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Abstract

We consider the use of multi-agent systems to control net-
work routing. Conventional approaches to this task are based
on Ideal Shortest Path routing Algorithm (ISPA), under which
at each moment each agent in the network sends all of its traf-
fic down the path that will incur the lowest cost to that traffic.
We demonstrate in computer experiments that due to the side-
effects of one agent’s actions on another agent’s traffic, use of
ISPA’s can result in large global cost. In particular, in a simu-
lation of Braess’ paradox we see that adding new capacity to
a network with ISPA agents candecreaseoverall throughput.
The theory of COllective INtelligence (COIN) design con-
cerns precisely the issue of avoiding such side-effects. We
use that theory to derive an idealized routing algorithm and
show that a practical machine-learning-based version of this
algorithm, in which costs are only imprecisely estimated sub-
stantially outperforms the ISPA, despite having access to less
information than does the ISPA. In particular, this practical
COIN algorithm avoids Braess’ paradox.

INTRODUCTION
There is a long history of AI research on the design of dis-
tributed computational systems, stretching at least from the
days of Distributed AI through current work on Multi-Agent
Systems (Huhns 1987; Sandholm & Lesser 1995). One par-
ticularly important version of such design problems, exhibit-
ing many of the characteristics of the more general problem,
involves a set of agents connected across a network that
route some form of traffic (here enumerated in “packets”)
among themselves, and must do so without any centralized
control and/or communication. The goal of the system de-
signer is to have the agents act in a way that optimizes some
performance measure associated with that traffic, like over-
all throughput (Bertsekas & Gallager 1992).

Currently, many real-world solutions to this problem use
Shortest Path Algorithms (SPA), in which each agent esti-
mates the “shortest path” (i.e., path minimizing total cost
accrued by the traffic it is routing) to each of its destina-
tions, and at each moment sends all of its traffic with a
particular destination down the associated (estimated) short-
est path. Unfortunately, even in the limit of infinitesimally
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little traffic, performance with SPA’s can be badly subopti-
mal, since each agent’s routing decisions ignore side-effects
on the traffic of other agents (Korilis, Lazar, & Orda 1997;
Wolpert, Tumer, & Frank 1999). Indeed, in the famous case
of Braess’ paradox (Bass 1992), not only does this scheme
result in suboptimal global cost, it causeseveryagent’s traf-
fic individually to have higher cost than at optimum. This
even holds when each agent’s estimated costs are (unrealis-
tically) taken as perfectly accurate, so that those agents are
all using Ideal SPA’s (ISPA’s). This is an instance of the
famous Tragedy Of the Commons (TOC) (Hardin 1968).

As an alternative to ISPA’s we present a solution to the
Braess’ paradox bases on the concept of COllective INtel-
ligence (COIN). A COIN is a multi-agent system where
there is little to no centralized communication or control
among the agents and where there is a well-specified world
utility function that rates the possible dynamic histories of
the collection (Wolpert, Tumer, & Frank 1999; Wolpert &
Tumer 2000b; 2000a; Wolpert, Wheeler, & Tumer 2000). In
particular, we are concerned with agents that each use re-
inforcement learning (Kaelbing, Littman, & Moore 1996;
Sutton & Barto 1998; Sutton 1988; Watkins & Dayan 1992)
to try to achieve their individual goal. We consider the cen-
tral COIN design problem:How, without any detailed mod-
eling of the overall system, can one set utility functions for
the individual agents in a COIN to have the overall dynam-
ics reliably and robustly achieve large values of the provided
world utility? In other words, how can we leverage an as-
sumption that our learners are individually fairly good at
what they do so as to induce good collective behavior? For
reasons given above, we know that in routing the answer to
this question is not provided by SPA’s goals — some new set
of goals is needed.

In this article, we illustrate the Braess’ paradox in the net-
work domain, and present a COIN based algorithm for net-
work routing. We present simulations demonstrating that in
networks running ISPAs, the per packet costs can be as much
as 23 % higher than in networks running COIN algorithms.
In particular, even though it only has access to imprecise
estimates of costs (a handicap not affecting the ISPA), the
COIN algorithm almost always avoids Braess’ paradox, in
stark contrast to the ISPA. In that the cost incurred with
ISPA’s is presumably a lower bound on that of a real-world
SPA not privy to instantaneous communication, the impli-
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cation is that COINs can outperform such real-world SPA’s.
A much more detailed investigation of the issues addressed
here can be found in (Wolpert & Tumer 2000a).

