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Abstract

We shed light on the connections between different ap-
proaches to constraint satisfaction by showing that the
main consistency concepts used to derive tractability
results for constraint satisfaction are intimately related
to certain combinatorial pebble games, called the exis-
tentialk-pebble games, that were originally introduced
in the context of Datalog. The crucial insight relating
pebble games to constraint satisfaction is that the key
concept of strongk-consistency is equivalent to a con-
dition on winning strategies for the Duplicator player
in the existentialk-pebble game. We use this insight
to show that strongk-consistency can be established if
and only if the Duplicator wins the existentialk-pebble
game. Moreover, whenever strongk-consistency can
be established, one method for doing this is to first
compute the largest winning strategy for the Duplica-
tor in the existentialk-pebble game and then modify
the original problem by augmenting it with the con-
straints expressed by the largest winning strategy. This
basic result makes it possible to establish deeper con-
nections between pebble games, consistency properties,
and tractability of constraint satisfaction. In particu-
lar, we use existentialk-pebble games to introduce the
concept ofk-locality and show that it constitutes a new
tractable case of constraint satisfaction that properly ex-
tends the well known case in which establishing strong
k-consistency implies global consistency.

Introduction and Summary of Results
Constraint satisfaction has occupied a prominent place in AI
research since the 1970s. The importance of constraint sat-
isfaction stems from the fact that a large number of funda-
mental algorithmic problems from different areas of artifi-
cial intelligence can be modeled as constraint-satisfaction
problems (CSP) in a natural way. The input to a constraint-
satisfaction problem consists of a set of variables, a set of
possible values, and a set of constraints on tuples of vari-
ables; the question is to determine whether there is an as-
signment of values to the variables that satisfies the given
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constraints. Since in general constraint satisfaction is NP-
complete, a considerable amount of effort has been dedi-
cated to the discovery of tractable cases of constraint sat-
isfaction, see (Mackworth & Freuder 1993; Dechter 1992;
Jeavons, Cohen, & Gyssens 1997). The aim of this line of in-
vestigation is to design efficient algorithms for special cases
of constraint satisfaction and to develop useful heuristics for
the general case.

One of the most fruitful approaches to coping with the
intractability of constraint satisfaction has been the in-
troduction and use of variousconsistencyconcepts that
make explicit additional constraints implied by the origi-
nal constraints. The connection between consistency prop-
erties and tractability was first described in (Freuder 1978;
1982). In a similar vein, (Dechter 1992; van Beek 1994;
van Beek & Dechter 1997) investigated the relationship be-
tweenlocal consistencyandglobal consistency. Intuitively,
local consistency means that any partial solution on a set of
variables can be extended to a partial solution containing an
additional variable, whereas global consistency means that
any partial solution can be extended to a global solution.
Note that if the inputs are such that local consistency im-
plies global consistency, then there is a polynomial-time al-
gorithm for constraint satisfaction; moreover, in this case a
solution can be constructed via a backtrack-free search.

In recent years, researchers have also embarked on an
ambitious project aiming to classify the currently known
tractable cases of constraint satisfaction and ultimately iden-
tify all tractable cases of this problem. Specifically, in (Feder
& Vardi 1999) two conditions are isolated and are shown
to be sufficient for tractability of constraint satisfaction and
to also provide a unifying framework for a large number
of tractability results in the literature. The first of these
conditions is expressibility in Datalog, the main query lan-
guage for deductive database and knowledge-base systems,
while the second condition is group-theoretic. A related
unifying framework for tractability of constraint satisfaction
has been developed by Jeavons et al. in a sequence of pa-
pers, including (Jeavons, Cohen, & Gyssens 1995; 1996;
1997); the key theme of this framework is that tractability
is intimately connected to certain algebraic closure proper-
ties of the constraints. Although the above two frameworks
are of distinctly different character, they turn out to have sev-
eral points in common. In fact, certain tractable cases in the
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first framework turn out to coincide with certain tractable
cases in the second framework. Furthermore, one of these
cases also coincides with the case in which local consis-
tency implies global consistency; thus, these three different
approaches to constraint satisfaction meet at this point.

