

t
1)← arg max

x
[E[π1(θt, x, S2)]]

a∗t ← max
a

[q′tE[π1(θt
1, x

o
1(θ

t
1), S2)]

+(1− q′(t))max
a

[E[π1(θt
1, ((a, (a∗i)T

i=t+1), x
o
1), S2)]

Return(a∗i)T
i=1 andE[π1(((a∗i)T

i=1, x
1
o), S2)]

Proposition 4 Algorithm 2 correctly computes a PBE strat-
egy for agent 1. Assume that the degree of any node inT 1 is
at mostB1, the degree of any node inT 2 is at mostB2 and
the degree of any node inT 1∪2 is at mostB1∪2. Algorithm 2
runs inO((B1B2B1∪2)T 2

) time.
7By keeping track of equally good actions at every step, Algo-

rithms 1, 2, and 3 can return all PBE strategies for agent 1.



Deterministic Performance Profiles When
the performance profiles are deterministic, determining an
optimal strategy for agent 1 is a special case of Algo-
rithm 2. Since there is no uncertainty as to agent 2’s fall-
back value, agent 1 need never compute on agent 2’s prob-
lem. Therefore, agent 1 will only be in deliberation states
〈n1

1, n
2
1, n

1∪2
1 〉 where time(n2

1) = 0. Therefore, strate-
gies that include computation actionsa2 need not be con-
sidered. This, and the lack of uncertainty in which delib-
eration state actiona leads to, greatly reduce the space of
deliberation states to consider. Denote byΓt

1 any delibera-
tion state of agent 1 wheretime(n1

1) + time(n1∪2
1 ) = t and

time(n2
1) = 0.

Algorithm 3 StratFinder3(Q)
For each deliberation stateΓT

1 at timeT

x1
o(Γ

T
1 )← arg max

x
[E[π1(ΓT

1 , x, S2)]]

For t = T − 1 down to1 q′(t)← q(t)∑T

j=t
q(j)

For each deliberation stateΓt
1

x1
o(Γ

t
1)← arg max

x
[E[π1(Γt, x, S2)]]

a∗t ← max
a

[q′tE[π1(Γt
1, x

o
1(Γ

t
1), S2)]

+(1− q′(t))max
a

[E[π1(Γt
1, ((a, (a∗i)T

i=t+1), x
o
1), S2)]

Return(a∗i)T
i=1 andE[π1(((a∗i)T

i=1, x
1
o), S2)]

Proposition 5 With deterministic performance profiles, Al-
gorithm 3 correctly computes a PBE strategy for agent 1 in
O(T 2) time.

Unknown Proposer
This section discusses the case where the proposer is un-
known, but the probability of each agent being the pro-
poser is common knowledge. The deadline may be common
knowledge. Alternatively, the deadline is not known but its
distribution is common knowledge.

Proposition 6 There are instances (defined byT 1, T 2, and
T 1∪2) of the game that have a unique mixed strategy PBE,
but no pure strategy PBE (not even a pure strategy Nash
equilibrium).

Proof: Let the deadlineT = 2, and letp be the probabil-
ity that agent 1 will be the proposer. Consider the follow-
ing T 1, T 2, andT 1∪2. Assume thatv1(1) = v1(2) and
v2(1) = v2(2). Furthermore, assume that the values satisfy
the following constraints:

• v1∪2(1) ≥ v1(1)

• v1∪2(1) ≥ v2(1)

• v1(1) + v2(1) ≥ v1∪2(1)

• pv1∪2(2) ≥ pv1∪2(1) + (1 − p)v1(1)

• v1(1) ≥ p(v1∪2(2) − v2(1))

• pv2(1) + (1 − p)v1∪2(1) ≥ (1 − p)v1∪2(2)

• (1 − p)(v1∪2(2) − v1(1)) ≥ v2(1)

Agent 1 has two undominated strategies: to compute only
on the joint problem, or to compute one step on the joint and
one on its individual problem. Agent 2 also has two undom-
inated strategies: to compute only on the joint problem, or to
compute one step on the joint and one step on its individual
problem. There is no pure strategy equilibrium in this game.
However, there is a mixed strategy equilibrium where agent
1 computes on the joint problem only, with probability

γ =
pv2(1) − pv1∪2(2) + v1(1)

pv2(1) − pv1∪2(1) + 2v1(1) − pv1(1)

and agent 2 computes on the joint problem only with proba-
bility

δ =
v1∪2(2) − v2(1) − pv1∪2(2) − v1(1) + pv1(1)

pv2(1) − v2(1) + v1∪2(1) − pv1∪2(1) − v1(1) + pv1(1)

One approach of solving for PBE strategies is to convert
the game into its normal form. There are efficient algorithms
for solving normal form games, but the conversion itself
usually incurs an exponential blowup since the number of
pure strategies is often exponential in the depth of the game
tree. (Koller, Megiddo, & Stengel 1996) suggest represent-
ing the game insequence formwhich is more compact than
the normal form representation. They then solve the game
using Lemke’s algorithm to find Nash equilibria. Their al-
gorithm can be directly used to solve our problem where the
proposer is unknown. Their algorithm is guaranteed to find
some Nash equilibrium strategies, albeit not all.

