From: AAAI-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.
Improved Algorithms for Optimal Winner Determination in

Combinatorial Auctions and Generalizations
Tuomas Sandholm and Subhash Suri

Department of Computer Science
Washington University
St. Louis, MO 63130-4899
{sandholm,suri}@cs.wustl.edu

Abstract

Combinatorial auctions can be used to reach effi-
cient resource and task allocations in multiagent
systems where the items are complementary. De-
termining the winners is N"P-complete and inap-
proximable, but it was recently shown that op-
timal search algorithms do very well on average.
This paper presents a more sophisticated search
algorithm for optimal (and anytime) winner deter-
mination, including structural improvements that
reduce search tree size, faster data structures, and
optimizations at search nodes based on driving
toward, identifying and solving tractable special
cases. We also uncover a more general tractable
special case, and design algorithms for solving it
as well as for solving known tractable special cases
substantially faster. We generalize combinatorial
auctions to multiple units of each item, to reserve
prices on singletons as well as combinations, and
to combinatorial exchanges—all allowing for sub-
stitutability. Finally, we present algorithms for
determining the winners in these generalizations.

Introduction

Auctions are important mechanisms for resource and
task allocation in multiagent systems. In many auc-
tions, a bidder’s valuation for a combination of items
is not the sum of the individual items’ valuations—it
can be more or less. This is often the case for example
in electricity markets, equities trading, bandwidth auc-
tions, transportation exchanges (Sandholm 1993), pol-
lution right auctions, and auctions for airport landing
slots (Rassenti, Smith, & Bulfin 1982).

In a traditional auction format where the items are
auctioned separately (sequentially or in parallel), to de-
cide what to bid on an item, an agent needs to es-
timate which other items it will receive in the other
auctions, requiring intractable lookahead in the game
tree. Even after lookahead, residual uncertainty would
remain due to incomplete information about the other
bidders. This leads to inefficient allocations where bid-
ders do not get the combinations that they want and
get combinations that they do not (Sandholm 1996).

Combinatorial auctions (CAs) can be used to over-
come these deficiencies (Rassenti, Smith, & Bulfin 1982;
Sandholm 1993). In a CA, bidders may submit bids on
combinations of items. This allows the bidders to ex-
press complementarities between items instead of hav-

Copyright (© 2000, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

ing to speculate into an item’s valuation the impact of
possibly getting other, complementary items.

Winner determination problem

The auctioneer has a set of items, M = {1,2,...,m},
to sell, and the buyers submit a set of bids, B =
{B1,B3,...,By}. Abidis a tuple B; = (S;,p;), where
S; € M is a set of items and p; is a price. Assume
for now (this is relaxed later), that p; > 0 for all
j € {1,2,...,n}. Assume also that no two bids con-
cern the same set of items: S; # Sy (if multiple bids
do concern the same set of items, all but the highest
bid can be discarded as a preprocessing step, breaking
ties arbitrarily). The winner determination problem is
to label the bids as winning (x; = 1) or losing (z; = 0)
so as to maximize the auctioneer’s revenue under the
constraint that each item can be allocated to at most
one bidder:

n
maprjxj s.t. Z z; <1 1=1,2,....,m
j=1 jlies;
T € {O, 1}

This problem is intractable: it is equivalent to
weighted set packing, a well-known N P-complete prob-
lem. It can be solved via dynamic programming,
but that takes ©2(2") and O(3™) time independent of
n (Rothkopf, Peke¢, & Harstad 1998).

One approach is to solve the problem approx-
imately (Rassenti, Smith, & Bulfin 1982; Fu-
jishima, Leyton-Brown, & Shoham 1999; Lehmann,
O’Callaghan, & Shoham 1999). However, it was re-
cently shown (using the inapproximability of maxi-
mum clique) that no polynomial time algorithm can
guarantee a solution that is close to optimum (Sand-
holm 1999). Certain special cases can be approximated
slightly better, as reviewed in (Sandholm 1999).

The second approach is to restrict the allowable
bids (Rothkopf, Peke¢, & Harstad 1998; Nisan 1999;
Tennenholtz 2000). For certain restrictions, which are
severe in the sense that only a vanishingly small fraction
of the combinations can be bid on, winners can be de-
termined in polynomial time. Restrictions on the bids
give rise to the same economic inefficiencies that prevail
in noncombinatorial auctions because bidders may not
be able to bid on the combinations they prefer.

The third approach is to solve the unrestricted prob-
lem using search. This was shown to work very well
on average, scaling optimal winner determination up to
hundreds of items and thousands of bids depending on

the problem instance distribution (Sandholm 1999) and
improvements to the algorithm have been developed
since (Fujishima, Leyton-Brown, & Shoham 1999).

