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Abstract

The random k-SAT model is extensively used to com-
pare satisfiability algorithms or to find the best settings
for the parameters of some algorithm. Conclusions
are derived from the performances measured on a large
number of random instances. The size of these instances
is, in general, small to get these experiments done in
reasonable time. This assumes that the small size for-
mulas have the same properties as the larger ones. We
show that small size formulas have at least a charac-
teristic that makes them relatively easier than the larger
ones (beyond the increase in the size of the formulas).
This characteristic is the redundancy. We show, exper-
imentally, that the irredundant formulas are harder for
both complete and incomplete methods. Besides, the
randomly generated formulas tend to be naturally irre-
dundant as their size becomes larger. Thus, irredundant
small formulas are more suitable for testing algorithms
because they better reflect the hardness of the larger
ones.

Introduction

Random k-SAT problems are widely used to benchmark
SAT algorithms. This is because the hardest instances of this
class of problems are empirically well identified (Mitchell,
Selman, & Levesque 1992; Larabee & Tsuji 1993). Indeed,
these problems have a satisfiability phase transition behav-
ior. Hence, as for many NP-Complete problems having the
same behavior, the hardest formulas are located at the mid-
dle of this phase transition i.e. at a ratio of clauses to vari-
ables approximately equal to

�������
for 3-SAT for example.

The main interest of this class of problems is that they pro-
vide researchers working on the design of algorithms for
SAT, with an inexhaustible source of hard problems to test
their solving methods. Most of these algorithms, either be-
longing to the category of complete or incomplete methods,
require the setting of one or several parameters. To find the
optimal setting for these parameters, statistical methods, us-
ing trial-and-error, are generally used. The performance ob-
tained using some parameter setting is measured statistically
by running the candidate algorithm on a large set of random
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formulas. For these measurements to be practically feasi-
ble, the size of the instances must be kept relatively small.
The best settings that are derived are generalized to larger
formulas and used as the optimal ones for a candidate solv-
ing method. This generalization assumes that small size and
large size formulas have the same properties and structures.
We show, experimentally, that the small size formulas have
at least one characteristic, beyond their size, that makes them
easier for both complete and incomplete methods. This char-
acteristic is clause redundancy. A clause � is said to be re-
dundant in a CNF formula 	 , if removing � from 	 does
not change the set of solutions of 	 i.e. 	 and 	�

�����
are equivalent. A formula is said to be irredundant if none
of its clauses is redundant. The hardness of random for-
mulas at the phase transition is always implicitly evaluated
with the best known algorithms, and we use the same algo-
rithms to evaluate the hardness of formulas throughout this
paper. The main contribution of this work lies in giving an
empirical evidence of these two facts: irredundant formulas
are harder than redundant ones and, as the number of vari-
ables increases, the formulas become less and less redun-
dant. Indeed, we show that when generated with the usual
model of k-SAT, small size formulas are highly redundant
i.e. have many redundant clauses. The proportion of clauses
that must be removed to make the formulas irredundant de-
creases rapidly and tends to � when the number of variables
tends to infinity. Beside that fact, if redundant clauses are re-
moved from a formula to make it irredundant then this for-
mula becomes, in average, much more difficult for known
solving methods. A straightforward consequence is the fol-
lowing: to design solvers that significantly increase the size
of practically solved formulas one would preferably work on
improving performances on irredundant small formulas.

The problem with irredundant formulas is that they are
hard to generate. They require making many tests of clause
redundancy which is a coNP-complete problem. In spite of
that drawback one can compute and save once for all a large
set of such formulas and use them for measuring the perfor-
mances of a candidate algorithm. We give an algorithm that
generates random irredundant formulas without requiring to
test the irredundancy of all the clauses in the formula every
time a new one is generated.

In this paper, we will consider randomly generated CNF
formulas of fixed length clauses generated using the usual
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way i.e. each clause of length
�

is uniformly chosen at

random and with replacement among the
������� ��� possible

clauses. A CNF formula is a set of clauses conjunctively in-
terpreted. An implicate of a formula 	 is a clause such that
every solution of 	 satisfies the implicate. A prime impli-
cate is an implicate such that no proper subset of literals in
this implicate is an implicate itself. An implicant of a for-
mula is a conjunction of literals that satisfies this formula.
For a clause � , we denote by � be the set of unit clauses
� 	�
�	�
 ��� . We denote by ��
�� the ratio of the number of
clauses to the number of variables. All the results reported
here apply to 3SAT but some informal experiments make us
believe they apply to kSAT in general.