Our goal in this paper is to shed additional light on the
connections between the different approaches to constraint
satisfaction. As pointed out first by (Feder & Vardi 1999),
constraint satisfaction can be identified with thehomomor-
phism problemon relational structures: given two finite re-
lational structuresA andB over the same vocabulary, is
there a homomorphism fromA toB?1 Informally, the struc-
tureA represents the variables and the constrained tuples of
variables, the structureB represents the values and the con-
straints, and the homomorphisms fromA toB are precisely
the solutions to the instance of the constraint-satisfaction
problem encoded byA andB. Using this viewpoint, we
show that the main consistency concepts mentioned above
are intimately related to certain combinatorial pebble games
on relational structures that were originally introduced in the
context of Datalog. It is well known that the expressive
power of several major logical formalisms, including first-
order logic and second-order logic, can be analyzed using
certain combinatortial two-person games, see (Ebbinghaus,
Flum, & Thomas 1994). As regards Datalog,existentialk-
pebble gameswere introduced in (Kolaitis & Vardi 1995)
and used to analyze the expressive power of Datalog. These
games are played between two players, theSpoilerand the
Duplicator, on two relational structuresA andB according
to the following rules: on thei-th move of a round of the
game,1 � i � k, the Spoiler places a pebble on an element
ai of A, and the Duplicator responds by placing a pebble on
an elementbi of B. The Spoiler wins the game at the end of
that round, if the mappingai 7! bi, 1 � i � k, is not a ho-
momorphim between the corresponding substructures ofA

andB. Otherwise, the Spoiler removes one or more pebbles,
and a new round of the game begins. The Duplicator wins
the existentialk-pebble game if he has awinning strategy,
that is to say, a systematic way that allows him to sustain
playing “forever”, so that the Spoiler can never win a round
of the game.

The crucial insight that relates pebble games to constraint
satisfaction is that the key concept ofstrongk-consistency
(Dechter 1992) is equivalent to a property of winning strate-
gies for the Duplicator in the existentialk-pebble game.
Specifically, after giving the formal definition of a win-
ning strategy, we point out that an instance of a constraint-
satisfaction problem is stronglyk-consistent if and only if
the family of all partial homomorphimsf with jf j < k
is a winning strategy for the Duplicator in the existential
k-pebble game on the two relational structures that rep-
resent the given instance. The connection between peb-
ble games and consistency properties, however, is deeper
than just a mere reformulation of the concept of strongk-
consistency. Indeed, as mentioned earlier, consistency prop-

1A homomorphismis a mapping from the domain ofA to the
domain ofB such that every tuple in a relation ofA is mapped to
a tuple in the corresponding relation ofB.

erties underly the process of making explicit new constraints
that are implied be the original constraints. A key techni-
cal step in this approach is the procedure known as “estab-
lishing strongk-consistency”, which propagates the orig-
inal constraints, adds implied constraints, and transforms
a given instance of a constraint satisfaction problem to a
stronglyk-consistent instance with the same solution space
(Cooper 1989; Dechter 1992). Here we show that strong
k-consistency can be established if and only if the Dupli-
cator wins the existentialk-pebble game. Moreover, when-
ever strongk-consistency can be established, one method
for doing this is to first compute the largest winning strat-
egy for the Duplicator in the existentialk-pebble game and
then modify the original problem by augmenting it with the
constraints expressed by the largest winning strategy; we
also show that this method gives rise to the least constrained
instance that establishes strongk-consistency and, in addi-
tion, satisfies a naturalcoherenceproperty. By combining
this result with earlier results in (Kolaitis & Vardi 1995;
1998) concerning the definability of the largest winning
strategy, it follows that the algorithm for establishing strong
k-consistency in this way (withk fixed) is actually express-
ible in least fixed-point logic; this strengthens the fact that
strongk-consistency can be established in polynomial time,
whenk is fixed.