In the vein of the third approach, this paper presents
a more sophisticated algorithm for optimal winner de-
termination. The enhancements include structural im-
provements that reduce search tree size, faster data
structures, and optimizations at search nodes based on
driving toward, identifying and solving tractable special
cases. We also uncover a more general tractable case,
and design algorithms for solving it as well as for solving
known tractable cases substantially faster. We gener-
alize CAs to auctions with multiple units of each item,
to auctions with reserve prices on singletons as well as
combinations, and to combinatorial exchanges—all al-
lowing for substitutability. We also give algorithms for
determining the winners in these generalizations.

While we present our results for auctions where the
auctioneer is the seller and the bidders are buyers, all
of the results apply directly to reverse auctions where
the auctioneer buys and the bidders sell.

A sophisticated search algorithm

In this section we present an algorithm for optimal
winner determination. The improvements over previ-
ous algorithms are classified into structural improve-
ments, capitalizing on tractable subproblems at nodes,
and faster data structures.

Structural improvements

This section presents improvements that reduce search
tree size by changing its structure.

Branching on bids (BOB) The skeleton of our al-
gorithm is a depth-first branch-and-bound tree search
that branches on bids. The set of bids that are la-
beled winning on the path to the current search node
is called IN, and the set of bids that are winning in
the best allocation found so far is IN*. Let f* be
the value of the best solution found so far. Initially,
IN =0, IN* =0, and f* = 0. Each bid, Bj, has an
exclusion count, e;, that stores how many times B; has
been excluded by bids on the path. Initially e; = 0
for all j € {1,2,...,n}. M’ is the set of items that
are still unallocated, and g is the revenue from the bids
with «; = 1 on the search path so far. h is an upper
bound on how much the unallocated items can con-
tribute (let max{} = 0). The search is invoked by
calling BOB(M,0).

Algorithm 1 BOB(M’,g)

If g > f*, then IN* — IN and f* — g

h > i (i), where c(i) < max;jjics; e,—0 éﬁ
If g+ h < f*, then return /* bounding */

Choose a bid By, for which e, =0 /* branching */
If no such bid exists, then return

5 IN — INU{By}, er — 1

e o=

6. For all Bj such that Bj # By, and S; N Sy # 0,
€j < €5 +1

7. BOB(M' — Sp, g+ 1)

IN — IN — {B}}

9. For all Bj such that B; # By, and S; N Sy # 0,

€j<—€j—1

>

10. BOB(M',g)
11. e + 0, return

Both of the previous search algorithms for winner de-
termination, de facto, branch on items (Sandholm 1999;
Fujishima, Leyton-Brown, & Shoham 1999). The chil-
dren of a search node are those bids that include the
smallest item that is still unallocated, and do not share
items with any bid on the path so far. If, as a prepro-
cessing step, a dummy bid of price zero is submitted
for every individual item that received no bids alone (to
represent the fact that the auctioneer can keep items),
then it was proven that the leaves of this tree corre-
spond to feasible solutions to the winner determination
problem (Sandholm 1999). Clearly, the branching fac-
tor is at most n + m (the m comes from the dummy
bids), and the depth is at most m, so the complexity is
O((n +m)™).

On the other hand, BOB branches on bids (winning
or losing, i.e., z; = 1 or x; = 0) instead of items. The
branching factor is 2 and the depth is at most n, so a
naive analysis shows that BOB is O(2"™), which is expo-
nential in bids. However, the nodes (both interior and
leaf) correspond to feasible solutions to the winner de-
termination problem. Therefore, the number of nodes
in this tree is the same as the number of leaves in the old
formulation. This proves that BOB is O((n+m)™), i.e.,
polynomial in bids. This is desirable since the auction-
eer can usually control how many items are auctioned,
but she cannot control how many bids are submitted.
Furthermore, even though the complexity is exponen-
tial in items, this is only a worst-case bound and the
average case tends to be significantly better. By con-
trast, the dynamic programming algorithm (Rothkopf,
Pekec, & Harstad 1998) is exponential in items even in
the best case.

The main advantage of BOB compared to the ear-
lier search formulation is that BOB is in line with the
AT principle of least commitment. In BOB, the choice
in step 4 only commits one bid, while in the old for-
mulation the choice of an item committed all the re-
maining bids that include the item. BOB allows more
refined search control—in particular, better bid order-
ing. Many of the techniques of this paper capitalize
heavily on that possibility. A secondary advantage of
BOB is that there is no need to use dummy bids.