The paper is organized as follows: in the next section
the irredundant formulas are empirically shown to be harder
than the redundant ones, then the number of redundant
clauses is shown to tend to � when the number of clauses
increases indefinitely and at last an algorithm for generating
irredundant formulas is described.

Irredundant formulas and solving methods
We first, empirically, evaluate the hardness of the irredun-
dant formulas with respect to the 3SAT formulas generated
using the usual model. More precisely, we compare the dif-
ficulty of each formula 	 in a sample of randomly generated
formulas with the difficulty of an irredundant subset of the
clauses of 	 equivalent to 	 .

Considering the fact that a clause � is redundant in a for-
mula 	 if and only if � is an implicate of 	 
 � ��� , to test
the redundancy of this clause, the satisfiability of the for-
mula ����� 	 
 ��������� � is tested. � is redundant in 	
if and only if the formula � is unsatisfiable. For a randomly
generated 3CNF formula 	 , an equivalent irredundant for-
mula 	������ �"! is computed according to the following steps:

1. Initialize 	����#�#�"! with 	 .

2. For each clause � � 
 	 �$�#� �"! , the satisfiability of the for-
mula � 	������ �"! 
 �%�&�'� �%� is tested.

3. if the latter formula is unsatisfiable then remove � � from	(����� �"! .

4. Continue with the next clause.

The resulting set of clauses 	 ����� �"! depends on the order
in which the clauses are examined. We used, merely, the
chronological order in which the clauses of 	 are gener-
ated. Although this order is fixed, every irredundant formula
equivalent to some random formula 	 has equal chances to
be generated since 	 could be generated equally likely with
any clause order.

On WalkSAT
We used the version of walksat described in (McAllester,
Selman, & Kautz 1997) to test the hardness of irredundant
formulas on local search methods. For every generated satis-
fiable formula 	 , the ratio of the performances of walksat on	��$�#�#�)! to the performances on 	 is computed. The same pa-
rameters setting of walksat are used to solve 	 and 	����#�#�"! .

As parameters, we used the Rnovelty heuristic at a noise
level of � � * and measured the mean number of flips on + �
tries for each formula. For each formula 	 , we compute the
ratio of the mean number of flips needed to solve 	 ���#�#�"! to
the mean number of flips needed to solve 	 . The figures 1,
2 represent the mean and the median1 of this ratio as a func-
tion of �,
�� for different numbers of variables. Each point
was computed using + � ��� instances. Irredundant formulas
prove to be harder in a range of clauses to variables ratio that
depends on the number of variables and that is in the vicinity
of the phase transition. For a given � , when �,
-� increases,
the increase in the average difficulty of 	��$�#�#�)! with respect
to 	 follows the increase of the number of redundant clauses
removed from 	 (as will be shown in the next section). It is
important to be aware that even if the redundancy decreases
in function of the number of variables, the ratio of mean
number of flips may increase because � increases. Anyhow,
this ratio is equal to + if 	 and 	 �$�#� �"! are equal, which is the
case when the number of variables tends to infinity. Figure
3 shows that the difficulty of solving increases as a function
of the number of redundant clauses removed.
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Figure 1: Median ratio (irredundant/redundant) of the num-
ber of flips in walksat as a function of C/V and for different
numbers of variables

Let us stress the fact that this result does not mean that
walksat fails on this type of formulas but proves that, when
the parameters tuned to solve the redundant formulas are
used, the irredundant ones require much more efforts to be
solved. Walksat might be tuned to solve these formulas more
efficiently but this would prove that experiments on small re-
dundant formulas are not suitable to find the best parameters.

Intuitively, it is not surprising that these formulas are
tricky for walksat. Indeed, the main difficulty that local
search procedures have to face is that they are often stuck
in local minima with few contradicted clauses. Most of the
work that have been deployed to improve the performance
of these procedures has consisted in finding noise strategies

1The median of a set of numbers is obtained by sorting the num-
bers and retaining the number in the middle of the list (or by av-
eraging the two numbers in the middle of the list if it is of even
length).
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Figure 2: Mean ratio (irredundant/redundant) of the num-
ber of flips in walksat as a function of C/V and for different
numbers of variables
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Figure 3: Median and mean ratio (irredundant/redundant) of
the number of flips in walksat as a function of the number of
redundant clauses removed (100 variables, 425 clauses)

to escape from these local minima. One can assert this rough
principle: the more a formula has local minima the harder it
is for walksat-like procedures. This is the case for irredun-
dant formulas. Indeed, there exists, for every irredundant
clause, a set of truth assignments that satisfies all the clauses
of the formula except the latter one. Every such truth assign-
ment is a good candidate for being a local minimum that is
almost a solution. In an irredundant formula all the clauses
have such a possible low local minima.