After this, we show that there are further connections be-
tween pebble games, consistency properties, and tractabil-
ity of constraint satisfaction. IfB is a fixed finite rela-
tional structure, thenCSP(B) is the following non-uniform
constraint-satisfaction problem: given a finite relational
structureA, is there a homomorphismh fromA toB? Note
that if B is the complete graphK3 on three vertices, then
CSP(B) is 3-COLORABILITY ; thus, CSP(B) may very
well be an NP-complete problem. It was shown in (Feder &
Vardi 1999; Kolaitis & Vardi 1998) that existentialk-pebble
games can be used to characterize whenCSP(B) is express-
ible in Datalog (from which it follows thatCSP(B) is also
solvable in polynomial time). Specifically, it was estab-
lished that for every relational structureB, the complement
of CSP(B) is expressible by a Datalog program withk vari-
ables if and only ifCSP(B) coincides with the collection of
all relational structuresA such that the Duplicator wins the
existentialk-pebble game onA andB. Consequently, this
is also equivalent to the following condition:CSP(B) coin-
cides with the collection of all relational structuresA such
that establishing strongk-consistency onA andB implies
that there is a homomorphism fromA toB.

Expressibility in Datalog is certainly a condition that
gives rise to a large tractable case of non-uniform con-
straint satisfaction. It has the disadvantage, however, that
it does not yield a method for finding a solution to an in-
stance ofCSP(B), if a solution exists. This should be
contrasted with the special case of expressibility in Dat-
alog in whichCSP(B) has the property that establishing
strongk-consistency implies global consistency. We call
this propertyglobal k-consistency. In this case, given an
intance ofCSP(B), we can first detect the existence of
a solution by establishing strongk-consistency and then
we can easily construct a solution using a backtrack-free



search. Although this special case does not suffer from the
above disadvantage of Datalog, its applicability is limited,
since it turns out to be equivalent to a very stringent clo-
sure property of the relations ofB (Feder & Vardi 1999;
Jeavons, Cohen, & Cooper 1998). This state of affairs mo-
tivates the pursuit of tractable cases that interpolate between
globalk-consistency and expressibility in Datalog. To this
effect, usingk-pebble games, we introduce the concept of
k-locality and show that it constitutes a new tractable case
of non-uniform constraint satisfaction that is broader than
globalk-consistency, is expressible in Datalog, but does not
suffer from the aforementioned disadvantage of expressibil-
ity in Datalog. In particular, we show that ifCSP(B) is
k-local, then a solution (if one exists) to a given instance
of CSP(B) can be constructed in polynomial time via a
backtrack-free search during which strongk-consistency is
established for certain expansions of the given instance.
Moreover, we show that ifCSP(B) is k-local, then com-
puting the largest winning strategy for the Duplicator in the
existentialk-pebble game is theonly way to obtain an in-
stance that establishes strongk-consistency and satisfies the
coherence property mentioned earlier.

Consistency and Pebble Games
The standard terminology in AI formalizes an instanceP
of CSP as a triple(V;D; C), consisting of a setV of vari-
ables, a setD of values, and a collectionC of constraints
C1; : : : ; Cq , where eachCi is a pair(t; R) with t a tuple
overV (i.e., a tuple of not necessarily distinct variables in
V ) andR is a relation onD of the same arity asjtj. Note
that, without loss of generality, we may assume that all con-
straints(t; Ri) involving a tuplet have been consolidated to
a single constraint(t; R). Thus, we can assume that each tu-
plet of variables occurs at most once in the collectionC. It is
clear that every such instanceP can be viewed as an instance
of the homomorphism problem between two structuresAP

andBP , where the universe ofAP isV , the universe ofBP
is D, the relations ofBP are the distinct relationsR occur-
ring in C, and the relations ofAP are defined as follows:
for each relationR onD occurring inC, we have the rela-
tion RA = ft : (t; R) is a constraintg. We call(AP ;BP)
thehomomorphism instanceof P . It is also clear that every
instance of the homomorphism problem between two struc-
turesA andB can be viewed as a CSP instanceCSP(A;B)
by simply “breaking up” each relationRA onA as follows:
we generate a constraint(t; RB) for eacht 2 RA. (and
then consolidate constraints involving the same tuple of vari-
ables). We callCSP(A;B) theCSP instanceof (A;B) We
will use both formalisms in this paper, as each has its own
advantages.