Bid ordering heuristics (HEU) Search speed can
be increased by improving the pruning that occurs in
step 2. Our algorithm does this by constructing many
high-revenue allocations early. We do this by bid order-
ing in step 4. We choose bids that contribute a lot to the
revenue, and do not retract from the potential contribu-

tion of other bids by using up many items. At a search
node, we choose a bid that maximizes \spﬁ (to avoid
J

scanning the list of bids repeatedly, the bids are sorted
in descending order before the search begins) and has
e; = 0. Intuitively, o = 0 gives too much preference to
bids with many items, and o = 1 gives too much prefer-
ence to bids with few items. It was recently shown that
in a greedy algorithm that simply inserts bids into IN*

in highest gz first order (as a bid is inserted, bids that
J

share items with it are discarded), o = % gives the best
worst case bound over all a (Lehmann, O’Callaghan,
& Shoham 1999) (but not necessarily over all possible
bid ordering formulas). As in the greedy algorithm, we
want to construct high-valued allocations. Unlike in
the greedy algorithm, we also want to construct many
allocations early to increase the chance of high-valued
ones. Since bids with few items lead to deeper search
than bids with many items (because bids with many
items exclude more of the other bids due to overlap in
items) (Sandholm 1999), preference for bids with many
items increases the number of allocations seen early.
Therefore, we set « slightly below %

In addition to finding the optimal solution faster via
more pruning, such bid ordering improves the algo-

rithm’s anytime performance: f* increases faster.

Lower bounding (LOW) We also prune using a
lower bound, L, (obtained, e.g., using the greedy al-
gorithm described above) at each node. If g + L > f*,
then f* «— g+ L and IN* is updated. This reduces
search by enhanced pruning in the subtree rooted at
the current search node.

Exploiting decomposition (DEC) If the set of
items can be divided into subsets such that no bid in-
cludes items from more than one subset, the winner de-
termination can be done in each subset separately. Be-
cause the search is superlinear in the size of the problem
(both n and m), such decomposition leads to a speedup.

At every search node (between steps 1 and 2), our al-
gorithm checks whether the problem has decomposed.
We maintain a graph, G, where the vertices V' are the
bids with e; = 0, and two vertices share an edge if the
bids share items. Call the set of edges E. Clearly,
V| < noand |E| < 22 Via an O(|E| + |V])
depth-first-search in G, the algorithm checks whether
the graph has decomposed. Every tree in the depth-
first-forest corresponds to an independent subproblem
(subset of bids and the associated subset of items). The
winners are determined by calling BOB on each sub-
problem separately (bids not in that subproblem are
marked e; < 1).!

Upper and lower bounding across subproblems
(ACROSS) The straightforward approach is to call

BOB on each subproblem with ¢ = 0 and f* = 0.

LThis decomposition check was used as a preprocessor
before (Sandholm 1999), not at every node.

Somewhat unintuitively, we can achieve further prun-
ing, without compromising optimality, by exploiting in-
formation across the independent subproblems. Say
there are k subproblems at the current search node 6:
1,...,k. Let g’ be the g-value of § before any of the
subproblems have been solved. Let f; be the value of
the optimal solution found for subproblem ¢. Let h, be
the h-value of subproblem ¢. Let L, be a lower bound
(obtained, e.g., using the greedy algorithm described
above, but even L, = 0 works) for subproblem q.

Now, consider what to do to solve subproblem z af-
ter subproblems 1,...,z — 1 have been solved and the
other subproblems have not. Let [, be a lower bound
(obtained, e.g., using the greedy algorithm described
above) on the value that the wnallocated items of sub-
problem z can contribute. Let g, be the g-value within
subproblem z only, and let h, be the h-value within

subproblem z only. Let o1
'+ 1
g=1

k
Hunsolved = E hq

*
Fsolved

LOunsolved -
g=z+1
At every search node within the subproblem z, we
update the global lower bound f* as follows:

f~* — max{f*, E:olved + gz + lz + LOunsolved}

and we update IN* accordingly.
Now we can cut the search path whenever

Es*olved + gz + hz + Hunsolved <]E*

Since both the straightforward approach and this ap-
proach are correct, we use both. If either one allows the
search path to be cut, the algorithm does so in step 3.

Due to the upper and lower bounding across sub-
problems, the order of tackling the subproblems makes
a difference in speed, providing further opportunities
for optimization via subproblem ordering.

Forcing a decomposition via articulation bids
(ART) In addition to checking whether a decompo-
sition has occurred, our algorithm strives for a decom-
position. In the bid choice in step 4, we pick a bid that
leads to a decomposition, if such a bid exists. Such
bids whose deletion disconnects G are called articula-
tion bids. Articulation bids can be identified during the
depth-first-search of G in O(|E| + |V|) time, as follows.
The depth-first-search assigns each node v of G a

number d(v), which is the order in which nodes of G
are “discovered”. The root has number 0. (See (Weiss
1999) for details.) In order to identify articulation bids,
we assign to each node v one additional number, low(v),
which is defined inductively:

x = min{low(w) | w is a child of v}

y min{d(z) | (v, z) is a back edge}

low(v) = min(z,y)

A node v is an articulation bid if and only if low(v) >
d(v). If there are multiple articulation bids, we branch
on the one that minimizes the size of the larger sub-
problem, measured by the number of bids.

The strategy of branching on articulation bids may
conflict with our price-based branching. Is one scheme
necessarily dominant over the other? To answer this
question, we define the two classes of schemes:

Definition. 1 In an articulation-based bid choosing
scheme, the next bid to branch on is an articulation
bid if one exists. Ties can be resolved arbitrarily, as
can cases where no articulation bid exists.