Braess’ Paradox
Braess’ paradox (Bass 1992; Cohen & Kelly 1990; Cohen &
Jeffries 1997; Korilis, Lazar, & Orda 1997) dramatically un-
derscores the inefficiency of the ISPA. This “paradox” is per-
haps best illustrated through a highway traffic example given
in (Bass 1992): There are two highways connecting towns
S and D. The cost accrued by a traveler along either highway
whenx travelers in total traverse that highway (in terms of
tolls, delays, or the like) isV1(x) + V2(x), as illustrated in
Net A of Figure 1. So whenx = 1 (a single traveler), for
either path total accrued cost is 61 units. If on the other hand
six travelers are split equally among the two paths, they will
each incur a cost of 83 units to get to their destinations. Now
suppose a new highway is built connecting the two paths, as
shown in Net B in Figure 1. Note that the cost associated
with taking this highway is not particularly high (in fact for
any load higher than 1, this highway has a lower cost than
any other highway in the system). The benefit of this high-
way is illustrated by the dramatically reduced cost incurred
by the single traveler: by taking the short-cut, one traveler
can traverse the network at a cost of 31 units (2 V1 + V3).
Adding a new road has seemingly reduced the traversal cost
dramatically.
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Figure 1: Hex network withV1 = 10x ; V2 = 50 +
x ; V3 = 10 + x

However consider what happens when six travelers are on
the highways in net B. If an ISPA is used to make each rout-
ing decision, then at equilibrium each of the three possible
paths contains two travelers.1 Due to overlaps in the paths
however, this results in each traveler accruing a cost of 92
units, which is higher than than what they accruedbefore
the new highway was built. The net effect of adding a new
road is to increase the cost incurred byeverytraveler.

The COIN Formalism
One common solution to side-effect problems is to have
certain components of the network (e.g., a “network man-
ager” (Korilis, Lazar, & Orda 1995)) dictate actions to other

1We have in mind here the Nash equilibrium, where no traveler
can gain by changing strategies (Fudenberg & Tirole 1991).

routers. This solution can incur major brittleness and scal-
ing problems however. Another kind of approach, which
avoids the problems of a centralized manager, is to provide
the routers with extra incentives that can induce them to take
actions that are undesirable to them from a strict SPA sense.
Such incentive can be in the form of “taxes” or “tolls” added
to the costs associated with traversing particular links to dis-
courage the use of those links. Such schemes in which tolls
are superimposed on the routers’ goals are a special case
of the more general COIN-based approach of replacing the
goal of each router with a new goal. In the COIN approach
the new goals are specifically tailored so that if they are col-
lectively met the system maximizes throughput.A priori, a
router’s goal need have no particular relation with the cost
accrued by that router’s packets. Intuitively, in a COIN ap-
proach, we provide each router with a goal that is “aligned”
with the global objective, with no separate concern for that
goal’s relation to the cost accrued by the traffic routed by
that router. To see how this can be done, in the remainder
of this section we summarize salient aspects of the theory of
COIN’s.

In this paper we consider systems that consist of a set of
agents, connected in a network, evolving across a set of dis-
crete time steps,t 2 f0; 1; :::g. Without loss of generality,
all relevant characteristics of an agent� at timet — includ-
ing its internal parameters at that time as well as its exter-
nally visible actions — are encapsulated by a Euclidean vec-
tor �

�;t
with components�

�;t;i
. We call this the “state” of

agent� at timet, with �
;t

the state of all agents at timet,
while � is the state of all agents across all time.

In this paper, we restrict attention to utilities of the formP
t�� Rt(�;t) for reward functionsRt (simply

P
tRt(� ;t)

for non-time-varying utilities).World utility , G(�), is an
arbitrary function of the state of all agents across all time.
(Note that that state is a Euclidean vector.) When� is an
agent that uses a machine learning algorithm to “try to in-
crease” itsprivate utility , we write that private utility as
g�(�), or more generally, to allow that utility to vary in time,
g�;� (�).