Conclusions and Future Research
Noncooperative game-theoretic analysis is necessary to
guarantee nonmanipulability of systems that consist of self-
interested agents. However, the equilibrium for rational
agents does not generally remain an equilibrium for compu-
tationally limited agents. This leaves a potentially hazardous
gap in theory. This paper presented a framework and the first
steps toward filling that gap.

We studied a setting where each agent has an intractable
optimization problem, and the agents can benefit from pool-
ing their problems and solving the joint problem. We pre-
sented a fully normative model of deliberation control that
allows agents to condition their projections on the problem
instance and path of solutions seen so far. Using that model,
we solved the equilibrium of the bargaining game. This is,
to our knowledge, the first piece of research to treat delibera-
tion actions strategically via noncooperative game-theoretic
analysis.

In games where the agents know which one gets to make a
take-it-or-leave-it offer to the other, the receiver of the offer
has a dominant strategy of computing on its own problem,
independent of the algorithm’s statistical performance pro-
files. It follows that these games have pure strategy equilib-
ria. In equilibrium, the proposer can switch multiple times
between computing on its own, the other agent’s, and the
joint problem. The games differ based on whether or not
the deadline is known and whether the performance profiles
are deterministic or stochastic. We presented algorithms for
computing a pure strategy equilibrium in each of these vari-
ants. For games where the proposer is not known in advance,



we use a general algorithm for finding a mixed strategy equi-
librium in a 2-person game. This generality comes at the
cost of potentially being slower than our algorithms for the
other cases.

This area is filled with promising future research possibil-
ities. We plan to extend this work to more than two agents,
to settings where the agents have algorithms with different
performance profiles, to games where computation is costly
instead of limited, and games where bargaining is allowed
amidst computation, not just after it. In such settings, the
offers and rejections along the way signal about the agents’
computation strategies, the results of their computations so
far, and what can be expected from further computation.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under CAREER Award IRI-9703122,
and Grant IIS-9800994.

References
Baum, E. B., and Smith, W. D. 1997. A Bayesian approach
to relevance in game playing.Artificial Intelligence97(1–
2):195–242.

Boddy, M., and Dean, T. 1994. Deliberation scheduling
for problem solving in time-constrained environments.Ar-
tificial Intelligence67:245–285.

Hansen, E. A., and Zilberstein, S. 1996. Monitoring
the progress of anytime problem-solving. InAAAI, 1229–
1234.

Horvitz, E. 1987. Reasoning about beliefs and actions
under computational resource constraints. In3rd Workshop
on Uncertainty in AI, 429–444. Seattle.

Horvitz, E. J. 1997. Models of continual computation. In
AAAI, 286–293.

Jehiel, P. 1995. Limited horizon forecast in repeated alter-
nate games.J. of Economic Theory67:497–519.

Koller, D.; Megiddo, N.; and Stengel, B. 1996. Efficient
computation of equilibria for extensive two-person games.
Games and Economic Behavior14(2):247–259.

Kreps, D. M. 1990.A Course in Microeconomic Theory.
Princeton University Press.

Rubinstein, A. 1998.Modeling Bounded Rationality. MIT
Press.

Russell, S., and Subramanian, D. 1995. Provably bounded-
optimal agents.Journal of Artificial Intelligence Research
1:1–36.
Russell, S., and Wefald, E. 1991.Do the right thing: Stud-
ies in Limited Rationality. The MIT Press.

Sandholm, T., and Lesser, V. R. 1994. Utility-based ter-
mination of anytime algorithms. InECAI Workshop on
Decision Theory for DAI Applications, 88–99. Extended
version: UMass Amherst, CS TR 94-54.
Sandholm, T., and Lesser, V. R. 1997. Coalitions among
computationally bounded agents.Artificial Intelligence
94(1):99–137. Early version in IJCAI-95.

Sandholm, T. 1996. Limitations of the Vickrey auction in
computational multiagent systems.ICMAS,299-306.
Simon, H. A. 1955. A behavorial model of rational choice.
Quarterly Journal of Economics69:99–118.
Zilberstein, S., and Russell, S. 1996. Optimal composition
of real-time systems.Artificial Intelligence82(1–2):181–
213.
Zilberstein, S.; Charpillet, F.; and Chassaing, P. 1999.
Real-time problem solving with contract algorithms. InIJ-
CAI, 1008–1013.