Definition. 2 In a price-based bid choosing scheme,
the next bid to branch on
is B = arg maxp;epje, =0 %, for any given posi-
tive function v. Ties can be resolved arbitrarily, e.g.,
preferring bids that articulate.

Proposition 1 For any given articulation-based bid
choosing scheme and price-based bid choosing scheme,
there are instances where the former leads to fewer
search nodes, as well as instances where the latter leads
to fewer search nodes.?

Even if a bid is not an articulation bid, and would not
lead to a decomposition if the bid is assigned losing, it
might lead to a decomposition if it is assigned winning
because that removes the bid’s neighbors from G as
well. This is yet another reason to assign a bid that
we branch on to be winning before assigning it to be
losing (value ordering). Also, in bid ordering (variable
ordering), we can give first preference to articulation
bids, second preference to these bids that articulate on
the winning branch only, and third preference to bids
that do not articulate on either branch (among them,
the price-based bid ordering is used).

During the search, the algorithm could also do shal-
low lookaheads—for the purpose of bid ordering—to
identify combinations of bids that would disconnect G.
Such cutsets of bids can also be identified in a prepro-
cessor, and then the bids within a small cutset should
be branched on first in the search (however, identifying
the smallest cutset is intractable).

Tractable subproblems at nodes

The following techniques, used at each search node,
drive toward, identify and solve tractable special cases.

Avoiding branching on short bids Bids that in-
clude a small number of items lead to significantly
deeper search than bids with many items because the
latter exclude more of the other bids due to overlap
in items. A previous search algorithm scaled to thou-
sands of bids when bids had many items, and only hun-
dreds of bids when bids had few items each (Sandholm
1999). We call bids with 1 or 2 items short and other

2Proofs are omitted in this version due to limited space.

bids long.> Winners can be optimally determined in
O(n?,,,,) worst case time using a weighted maximal
matching algorithm (Edmonds 1965) if the problem has
short bids only (Rothkopf, Pekeé¢, & Harstad 1998). To
solve problems with both long and short bids efficiently,
we integrate Edmond’s algorithm with search. Our al-
gorithm achieves optimality without ever branching on
short bids. In step 4, bid choice is restricted to long
bids. At every node, before step 1, Edmond’s algo-
rithm is executed using the short bids with e; = 0. It
returns a set of winning bids, I Ng, and the revenue
they provide, fg. The only remaining change is to step

1. If g+ fg > f*, then IN* «— INUINg, f* — g+ f&

Deleting items included in only one bid In the
previous optimization, short bids are statically defined.
We can improve on this by a more dynamic size deter-
mination. If an item x belongs to only one long bid
b, then the size of b can be effectively reduced by one.
This optimization may move some of the long bids into
the short category, thereby further reducing search tree
size. This optimization can be done at each search node,
by keeping track of bids concerning each item.

Interval bids (Rothkopf, Peke¢, & Harstad 1998)
considered an important special case where the items
can be linearly ordered, and each bid concerns a con-
tiguous interval of items. Specifically, assume that
items are labeled {1,2,...,m}, and each bid b is for
some interval [i, j] of items. Using dynamic program-
ming, Rothkopf et al. solved the problem in O(m?)
time. We propose a different algorithm that solves
this special case in O(n + m) time. This asymptotic
complexity is worst-case optimal because any algorithm
may need to read all of the items and bids as input.

We briefly describe our algorithm here. Given a bid
b on the interval [f,!], let us call item f the first item
of b, and item [the last item of b. We sort the bids
in increasing order of their last item; if two bids have
the same last item, the one with the smaller first item
comes earlier in the sorted order. Since the set of items
has bounded size [1,m], we can bucket sort the bids in
O(n 4+ m) time. Our dynamic program computes opti-
mal solutions for the prefix intervals of the form [1,4],
fori=1,2,...,n. Let opt(i) denote the optimal solu-
tion for the problem considering only those bids that
contain items in the range [1,4]; that is, bids whose last
item is no later than ¢. Initially, opt(0) = 0. Let C;
denote the set of bids whose last item is ¢. Then, we
have the following recurrence:

opt(i) = max {p, +opt(fy —1), opt(i — 1)},
where p; is the price of bid b, and f; is the smallest
indexed item in b. The maximization has two terms.

3We define short in this way because the problem is N'P-
complete already if 3 items per bid are allowed (Rothkopf,
Pekec, & Harstad 1998).

The first term corresponds to accepting bid b, in which
case we need an optimal solution for the subproblem
[1, fo — 1]. The second term corresponds to not accept-
ing b, in which case we use the optimal allocation for
items in [1,4 — 1]. By solving these problems in in-
creasing order of 7, we can compute each opt (i) in time
proportional to the size of C;. Since > C; = n, the total
time complexity is O(n+m). The optimal allocation is

opt(m).
Proposition 2 If all n bids are interval bids in a lin-

early ordered set of items [1,m], then an optimal allo-
cation can be computed in worst-case time O(n +m).