Here we focus on the case where our goal, as COIN de-
signers, is to maximize world utility through the proper se-
lection of private utility functions. Intuitively, the idea is
to choose private utilities that are aligned with world utility,
and that also have the property that it is relatively easy for us
to configure each agent so that the associated private utility
achieves a large value.

We need a formal definition of the concept of having pri-
vate utilities be “aligned” withG. Constructing such a for-
malization is a subtle exercise. For example, consider sys-
tems where the world utility is the sum of the private util-
ities of the individual nodes. This might seem a reason-
able candidate for an example of “aligned” utilities. How-
ever such systems are examples of the more general class
of systems that are “weakly trivial”. It is well-known that
in weakly trivial systems each individual agent greedily try-
ing to maximize its own utility can lead to the tragedy of
the commons (Hardin 1968) and actuallyminimizeG. In
particular, this can be the case when private utilities are in-



dependent of time andG =
P

� g� . Evidently, at a min-
imum, havingG =

P
� g� is not sufficient to ensure that

we have “aligned” utilities; some alternative formalization
of the concept is needed.

A more careful formalization of the notion of aligned util-
ities is the concept of “factored” systems. A system isfac-
tored at time� when the following holds for each agent�
individually: A change at time� to the state of� alone,
when propagated across time, will result in an increased
value ofg�;� (�) if and only if it results in an increase for
G(�) (Wolpert & Tumer 2000b).

For a factored system, the side-effects of any change to�’s
t = � state that increases its private utility cannot decrease
world utility. There are no restrictions though on the effects
of that change on the private utilities of other agents and/or
times. In particular, we don’t preclude an agent’s algorithm
at two different times from “working at cross-purposes” to
each other, so long as at both moments the agent is working
to improveG. In game-theoretic terms, in factored systems
optimal global behavior corresponds to the agents’ always
being in a private utility Nash equilibrium (Fudenberg &
Tirole 1991). In this sense, there can be no TOC for a fac-
tored system. As a trivial example, a system is factored for
g�;� = G 8�.

Define theeffect setof the agent-time pair(�; �) at � ,

C
eff

(�;�)
(�), as the set of all components�

�0;t
which under

the forward dynamics of the system have non-zero partial
derivative with respect to the state of agent� at t = � . Intu-
itively, (�; �)’s effect set is the set of all components�

�0;t��

which would be affected by a change in the state of agent�
at time� . (They may or may not be affected by changes in
thet = � states of the other agents.)

Next, for any set� of components (�0; t), define CL�(�)
as the “virtual” vector formed by clamping the components
of the vector� delineated in� to an arbitrary fixed value. (In
this paper, we take that fixed value to be 0 for all components
listed in�.) The value of the effect setwonderful life utility
(WLU for short) for� is defined as:

WLU�(�) � G(�)�G(CL�(�)): (1)

In particular, we are interested in the WLU for the effect set
of agent-time pair(�; �). This WLU is the difference be-
tween the actual world utility and the virtual world utility
where all agent-time pairs that are affected by(�; �) have
been clamped to a zero state while the rest of� is left un-
changed.

Since we are clamping to~0, we can loosely view(�; �)’s
effect set WLU as analogous to the change in world utility
that would have arisen if(�; �) “had never existed”. (Hence
the name of this utility - cf. the Frank Capra movie.) Note
however, that CL is a purely “fictional”, counter-factual op-
erator, in that it produces a new� without taking into account
the system’s dynamics. The sequence of states the agent-
time pairs in� are clamped to in constructing the WLU
need not be consistent with the dynamical laws of the sys-
tem. This dynamics-independence is a crucial strength of
the WLU. It means that to evaluate the WLU we donot try
to infer how the system would have evolved if agent�’s state

were set to~0 at time� and the system evolved from there.
So long as we know� extending over all time,�, and the
functionG, we know the value of WLU.