On satz procedure
We tested the performances of algorithms based on the
DPL procedure (Davis & Putnam 1960; Davis, Logemann,
& Loveland 1962) such as CSAT (Dubois et al. 1996;
Boufkhad 1996), POSIT (Freeman 1995), NTAB (Crawford
& Auton 1996). We report the results obtained with one of
the most recent : satz (LI & Anbulagan 1997). The same
conclusions derived here apply to the above algorithms. The
figures 4 and 5 represent the mean and the median of the

ratio of the number of branches needed by satz to solve a
formula 	����#�#�"! to the number of branches needed to solve	 . Irredundant formulas prove to be harder also for satz, in
a range of clauses to variables ratio that depends on the num-
ber of variables and that is in the vicinity of the phase tran-
sition. The same remark made about the relative positions
of the curves in the case of walksat, apply to satz. Figure
6 shows that the difficulty of solving increases linearly as a
function of the number of redundant clauses removed.
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Figure 4: Median ratio (irredundant/redundant) of the num-
ber of branches in a satz tree as a function of C/V and for
different numbers of variables
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Figure 5: Mean ratio (irredundant/redundant) of the num-
ber of branches in a satz tree as a function of C/V and for
different numbers of variables

We compared, in addition, the set of atoms of 	 and of	 ����� �"! . In a majority of formulas they were equal, and were
almost equal in the few remaining formulas. This is impor-
tant to understand the difference of hardness between 	 and	(����� �"! . Indeed, let us denote by � � 	 � the set of variables of
a formula 	 . If � � 	 �%� � � 	 �$�#�#�)! � then for every tree gen-
erated by a DPL-like procedure for 	 �$�#� �"! , there exists an
equal or shorter tree for 	 . This is true because the clauses
that are in 	 but not if 	������ �"! may cut some nodes in the tree
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Figure 6: Median and mean ratio (irredundant/redundant) of
the number of branches in a satz tree as a function of the
number of redundant clauses removed (100 variables, 425
clauses)

of 	(���#�#�"! . In addition, if 	������ �"! is satisfiable then any impli-
cant of 	��$�#� �"! is an implicant of 	 and the possible node of
the solution in the tree of 	 ����� �"! need not to be extended to
satisfy the clauses in 	 
 	������ �"! .

When 	 is inconsistent, 	 �$�#� �"! is an inconsistent kernel of	 that is harder to solve than 	 , though there are methods
that exploit the existence of an inconsistent kernel (Mazure,
Saïs, & Grégoire 1996; Bayardo & Schrag 1996) to speed
up proving the inconsistency of a formula. This leads us to
give a necessary condition for an inconsistent kernel to be
helpful for solving methods (which is not the case of 	��$�#�#�)!
with respect to 	 ). Given an inconsistent formula 	 and an
inconsistent subset 	 � of clauses of 	 such that � � 	 � � is
a proper subset of � � 	 � , 	 � may be a helpful inconsistent
kernel of 	 since in the tree of 	 , the nodes that involve only
the variables of the set � � 	 � 
 � � 	 � � can be collapsed. As
a conclusion a helpful inconsistent kernel of a formula 	
must discard variables from 	 to be possibly helpful.

Redundancy in random formulas
Now that we know that irredundant formulas are much
harder, a question that may arise is: how does irredun-
dancy vary in random 3SAT instances? To answer this ques-
tion, we have taken, as measure of redundancy, for a for-
mula 	 generated according to the 3SAT model, the ratio
� � + 
 � 	 ����� �"! �

� 	 � called level of redundancy. 	������ �"! is com-

puted as described in the previous section. We recall that the
chronological order used in the removal of redundant clauses
doesn’t modify the statistical distribution of � since formu-
las 	 have equal chances to be generated with any ordering
of clauses.