The next definition contains the main concepts concerning
existentialk-pebble games.

Definition 1: Let k be a positive integer and letA andB
be two relational structures over the same vocabulary with
universesA andB respectively.

� A k-partial homomorphismfromA toB is a homomor-
phism from a substructure ofA with at mostk elements
in its universe to a substructure ofB.

� A winning strategy for the Duplicator in the existential
k-pebble game onA andB is a nonempty familyF of
k-partial homomorphisms having the following two prop-
erties:
1. F is closed under subfunctions, which means that if

g 2 F andf � g, thenf 2 F .
2. F has thek-forth property, which means that for every

f 2 F with jf j < k and everya 2 A on whichf
is undefined, there is ag 2 F that extendsf and is
defined ona.

� A configuration for the existentialk-pebble game onA
andB is a 2k-tuplea; b, wherea andb are elements of
Ak andBk respectively such that ifai = aj , thenbi = bj
(i.e., the correspondenceai 7! bi, 1 � i � k, is a partial
function fromA toB, which we denote byh

a;b
).

� A winning configuration for the Duplicator in the exis-
tentialk-pebble game onA andB is a configurationa; b
for this game such thath

a;b
is a member of some winning

strategy for the Duplicator in this game. We denote by
Wk(A;B) the set of all such configurations.

The following facts turn out to be quite useful.

Proposition 2: If F andF 0 are two winning strategies for
the Duplicator in the existentialk-pebble game on two struc-
turesA andB, then also the unionF [ F 0 is a winning
strategy for the Duplicator. Hence, there is a largest win-
ning strategy for the Duplicator in the existentialk-pebble
game, namely the union of all winning strategies, which is
precisely

Hk(A;B) = fh
a;b

: (a; b) 2 Wk(A;B)g:

Proof: The first part is obvious. For the second part, note
thatHk(A;B) is clearly a winning strategy for the Dupli-
cator and contains every winning strategy as a subset, since
every elementh of a winning strategy gives rise to a winning
configurationa; b such thath

a;b
= h, wherea is a list of all

elements in the domain ofh andb is a list of their images
underh (the list may contain elements with repetitions, if
the domain ofh has fewer thank elements).

The following lemma is a crucial definability result.

Lemma 3: (Kolaitis & Vardi 1998)There is a positive first-
order formula'(x; y; S), wherex andy arek-tuples of vari-
ables, such that the complement of its least fixed-point on
a pair A;B of structures defines the setWk(A;B) of all
winning configurations for the Duplicator in the existential
k-pebble game onA;B.

We now recall the concepts ofi-consistencyand strong
k-consistency.

Definition 4: Let P = (V;D; C) be a CSP instance.P is
i-consistentif for every i� 1 variablesv1; : : : ; vi�1, for ev-
ery partial solution on these variables, and for every variable
vi 62 fv1; : : : ; vi�1g, there is a partial solution on the vari-
ablesv1; : : : ; vi�1; vi extending the given partial solution on
the variablesv1; : : : ; vi�1. P is stronglyk-consistentif it is
i-consistent for everyi � k.



A key insight is that strongk-consistency can be naturally
recast in terms of existentialk-pebble games.

Proposition 5: LetP be a CSP instance, and let(AP ;BP)
be the associated homomorphism instance.P is strongly
k-consistent if and only if the family of allk-partial homo-
morphisms fromAP toBP is a winning strategy for the Du-
plicator in the existentialk-pebble game onAP andBP .

Let us now recall the concept ofestablishing strong
k-consistency, as defined, for instance, in (Cooper 1989;
Dechter 1992). This concept has been defined rather in-
formally in the literature to mean that, given an instanceP
of CSP, we associate an instanceP 0 that has the following
properties: (1)P 0 has the same set of variables and the same
set of values asP ; (2) P 0 is stronglyk-consistent; (3)P 0 is
more constrained thanP ; and (4)P andP 0 have the same
space of solutions. The next definition formalizes the above
concept in the context of the homomorphism problem.