If our system is factored with respect to private utilities
fg�;�g, we want each agent to be in a state at time� that in-
duces as high a value of the associated private utility as pos-
sible (given the initial states of the other agents). Regardless
of the system dynamics, havingg�;� = G 8� means the sys-
tem is factored at time� . It is also true that regardless of
the dynamics,g�;� = WLU

C
eff

(�;�)

8� is a factored system at

time� (proof in (Wolpert & Tumer 2000b)). However, note
that since each agent is operating in a large system, it may
experience difficulty discerning the effects of its actions on
GwhenG sensitively depends on all the myriad components
of the system. Therefore each� may have difficulty learning
from past experience what to do to achieve highg�;� when
g�;� = G.2

This problem can be mitigated by using effect set WLU as
the private utility, since the subtraction of the clamped term
removes much of the “noise” of the activity of other agents,
leaving only the underlying “signal” of how the agent in
question affects the utility. (This reasoning is formalized as
the concept of “learnability” in (Wolpert & Tumer 2000b).)
Accordingly, one would expect that setting private utilities
to WLU’s ought to result in better performance than having
g�;� = G 8�; � .

Simulation Overview
In this section we describe the model used in our simula-
tions. We then present the ISPA in terms of that model, and
apply the concepts of COIN theory to that model to derive
private utilities for each agent. Because these utilities are
“factored” we expect that agents acting to improve their own
utilities will also improve the global utility (overall through-
put of the network). We end by describing a Memory Based
(MB) machine learning algorithm that each agent uses to
estimate the value that its private utility would have under
the different candidate routing decisions. In the MB COIN
algorithm, each agent uses this algorithm to make routing
decisions aimed at maximizing its estimated utility.

Simulation Model
As in much of network analysis, in the model used in this pa-
per, at any time step all traffic at a router is a set of pairs of
integer-valued traffic amounts and associated ultimate desti-
nation tags (Bertsekas & Gallager 1992). At each such time
stept, each routerr sums the integer-valued components of
its current traffic at that time step to get itsinstantaneous
load. We write that load aszr(t) �

P
d xr;d(t), where the

2In particular, in routing in large networks, having private re-
wards given by the world reward functions means that to provide
each router with its reward at each time step we need to provide it
the full throughput of the entire network at that step. This is usually
infeasible in practice. Even if it weren’t though, using these private
utilities would mean that the routers face a very difficult task in
trying to discern the effect of their actions on their rewards, and
therefore would likely be unable to learn their best routing strate-
gies.



indexd runs over ultimate destinations, andxr;d(t) is the to-
tal traffic at timet going fromr towardsd. After its instan-
taneous load at timet is evaluated, the router sends all its
traffic to the next downstream routers, according to its rout-
ing algorithm. After all such routed traffic goes to those next
downstream routers, the cycle repeats itself, until all traffic
reaches its destination. In our simulations, for simplicity,
traffic was only introduced into the system (at thesource
routers) at the beginning of successive disjointwavesof L
consecutive time steps.

In a real network, the cost of traversing a router de-
pends on “after-effects” of recent instantaneous loads, as
well as the current instantaneous load. To simulate this ef-
fect, we use time-averaged values of the load at a router
rather than instantaneous load to determine the cost a packet
incurs in traversing that router. More formally, we define
the router’swindowed load, Zr(t), as the running average
of that router’s load value over a window of the previousW

timesteps:Zr(t) �
1
W

Pt
t0=t�W+1 zr(t

0) =
P

d0 Xr;d0(t),
where the value ofXr;d(t) is set by the dynamical law
Xr;d(t) = 1

W

Pt

t0=t�W+1 xr;d(t
0)). (W is always set to

an integer multiple ofL.) The windowed load is the argu-
ment to aload-to-cost function,V (�), which provides the
cost accrued at timet by each packet traversing the router
at this timestep. That is, at timet, the cost for each packet
to traverse routerr is given byV (Zr(t)). Different routers
have differentV (�), to reflect the fact that real networks have
differences in router software and hardware (response time,
queue length, processing speed etc). For simplicity,W is the
same for all routers however. With these definitions, world
utility is

G(�) =
P

t;r zr(t) Vr(Zr(t)) (2)

Our equation forG explicitly demonstrates that, as claimed
above, in our representation we can expressG(�) as
a sum of rewards,

P
tRt(� ;t), where R(�

;t
) can be

written as function of a pair of(r; d)-indexed vectors:
Rt(xr;d(t); Xr;d(t)) =

P
r;d xr;d(t)Vr(

P
d0 Xr;d0(t)).