If we allow interval wraparound bids (e.g, S; = {m —
1,m,1,2,3}), the winners can be determined optimally
in O(m(n +m)) time by cutting the circle of items in
each of the m possible positions separately, and solving
the associated problem (ignoring bids that span over the
cutting position) using our algorithm described above.
The fastest prior algorithm for this case took O(m?)
time (Rothkopf, Pekeé¢, & Harstad 1998).

Identifying linear ordering Our interest is not to
limit the auctions to interval bids only, but rather to
recognize whether the remaining problem at any search
node falls under this special case and to solve it by our
specialized fast algorithm. This requires an algorithm
to check whether there exists some linear ordering of
items for which the given set of bids are all interval
bids. It turns out this problem can be phrased as the
interval graph recognition problem, for which a linear-
time solution exists.

Given a graph G = (V, E), we say that G is an in-
terval graph if the vertices V' can be put in one-to-one
correspondence with intervals of the real line such that
two intervals overlap if and only if there is an edge be-
tween the vertices corresponding to those intervals. The
interval graph recognition problem is to decide whether
G is an interval graph, and to also construct the inter-
vals. The algorithm in (Korte & Mohring 1989) solves
this problem in O(|V| + |E|) time. Given the inter-
vals for the bids, one can easily produce a linear order-
ing of the items. Figure 1 shows an example with 4
bids: A = (2,4,6), B = (1,2,4,5,7), C = (1,3,7,8),
D=(1,3,5,7).

A

C

D

6 42 517 38

D
Figure 1: Bid graph and a valid linear ordering.

The case where wraparound bids are allowed can be
identified in O(n?) time using an algorithm for recogniz-
ing whether the remaining graph G is circular (Eschen
& Spinrad 1993).

Subgraph bids on tree-structured items We now
propose a fast algorithm for another case that subsumes
and substantially generalizes the interval bid model

of (Rothkopf, Peke¢, & Harstad 1998). The items are
structured in a tree T', and a valid bid corresponds to a
connected subgraph of T (see Figure 2). This is a strict
generalization of the linear ordering model, which cor-
responds to the special case where T is a path. Our
tree model is also distinct from the “nested structure”
model in (Rothkopf, Peke¢, & Harstad 1998), where the
tree nodes corresponds to bids.

B
Figure 2: An example of a subgraph bid: {1,2,3,4,9}.

An example application where this special structure
prevails is the following web shopping scenario. The
goods are structured in a tree, where a web page con-
tains the description of a good and links to children
goods. For example, the page of a tent could have links
to a heater, camping stove, and bug spray. The stove
could have links to fuel refills and pots, etc. On any
page, the user can 1. buy the item and be allowed to
continue to any number of the children goods, or 2. not
buy the item and backtrack, or 3. submit the bid by
specifying a price for the subgraph that the user has
chosen so far, or 4. exit without submitting the bid.

We developed an O(nm) algorithm for solving the
winner determination problem with subgraph bids on
tree-structured items. We pick an arbitrary node r as
the root of the item tree T. We assign each node of
T a level, which is its distance from the root. The
level of a bid b, denoted level(b), is the smallest level
of any item in b. We sort the bids in increasing order
of level, breaking ties arbitrarily. We use a dynamic
program to compute the optimal solutions at nodes of
T in decreasing order of level.

Given a node i of T, let C; denote the set of bids
that include 7 and whose level is the same as the level
of 4. Our algorithm computes the function opt(z), for
each node ¢, where opt(¢) is the optimal solution for the
problem considering only those bids that contain items
in the subtree below i. Our goal is to compute opt(r).

Consider a bid b, and suppose that the item giving b
its level is z. Removing all items of b disconnects the
tree rooted at x, namely T, into several subtrees. Let
Uy be the set of roots of this forest of subtrees. Now,

opt(i) = maxq max py +) , opt() 3 Zom(j)
JEU, j€children(z)

where py is the price of bid b. By proceeding bottom
up, we compute opt(i) for all nodes of the tree.

Proposition 3 The recurrence above correctly com-
putes the optimal solution for subtree bids in tree-
structured items in O(nm) worst-case time.

Subtree bids in DAGs Our special case of subtree
bids on tree-structured item is sharp in the sense that
a slight generalization makes the problem intractable:

Proposition 4 If the set of items is structured as a
directed acyclic graph D, and each bid is a subtree of
D, then winner determination is N'P-complete.