Definition 6: LetA andB be two relational structures over
a k-ary vocabulary� (i.e., every relation symbol in� has
arity at mostk). Establishing strongk-consistency forA
andB means that we associate two relational structuresA

0

andB0 with the following properties:

1. A0 andB0 are structures over somek-ary vocabulary�0

(in general, different than�); moreover, the universe of
A
0 is the universeA of A, and the universe ofB0 is the

universeB ofB.
2. CSP(A0;B0) is stronglyk-consistent.
3. if h is ak-partial homomorphism fromA0 toB0, thenh

is ak-partial homomorphism fromA toB.
4. If h is a function fromA toB, thenh is a homomorphism

fromA toB if and only ifh is a homomorphism fromA0

toB0.

If the structuresA0 andB0 have the above properties, then
we say thatA0 andB0 establish strongk-consistency forA
andB.

An instanceP of CSP iscoherentif every constraint
(t; R) of P completely determines all constraints(u;Q) in
which all variables occurring inu are among the variables
of t. We formalize this concept as follows.

Definition 7: An instanceA;B of the homomorphism prob-
lem is coherentif its associated CSP instanceCSP(A;B)
has the following property: for every constraint(a;R) of
CSP(A;B) and every tupleb 2 R, the mappingh

a;b
is well

defined and is a partial homomorphism fromA toB.

Note that a CSP instance can be made coherent by
polynomial-time constraint propagation.

The main result of this section is that strongk-consistency
can be established precisely when the Duplicator wins the
existential k-pebble game. Moreover, one method for
establishing strongk-consistency is to first compute the
largest winning strategy for the Duplicator in this game
and then generate an instance of the constraint-satisfaction
problem consisting of all the constraints embodied in the
largest winning strategy. Furthermore, this method gives
rise to the largest coherent instance that establishes strong

k-consistency (and, hence, the least constrained such in-
stance).

Theorem 8: Let k be a positive integer, let� be ak-ary
vocabulary, and letA andB be two relational structures
over� with domainsA andB, respectively. It is possible
to establish strongk-consistency forA andB if and only if
Wk(A;B) 6= ;. Furthermore, ifWk(A;B) 6= ;, then the
following sequence of steps gives rise to two structuresA

0

andB0 that establish strongk-consistency forA andB:

1. Compute the setWk(A;B).
2. Form the set Wk

� (A;B) of all 2i-tuples
(aj1 ; : : : ; aji ; bj1 ; : : : ; bji) 2 Ai � Bi, 1 � i � k, that
can be extended to a2k-tuple(a1; : : : ; ak; b1; : : : ; bk) 2
W k(A;B).

3. For everyi � k and for everyi-tuplea 2 Ai, form the set
Ra = fb 2 B

i : (a; b) 2 Wk
� (A;B)g.

4. Form the CSP instanceP with A as the set of variables,
B as the set of values, andf(a;Ra) : a 2

Sk

i=1A
ig as

the collection of constraints.
5. Let(A0,B0) be the homomorphism instance ofP .

In addition, the structuresA0 andB0 obtained above con-
stitute the largest coherent instance establishing strongk-
consistency forA and B, i.e., if (A00;B00) is another
such coherent instance, then for every constraint(a;R) of
CSP(A00;B00), we have thatR � Ra.

Proof: Suppose first thatWk(A;B) 6= ;. We now show
thatCSP(A0;B0) is stronglyk-consistent. To see this, as-
sume thatg is a partial homomorphism fromA0 toB0 with
domainfa1; : : : ; aig, for somei < k, andc is an element
of A. Let bj = g(aj), 1 � j � i, let a = (a1; : : : ; ai) and
b = (b1; : : : ; bi). Sinceg is a partial homomorphism from
A
0 to B0, it must be the case thatb 2 Ra, which in turn

means thata; b is a winning configuration for the Duplicator
in the existentialk-pebble game onA andB. It follows that
there is an elementd of B such thata; c; b; d is a winning
configuration for the Duplicator in the existentialk-pebble
game onA andB. In turn, this means thatb; d 2 Ra;c. It is
easy, however, to verify that(A0;B0) is coherent and so the
mappingg[f(c; d)g is a partial homomorphism fromA0 to
B
0 extendingg.
Next assume thath is a function fromA to B. We