Routing Algorithms
At time stept, ISPA has access to all the windowed loads
at time stept � 1 (i.e., it has access toZr(t � 1) 8r), and
assumes that those values will remain the same at all times
� t. (Note that for large window sizes and times close tot,
this assumption is arbitrarily accurate.) Using this assump-
tion, in ISPA, each router sends packets along the path that it
calculates will minimize the costs accumulated by its pack-
ets.

We now apply the COIN formalism to the model de-
scribed above to derive the idealized version of our COIN
routing algorithm. First let us identify the agents� as in-
dividual pairs of routers and ultimate destinations. So�

�;t

is the vector of traffic sent along all links exiting�’s router,
tagged for�’s ultimate destination, at timet. Next, in order
to compute WLUs we must estimate the associated effect
sets.

In the results presented here, the effect set of an agent is
estimated as all agents that share the same destination as that

agent.3 Based on this effect set, the WLU for an agent� is
given by the difference between the total cost accrued by all
agents in the network and the cost accrued by agents when
all agents sharing the same destination as� are “erased.”
More precisely, using Eq. 2, one can show that each agent
� that shares a destinationd, will have the following effect
set WLU:

gd(�) = G(�)�G(CL
C
eff
�

(�))

=
X

t

X

r

[zr(t) Vr(Zr(t)) �

X

d0 6=d

xr;d0(t) Vr(
X

d00 6=d

Xr;d00(t))] (3)

Notice that the summand in Eq. 3 is computed at each router
separately from information available to that router. Subse-
quently those summands can be propagated across the net-
work and the associatedgd’s “rolled up” in much the same
way as routing tables updates are propagated in current rout-
ing algorithms.

Unlike the ISPA, the MB COIN has only limited knowl-
edge, and therefore mustpredictthe WLU value that would
result from each potential routing decision. More pre-
cisely, for each router-ultimate-destination pair, the associ-
ated agent estimates the map from windowed loads on all
outgoing links (the inputs) to WLU-based reward (the out-
puts). This is done with a single-nearest-neighboralgorithm.
Next, each router could send the packets along the path that
results in outbound traffic with the best (estimated) reward.
However to be conservative, in these experiments we instead
had the router randomly select between that path and the
path selected by the ISPA (described below).

SIMULATION RESULTS
Based on the model and routing algorithms discussed above,
we have performed simulations to compare the performance
of ISPA and MB COIN. In all cases traffic was inserted
into the network in a regular, non-stochastic manner at the
sources. The results we report are averaged over 20 runs.
We do not report error bars as they are all lower than0:05.
In both networks we present4, ISPA suffers from the Braess’
paradox, whereas the MB COIN almost never falls prey to
the paradox for those networks. For no networks we have
investigated is the MB COIN significantly susceptible to
Braess’ paradox.

Hex Network
In Table 1 we give full results for the network in Fig. 1. In
Table 2 we report results for the same network but with load-
to-cost functions which incorporate non-linearities that bet-
ter represent real router characteristics. (Instances of Braess’
paradox are shown inbold.)

For ISPA, although the per packet cost for loads of 1
and 2 drop drastically when the new link is added, the per

3Exact factoredness obtains so long as our estimated effect set
contains the true effect set; set equality is not necessary.

4See (Wolpert & Tumer 2000a) for additional experiments.



packet cost increases for higher loads. The MB COIN on
the other hand uses the new link efficiently. Notice that the
MB COIN’s performance is slightly worse than that of the
ISPA in the absence of the additional link. This is caused
by the MB COIN having to use an (extremely unsophisti-
cated) learner to estimate the WLU values for potential ac-
tions whereas the ISPA has direct access to all the informa-
tion it needs.