Faster data structures

Bid graph representation (GRA) We use an adja-
cency list representation of the bid graph G for efficient
insert and delete operations on bids. We do not actu-
ally keep track of exclusion counts e;. Instead, a bid j
having been deleted corresponds to e; > 0, and a bid j
not having been deleted corresponds to e; = 0. We use
an array to store the nodes of G. The array entry for
node j points to a doubly-linked list of bids that share
items with j. Thus, an edge (j, k) creates two entries:
one for j in the list of k, and the other for k in the list
of j. We use cross-pointers with these entries to be able
to access one from the other in O(1) time. To delete
node j whose current neighbor list is {b1,ba,..., bk},
we mark the node j “deleted” in the node array. Then,
we use the linked list of j to access the position of j
in each of the b;’s list, and delete that entry, at O(1)
cost each. When reinserting a node j with edges E;
into G, node j’s “deleted” label is first removed in the
node array. Then, for each (j, k) € Ej;, j is inserted at
the front of k’s neighbor list, k is inserted at the front
of j’s neighbor list, and the cross-pointer is set between
them, all at O(1) cost.

As BOB branches by z; = 1, j and its neighbors
in G are deleted. We also store in the search node a
list of the edges that were in effect removed: the edges
E’ that include j, and the edges E” that include j’s
neighbors but not j. When backtracking to that node,
we reinsert j’s neighbors into G using the edges E”.
Then BOB branches by z; = 0. When backtracking
from that branch, j is reinserted into G using edges F’.

Maintaining the heuristic function (MAI) Our
heuristic function, h, is the same as in an earlier win-
ner determination algorithm (Sandholm 1999). In that
implementation it took O(mn) time per search node to
compute. A faster but rougher approximation of the
same heuristic was used in (Fujishima, Leyton-Brown,
& Shoham 1999). Here we propose data structures that
allow us to compute h fast and exactly.

We store the items in a dynamic list which supports
insert and delete in O(logm) time each. Each item
i points to a heap H(i) that maintains the bids that
include i. The heap supports find-max, extract-max,
insert, and delete in O(logm) time each (delete requires
a pointer to the item being deleted, which we maintain).

The heuristic function requires us to compute, for

each item ¢, the maximum value ‘g’,‘ among the bids
J

that have not been deleted and concern item i. We
keep a tally of the current heuristic function and update
it each time a bid gets deleted or reinserted into G.
Consider the deletion of bid j that has k items; each

item points to its position in the item list. We delete
j’s entry from the heap of each of these k items. For
each of these k items, we update the heuristic function,
by calculating the difference in its ¢ value before and
after the update. When j is reinserted, we reinsert j
into the heaps of all the items that concern j. The cost,
per search node, of updating the heuristic function is
>_; 1Sjllog m, where the summation is over all the bids
that got deleted or reinserted.

As a further optimization, our algorithm uses a leftist
heap for H (i) (Weiss 1999). A leftist heap has the same
worst-case performance as an ordinary heap, but im-
proves the amortized complexity of insert and delete to
O(1), while extract-max and find-max remain O(log m).
Because the insert and delete operations in BOB are
quite frequent, this improves the overall performance.

Preprocessing

Four preprocessing techniques were recently proposed
for the winner determination problem (Sandholm 1999).
Each one of them can be directly used in conjunction
with our algorithm.

Generalizations of CAs

This section discusses generalizations of CAs. Our auc-
tion server prototype (http://ecommerce.cs.wustl
.edu/emediator) supports all of these generalizations
separately and combined (Sandholm 2000), and has
been in continuous operation since December 1998.

Multiple units of each item

In some auctions, there are multiple indistinguishable
units of each item for sale. One can compress the bids
and speed up winner determination by not treating ev-
ery unit as a separate item, since the bidders do not care
which units of each item they get, only how many. We
define a bid in this setting as B; = (()\jl,)\f, AT ps),
where)\;? > 01is the requested number of units of item k,
and p; is the price. The winner determination problem

1S: n n
max E pjx; s.t. E Newyg <w; 1=1,2,...,m
Jj=1 Jj=1

T € {O, 1}

where u; is the number of units of item ¢ for sale. In our
basic CA, and in every one of the generalizations, if free
disposal is not possible, we use an equality constraint
in place of the inequality.

Previous winner determination algorithms cannot be
used in the multi-unit setting because they branch on
items (Sandholm 1999; Fujishima, Leyton-Brown, &
Shoham 1999). Even if each unit is treated as a sepa-
rate item, the earlier algorithms cannot be used if the
demands, \¥, are real-valued instead of integer.

BOB can be used. A tally of the number of units
allocated on the search path is kept for each item: A; =
Zj |z;=1 A;"

The decomposition techniques DEC and ART apply
on the bid graph G where two vertices, j and k, now

share an edge if Ji s.t.)\} > 0 and A?c > 0. However,
once a bid is assigned winning and removed from G,
the neighbor bids in G cannot always be removed unlike
in the basic CA. Instead, only those neighbors, j, are
removed that demand more units of some item than
remain (3 item & such that /\f > ug, —A?). The removed
bids are reinserted into G when backtracking. The data
structure improvements GRA and MAT apply with this
change.
One admissible heuristic for this setting is

pPj
h = w; — N\ max —————
zgl\:/f[()jeVG‘)‘1>O ZzeS z]

where Vg is the set of bids that remain in G. More
refined heuristics can be constructed by giving different
items different weights. Once g + h < f*, the search
path is cut. The lower bounding technique LOW also
applies, as do upper and lower bounding across sub-
problems (ACROSS).