have to show thath is a homomorphism fromA to B if
and only if h is a homomorphism fromA0 to B0. Let
a = (a1; : : : ; ak) be ak-tuple of elements fromA and let
b = (h(a1); : : : ; h(ak)). Assume first thath is a homo-
morphism fromA to B. In this case, we have thata; b is
a winning configuration for the Duplicator in the existen-
tial k-pebble game onA andB, which in turn implies that
b 2 Ra, thus establishing thath is a homomorphism from
A
0 to B0. In the other direction, ifh is a homomorphism

from A
0 to B0, then b 2 Ra, which means thata; b is a

winning configuration for the Duplicator in the existential
k-pebble game onA andB. In turn, this implies that if a
relation ofA is satisfied by a sequence of elements froma,
then the corresponding sequence of elements fromb satisfies



the corresponding relation onB, thus establishing thath is
a homomorphism fromA toB.

Conversely, suppose thatA0 andB0 establish strongk-
consistency forA andB. Let H be the family of allk-
partial homomorphisms fromA0 toB0. By the definition of
establishing strongk-consistency,H is also a family ofk-
partial homomorphisms fromA toB. Since,CSP(A0;B0)
is stronglyk-consistent,H has thek-forth property. But
this means that the Duplicator has a winning strategy in
the existentialk-pebble game onA;B, which implies that
Wk(A;B) 6= ;.

As mentioned earlier,(A0;B0) is coherent. Assume that
(A�;B�) is another coherent instance establishing strong
k-consistency forA andB. Let (a;R) be a constraint of
CSP(A�;B�), and letb 2 R. Then the mappingh

a;b
is a

partial homomorphism fromA� to B�, which in turn im-
plies that it is also a partial homomorphism fromA toB. It
follows that(a; b) 2 Wk

� (A;B), and thusb 2 Ra.

The key step in the procedure described in Theorem 8 is
the first step, in which the setWk(A;B) is computed. The
other steps simply “re-format”Wk(A;B). From Lemma 3,
it follows that we can establish strongk-consistency by com-
puting the least fixed-point of a positive first-order formula.
This perspective should be contrasted with the efficient-
implementation perspective in (Cooper 1989), the algebraic
perspective described in (G¨usgen & Ladkin 1995), and the
chaotic-iteration perspective described in (Apt 1997).

One advantage of formalizing the concept of strongk-
consistency in Definition 6 is that we can now address
the computational complexity of establishing strongk-
consistency. That is, how hard is it to determine whether
it is possible to establish strongk-consistency forA andB,
given two structuresA,B and a positive integerk? In view
of Theorem 8, this key question is equivalent to asking how
hard it is to test whetherWk(A;B) 6= ;. We conjecture that
the exponential upper bound from (Kolaitis & Vardi 1995) is
tight.

Conjecture: Checking whetherWk(A;B) 6= ; for given
structuresA;B and a positive integerk is EXPTIME-
complete.

Note that a confirmation of this conjecture will ex-
plain why all known algorithms for establishing strongk-
consistency are exponential ink (see (Cooper 1989; Dechter
1992)).

We can now relate the concept of strongk-consistency
to the results in (Feder & Vardi 1999; Kolaitis & Vardi
1998) regarding Datalog and non-uniform CSP.Datalog is
the language of database logic programming; it has received
a tremendous amount of attention over the past two decades,
see (Abiteboul, Hull, & Vianu 1995). A Datalog program
is a finite set of rules of the formt0  t1; : : : ; tm, where
eachti is an atomic formulaR(x1; : : : ; xn). The relational
predicates that occur in the heads of the rules are theinten-
sional databasepredicates (IDBs), while all others are the
extensional databasepredicates (EDBs). One of the IDBs is
designated as thegoal of the program. Note that IDBs may
occur in the bodies of rules and, thus, a Datalog program is a

recursive specification of the IDBs with semantics obtained
via least fixed-points of monotone operators, see (Ullman
1989). Each Datalog program defines a query which, given
a set of EDB predicates, returns the value of the goal pred-
icate. If the goal predicate is 0-ary, then the program is a
Boolean query, i.e., it either holds or does not. Note that a
Datalog query is computable in polynomial time, since the
bottom-up evaluation of the least fixed-point of the program
terminates within a polynomial number of steps (in the size
of the given EDBs), see (Ullman 1989). Thus, expressibility
in Datalog is a sufficient condition for tractability of a query.