For this particular network, the equilibrium solution for
the MB-COIN consists of ignoring the newly added mid-
dle link. This solution is “unstable” for the ISPA, since any
packet routed along the middle path will provide a smaller
cost to the router from which it was routed than would other-
wise be the case, so that the system settles on the the subop-
timal Nash Equilibrium solution discussed above. However,
by changing the utilities of the agents (from a shortest path
to the WLU), the COIN approach moves the Nash equilib-
rium to a more desirable location in the solution space.

Table 1: Average Per Packet Cost for HEX network forV1 =
50 + x ; V2 = 10x ; V3 = 10 + x .

Load Net ISPA MB COIN
1 A 55.50 55.56

B 31.00 31.00
2 A 61.00 61.10

B 52.00 51.69
3 A 66.50 66.65

B 73.00 64.45
4 A 72.00 72.25

B 87.37 73.41

Table 2: Average Per Packet Cost for HEX network forV1 =
50 + log(1 + x) ; V2 = 10x ; V3 = log(1 + x) .

Load Net ISPA MB COIN
1 A 55.41 55.44

B 20.69 20.69
2 A 60.69 60.80

B 41.10 41.10
3 A 65.92 66.10

B 61.39 59.19
4 A 71.10 71.41

B 81.61 69.88

Butterfly Network
The next network we investigate is shown in Figure 2. We
now have three sources that have to route their packets to two
destinations (packets originating atS1 go toD1, and packets
originating atS2 orS3 go toD2). Initially the two halves of
the network have minimal contact, but with the addition of
the extra link two sources from the two halves of the network
share a common router on their potential shortest path.

Table 3 presents results for uniform traffic through all
three sources, and then results for asymmetric traffic. For
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Figure 2: Butterfly Network

the first case, the Braess’ paradox is apparent in the ISPA:
adding the new link is beneficial for the network at low load
levels where the average per packet cost is reduced by nearly
20%, but deleterious at higher levels. The MB COIN, on the
other hand, provides the benefits of the added link for the
low traffic levels, without suffering from deleterious effects
at higher load levels.

Table 3: Average Per Packet Cost for BUTTERFLY network
for V1 = 50 + log(1 + x) ; V2 = 10x ; V3 = log(1 + x).

Loads(S1; S2; S3) Net ISPA MB COIN
1,1,1 A 112.1 112.7

B 92.1 92.3
2,2,2 A 123.3 124.0

B 133.3 122.5
4,4,4 A 144.8 142.6

B 156.5 142.3
3,2,1 A 81.8 82.5

B 99.5 81.0
6,4,2 A 96.0 94.1

B 105.3 94.0
9,6,3 A 105.5 98.2

B 106.7 98.8

For the asymmetric traffic patterns, the added link causes
a drop in performance for the ISPA, especially for low over-
all traffic levels. This is not true for the MB COIN. Notice
also that in the high, asymmetric traffic regime, the ISPA
performs significantly worse than the MB COIN even with-
out the added link, showing that a bottleneck occurs on the
right side of network alone.

CONCLUSION
Collective Intelligence design is a framework for controlling
decentralized multi-agents systems so as to achieve a global
goal. In designing a COIN, the central issue is determining
the private goals to be assigned to the individual agents. One
wants to choose those goals so that the greedy pursuit of
them by the associated agents leads to a globally desirable
solution. We have summarized some of the theory of COIN
design and derived a routing algorithm based on application
of that theory to our simulation scenario. In our simulations,
the COIN algorithm induced costs up to 23 % lower than the
idealized version of conventional algorithms, the ISPA. This
was despite the ISPA’s having access to more information



than the MB COIN. Furthermore the COIN-based algorithm
avoided the Braess’ paradoxes that seriously diminished the
performance of the ISPA.

In the work presented here, the COIN-based algorithm
had to overcome severe limitations. The estimation of the ef-
fect sets, used for determining the private goals of the agents
was exceedingly coarse. In addition, the learning algorithms
used by the agents to pursue those goals were particularly
simple-minded. That a COIN-based router with such serious
limitations consistently outperformed an ideal shortest path
algorithm demonstrates the strength of the proposed method.
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