Bid ordering can be used, e.g., by presorting the bids
in descending order of (Zpij

i=1 M)

Combinatorial exchanges

In a combinatorial exchange, both buyers and sellers
can submit combinatorial bids (Sandholm 2000). Bids
are as in the multi-unit case, except that the)\Z val-
ues can be negative, as can the prices pj, representmg
selling instead of buying. The winner determination
problem is to maximize surplus:*

j=1

T; € {0, 1}

Unlike earlier algorithms that branch on items (Sand-
holm 1999; Fujishima, Leyton-Brown, & Shoham 1999),
BOB can be used in this setting. In the basic CA and
in our other generalizations, the optimal solution oc-
curs in a leaf. In contrast, in our combinatorial ex-
change, the optimal solution can occur even in an in-
terior node of the search tree. In the search, a tally of
the net number of units demanded (units supplied are
negative numbers) on the path is kept for each item:
Ai = Zjlszl ;

The decomposition techniques DEC and ART apply
on bid graph G where two vertices, j and k, share an
edge if 3 item ¢ such that)\3" # 0 and X}, # 0. However,
once a bid is assigned winning and removed from G,
the neighbor bids in G cannot always be removed unlike
in the basic CA. Instead, only those neighbors, j, are
removed that cannot possibly be matched any more:

maprjxj s.t. 1=1,2,...,m

4If the exchange charges based on transaction volume,
as most current exchanges do, it may want to maximize

volume instead: max Z]’eu n}lp, >0 PiTi With the same
s} pj

constraints. Our algorithms apply to this case as they do to
surplus maximization. However, we advocate surplus maxi-
mization since that maximizes social welfare (assuming that
bidders are truthful).

e Jitem i s.t. A; > 0and \j + A, + Y kevani<o > 0,
or

o Jitem i s.t. A < 0and Ay + Ai + 3 kcygaiso <0,

where Vi is the set of remaining bids in G. The removed
bids are reinserted into G when backtracking. The data
structure improvements GRA and MAT apply with this
modification.

The upper bounding and lower bounding (LOW)
techniques discussed earlier in the paper can be used
after constructing functions that compute an upper
bound h and a lower bound L. Then, also the upper
bounding and lower bounding techniques across sub-
problems (ACROSS) apply.

Bid ordering can also be used. For example, by
branching on a bid, j, that maximizes p; (the bids
can be sorted in this order as a preprocessing step to
avoid sorting during search), the algorithm can strive
to high-surplus allocations early, leading to enhanced
pruning. As another example, by branching on a bid, j,
that minimizes Ei| A0 Nit A/, or a bid that minimizes

max;|z, >0 i + A/, the algorithm can reach feasible so-
lutions faster (especially in the case of free disposal),
leading again to enhanced pruning later.

Additional pruning is achieved by branching on bids
with p; < 0 first, and then on bids with p; > 0.5 Once
ij:l p; > 0, that branch of the search is cut.® Also,

after the switch to bids with p; > 0 has occurred on
a path, h, LOW, ACROSS, and bid ordering from the
multi-unit case can be used among the remaining bids
to achieve further pruning.

Reserve prices

In some auctions, the seller has a reserve price r; for
every item 4, below which she is not willing to sell.
This could be easily incorporated into our algorithm
by adding a constraint: the revenue collected from the
bids is no less than the sum of the reserve prices of the
items that are allocated to bidders. A stricter way of
interpreting reserve prices as a constraint is to require
that the auctioneer’s payoff (revenue collected from the
bidders plus reserve prices of the items kept) would not
increase by keeping an additional item or by allocating
an additional item to one of the bidders. This could
also be easily incorporated into our algorithm.
However, this raises the concern that the auction-
eer’s payoff might increase by keeping or allocating a
set of items. It turns out that requiring that it does
not coincides with maximizing social welfare (sum of
the auctioneer’s payoff plus the bidder’s payoffs; each
bidder’s payoff is her valuation for the bundle of goods
that she gets minus what she has to pay), assuming

® Alternatively one can branch on bids with p; > 0 first,
and reverse the tests respectively.

S Alternatively one can do this split of bids into two sets
(M < 0vs. Al >0) and cutting (when A; > 0) on any item
i instead of price.

that bidders enter their true valuations and the auc-
tioneer enters his true reserve prices. This is done not
as a constraint, but by changing the maximization cri-
terion to max Z?:l (p; — Ziesj ri)xz;. This is trivial
to incorporate into our algorithm: the item’s reserve
prices are simply subtracted from the bid prices as a
preprocessing step.

This method can also be used for exchanges where
only one side (buyers or sellers) is allowed to place com-
binatorial bids. The other side has to bid noncombi-
natorially. The bids of the noncombinatorial side are
considered reserve prices, allowing the fast winner de-
termination algorithm for one-to-many CAs to be used
in many-to-many exchanges for optimal clearing.