LetB be a relational structure over a vocabulary�. Let
:CSP(B) be the class of all structuresA over the vocab-
ulary � such that there is no homomorphismh from A

to B. A unifying explanation for the tractability of many
non-uniformCSP(B) problems is provided by showing that
:CSP(B) is expressible in Datalog (Feder & Vardi 1999).
That is, in many cases in whichCSP(B) is tractable there is
a Boolean Datalog programP such that for every structure
A over�, we have thatP (A) holds iff A 62 CSP(B), A
key parameter that shows up in this analysis is the number
of variables used. For every positive integern, letk-Datalog
be the collection of all Datalog programs in which the body
of every rule has at mostk distinct variables and also the
head of every rule has at mostk variables (the variables of
the body may be different from the variables of the head).

Theorem 9: (Kolaitis & Vardi 1998)LetB be a relational
structure over a vocabulary�. :CSP(B) is expressible in
k-Datalog iff the following condition holds:

For every structureA over�, if the Duplicator wins the
existentialk-pebble game onA andB, then there is a
homomorphism fromA toB.

We can now derive a relationship betweenk-Datalog and
strongk-consistency.

Theorem 10: LetB be a relational structure over a vocab-
ulary �. :CSP(B) is expressible ink-Datalog iff for ev-
ery structureA over �, establishing strongk-consistency
for A;B implies that there is a homomorphism fromA to
B.

Proof: Since the Duplicator wins the existentialk-pebble
game onA andB if and only ifWk(A;B) 6= ;, the result
follows from Theorems 8 and 9.

Consistency and Locality
As mentioned in the introduction, expressibility ink-
Datalog is a sufficient condition for tractability ofCSP(B),
but it does not provide a method for finding a solution
to an instance ofCSP(B), if one exists. In contrast, if
CSP(B) has the globalk-consistency property, (i.e., es-
tablishing stongk-consistency implies global consistency),
then a solution to an instance ofCSP(B) can be constructed
via a backtrack-free search. Since the latter condition is of
limited applicability, it is natural to pursue conditions that
are of wider applicability and still yield a method for finding
a solution efficiently, if one exists.



Definition 11: LetB be a structure over a relational vocab-
ulary� and letk be a positive integer. We say thatCSP(B)
is k-local if :CSP(B�) is in k-Datalog for every expansion
B
� of B with constants, that is, for every expansion ofB

obtained by augmentingB with a finite sequence of distin-
guished elements from its universe. Note that such an ex-
pansion can be also viewed as a structure over a relational
vocabulary�� in which unary relational symbols are used to
encode the distinguished elements that form the expansion.

The first result of this section yields a characterization
of k-locality in terms of establishing strongk-consistency.
Moreover, it asserts thatk-locality has the property that there
is a unique way to obtain a coherent instance establishing
strongk-consistency.

Proposition 12: LetB be a relational structure over a vo-
cabulary�. CSP(B) is k-local iff for every structureA over
� and every expansionsA� andB� ofA andB with con-
stants, establishing strongk-consistency onA� andB� im-
plies that there is a homomorphism fromA� toB�. More-
over, if CSP(B) is k-local, then the only way to obtain a
coherent instance establishing strongk-consistency forA
andB is to compute the largest winning strategy for the Du-
plicator in the existentialk-pebble game onA andB.