Auctions where the seller is allowed to submit reserve
prices on combinations of items or is allowed to express
substitutability in the reserve prices, cannot be han-
dled by the one-to-many algorithm. Instead, they are
treated as exchanges where the seller’s reserve prices are
her bids. Our algorithm for combinatorial exchanges is
then used for optimally clearing the market.

Substitutability

In the auctions discussed so far in the paper, bidders can
express superadditive preferences: the value of a com-
bination is greater or equal to the sum of the values of
its parts. They cannot express subadditive preferences,
aka. substitutability. For example, by bidding $5 for
{1,2}, 83 for {1}, and $4 for {2}, the bidder may get
{1,2} for $7. Two solutions have been proposed that
allow any preferences to be expressed. They extend di-
rectly to all the generalized CAs presented in this paper:
the multi-unit case, the exchange, and the case of re-
serve prices. In the first, bidders can combine their bids
with XORs, potentially joined by ORs (Sandholm 2000;
1999). The second uses dummy items (Fujishima,
Leyton-Brown, & Shoham 1999). If two bids share a
dummy item, they cannot be in the same allocation.
BOB can be used with the first method by adding
edges in G for every pair of bids that is combined with
XOR. These additional constraints actually speed up
the search. However, only some of the optimization
apply: HEU, LOW, DEC, ART, ACROSS, GRA, and
MAI. BOB supports the second method directly and
all of the optimization apply. Unfortunately, certain
preferences require exponentially many dummy items
XPress.
to express Acknowledgments
Supported by NSF under CAREER Award IRI-
9703122, Grant TRI-9610122, and Grant IIS-9800994.

Conclusions

Combinatorial auctions can be used to reach efficient re-
source and task allocations in multiagent systems where
the items are complementary. Determining the win-
ners is N'P-complete and inapproximable, but it was
recently shown that optimal search algorithms do very
well on average. This paper presented a more sophisti-
cated search algorithm for optimal (and anytime) win-

ner determination, including structural improvements
that reduce search tree size, faster data structures, and
optimizations at search nodes based on driving toward,
identifying and solving tractable special cases. We also
discovered a more general tractable special case, and
designed algorithms for solving it as well as for solving
known tractable special cases substantially faster. We
generalized combinatorial auctions to multiple units of
each item, to reserve prices on singletons as well as com-
binations, and to combinatorial exchanges—all allowing
for substitutability. Finally, we developed algorithms
for determining the winners in these generalizations.
References
Edmonds, J. 1965. Maximum matching and a poly-
hedron with 0,1 vertices. J. Res. Nat. Bur. Standards
B(69):125-130.
Eschen, E. M., and Spinrad, J. 1993. An O(n?) al-
gorithm for circular-arc graph recognition. In STAM-
ACM Sym. on Discrete Algorithms (SODA), 128-137.
Fujishima, Y.; Leyton-Brown, K.; and Shoham, Y.
1999. Taming the computational complexity of com-

binatorial auctions: Optimal and approximate ap-
proaches. In IJCAI 548-553.

Korte, N., and Mohring, R. H. 1989. An incremental
linear-time algorithm for recognizing interval graphs.
SIAM Journal on Computing 18(1):68-81.

Lehmann, D.; O’Callaghan, L. I.; and Shoham, Y.
1999. Truth revelation in rapid, approximately effi-
cient combinatorial auctions. In ACM Conference on
FElectronic Commerce (ACM-EC), 96-102.

Nisan, N. 1999. Bidding and allocation in combinato-
rial auctions: Preliminary version. Hebrew U., Sept.
Rassenti, S. J.; Smith, V. L.; and Bulfin, R. L. 1982.
A combinatorial auction mechanism for airport time
slot allocation. Bell J. of Economics 13:402-417.
Rothkopf, M. H.; Peke¢, A.; and Harstad, R. M. 1998.
Computationally manageable combinatorial auctions.
Management Science 44(8):1131-1147.

Sandholm, T. W. 1993. An implementation of the con-
tract net protocol based on marginal cost calculations.
In AAAI 256-262.

Sandholm, T. W. 1996. Limitations of the Vickrey
auction in computational multiagent systems. In IC-
MAS, 299-306.

Sandholm, T. W. 1999. An algorithm for optimal
winner determination in combinatorial auctions. In
1JCAI 542-547. Extended version first appeared as
Washington U., Comp. Sci. WUCS-99-01, Jan. 28th.
Sandholm, T. W. 2000. eMediator: A next genera-
tion electronic commerce server. In AGENTS. Early
version: AAAI-99 Workshop on Al in Electronic Com-
merce, Orlando, FL, pp. 46-55, July 1999.
Tennenholtz, M. 2000. Some tractable combinatorial
auctions (preliminary report). Draft. Technion, Israel.
Weiss, M. A. 1999. Data structures and algorithm
analysis in C++. Addison-Wesley, 2nd edition.