Proof: The characterization ofk-locality in terms of estab-
lishing strongk-consistency is an immediate consequence
of Theorem 10. Assume that(A00;B00) is a coherent pair
of structures establishing strongk-consistency for(A;B).
Let (a;R) be a constraint ofCSP(A00;B00). From Theorem
8, it follows thatR � Ra, whereRa is the set of all tu-
plesb such that(a; b) 2 Wk

� (A;B). For the other direction,
if b 2 Ra, then(a; b) 2 Wk

� (A;B) and so the Duplicator
wins the existentialk-pebble game onA andBwith pebbles
placed ona andb. SinceCSP(B) is k-local,:CSP(B; b)
is expressible in Datalog. Consequently, by Theorem 9, it
follows that there is a homomorphismh from A to B ex-
tending the partial homomorphismai 7! bi, whereai and
bi are the elements ofA andB occuring ina andb. Since
(A00;B00) establishes strongk-consistency forA andB, it
follows thath is a homomorphism fromA00 to B00. Thus,
b 2 R, which establishes thatR = Ra.

The next result presents the relationship betweenk-
locality and the other tractable cases of non-uniform con-
straint satisfaction considered earlier. Moreover, it asserts
that if CSP(B) is k-local, then there is a polynomial-time
algorithm for finding a solution to a given instance of a
CSP(B).

Theorem 13: LetB be a relational structure over a vocab-
ulary � and letk be a positive integer.

1. If CSP(B) is k-local, then:CSP(B) is expressible ink-
Datalog.

2. If CSP(B) has the globalk-consistency property, then
CSP(B) is k-local.

3. If CSP(B) is k-local, then there is a polynomial-time al-
gorithm that, given a structureA over�, finds a homo-
morphism fromA toB, if one exists.

Proof: (Sketch) The first two parts follow easily from the
definitions, Theorem 8, and Proposition 12. For the third
part, given a structureA over �, one first checks whether
Wk(A;B) 6= ; to determine whether a homomorphism
fromA toB exists. IfWk(A;B) 6= ;, then one can build
a homomorphism fromA to B via a backtrack-free search
that takes at mostO(n) steps; in each step, one has to test
whether strongk-consistency can be established for progres-
sively longer expansionsA� andB� of A andB respec-
tively.

Note that ifCSP(B) is k-local, then the algorithm for
constructing a homomorphism is similar to the algorithm for
constructing a homomorphism in the case where the global
k-consistency property holds. The difference between these
two algorithms is that in the latter case there is a single test
in the beginning to determine whether it is possible to estab-
lish strongk-consistency forA andB, whereas in the case
of k-locality the test as to whether it is possible to estab-
lish strongk-consistency is repeatedly applied to the expan-
sionsA� andB� ofA andB built during the backtrack-free
search.

According to Theorem 13, the globalk-consistency prop-
erty impliesk-locality. We can prove that this implication
cannot be reversed. That is,k-locality is a tractable case
of non-uniform constraint satisfaction that properly contains
the case in which establishing strongk-consistency implies
global consistency. Fork > 2, let HORN k-SAT be the re-
striction of the satisfiability problem tok-CNF formulas in
which every clause is Horn, i.e., it has at most one positive
literal. It is easy to see that HORN k-SAT can be cast as a
non-uniform CSP problemCSP(Bk), where the universe of
Bk is f0; 1g and the relations ofBk encode the truth tables
of Horn clauses with at mostk literals. The proof of the next
result will appear in the full paper.

Theorem 14: Letk > 2 be a positive integer and letBk be
a structure that encodesHORN k-SAT. ThenCSP(Bk) is
k-local, but there is no positive integerl such thatCSP(Bk)
has the globall-consistency property.

As mentioned in the introduction, the globalk-
consistency property is equivalent to a certain closure prop-
erty of the relations ofB, (Feder & Vardi 1999; Jeavons, Co-
hen, & Cooper 1998). Since this closure property is decid-
able, it follows that there is an algorithm to decide whether,
given a structureB, the non-uniform constraint satisfaction
problemCSP(B) has the globalk-consistency property. In
contrast, expressibility ink-Datalog in not known to be a de-
cidable property. We also do not know whetherk-locality is
a decidable property. One way to attack this problem is to
try to relatek-locality to a closure property, as in (Feder &
Vardi 1999; Jeavons, Cohen, & Cooper 1998).
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