As a function of the number of variables

The curve figure 7 represents the variations of the level of re-
dundancy as a function of the number of variables, the ratio

�,
-� being fixed and equal to
�������

the approximate posi-
tion of the phase transition for 3SAT. This variation shows
clearly a decrease in the level of redundancy which tends to� when the number of variables tends to infinity. Together
with the conclusions of the previous section, the fact that
formulas tend to be irredundant with increasing values of the
number of variables, shows clearly that, when the number of
variables increases, the formulas tend to be harder not only
because the number of variables increases but also because
they become less redundant.
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Figure 7: Median level of redundancy � for satisfiable and
unsatisfiable formulas as a function of the number of vari-
ables and for C/V=4.25

For a formula 	 at the phase transition ratio
� � � �

, 	 ����� �"!
is located in the under-constrained region and can be consid-
ered as an exceptionally hard instance (EHI for short) (Gent
& Walsh 1993; Hogg & Williams 1994). For

� � variables, an
unsatisfiable formula in the phase transition has in average a
level of redundancy of � � � * . In constrast, an equivalent irre-
dundant formula would be located in average at a ratio equal
to
� � �

. For unsatisfiable formulas of
� ��� variables, the level

of redundancy is � ����� . The irredundant equivalent formulas
would be located in average at a ratio equal to

��� ���
. This is a

possible explanation for the fact that EHIs were surprisingly
found in (Gent & Walsh 1993) at a ratio ��
�� between + � �
and

�
for

� � variables while in (Crawford & Auton 1996) no
EHI is found at the same range of ratios for

� � � variables.

As a function of the clauses to variables ratio
Figure 8 represents the variations of � as a function of the�,
-� for different values of the number of variables. The
level of redundancy is equal to � for small values of clauses
to variables ratio then first starts to increase from a value
of C/V that depends on � and which we note by � � �"! � � � .
From there, the level of redundancy increases until the phase
transition value. After that, the level of redundancy increases
linearly as a function of the number of clauses since every
clause added to almost every formula is redundant because
almost every formula is then inconsistent.

The threshold of emergence of redundant clauses � �#�"! � � �
increases in function of the number of variables and we con-
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jecture that it tends to the phase transition ratio. The exis-
tence of this threshold is to be related to the length of prime
implicates and their number. Indeed, if the length of the
shortest prime implicates that are not among the clauses of
the formula 	 is greater than the length of the clauses of 	
then the probability that a newly generated clause will be re-
dundant if added to 	 is equal to � , since to be redundant
if added to some formula 	 , a clause must be an implicate
of 	 . Thus the threshold in the emergence of redundancy is
certainly connected to the threshold of emergence of prime
implicates as experimentally shown in (Schrag & Crawford
1996). In contrast, if 	 is inconsistent then the probability
that a newly generated clause is redundant is equal to + . Be-
tween the two extreme situations, this probability increases
as the length of the shortest prime implicates decreases and
their number increases.

When talking about the phase transition phenomenon in
kSAT three regions are, generally, identified and referred
to as under-constrained, critically constrained and over-
constrained regions. The existence of these regions is related
to the number of constraints. But since this number mono-
tonically increases, it is not sufficient to explain the non
monotonicity in the hardness. We give a possibly more ac-
curate picture taking into account, in addition to the number
of constraints, the level of redundancy. The formulas with
few clauses are irredundant but have few constraints which
make them easy. The formulas with a lot of clauses are
very constrained but are highly redundant which makes them
easy. Between these two situations we have constrained and
nearly irredundant formulas which are the hardest. To sum
up, the formulas at the phase transition can be considered as
located in the cross-over between a decreasing irredundancy
and an increasing number of constraints.

An irredundant formulas generator
We describe in this section an algorithm for generating ran-
dom irredundant formulas. The set of clause is initialized
to the empty set then is built by iteratively adding randomly

generated clauses after checking at each step that the result-
ing formula is irredundant. The main problem that has to be
faced is that we have to test, at each step, not only the redun-
dancy of the newly generated clause but also if adding this
clause does not make some other clause, already in the for-
mula, redundant. To avoid doing systematically redundancy
tests for every clause, we use the following fact: for every ir-
redundant clause � in a formula 	 there exists an implicant�

of 	 
 ����� that contradicts � . We call such an implicant a
witness of the redundancy of � in 	 . Let us suppose that, at
some point in the generating process, the current formula 	
is irredundant and we have a witness for every clause. When
a new clause � is generated, its redundancy is tested. If it is
irredundant then the algorithm tests if it is satisfied by every
witness of the clauses already generated. If it is not satisfied
by some witness, we must check if the corresponding clause
is redundant and, if it isn’t, we must find another witness
which satisfies � . The algorithm first tries to modify the
witness, by adding to it new literals, if possible, to satisfy� . If this is not possible then a completely new witness is
searched. If none exists the algorithm rejects the clause � .
These steps are detailed below:

� Check the satisfiability of 	 � � ��� , if it is unsatisfiable
then reject � since it is redundant, otherwise record the
implicant of 	 � � ��� , found by the previous satisfiability
test, as a witness for � .

� If � is not redundant, check if it is satisfied by every wit-
ness of the clauses of 	 . For every witness � � that does
not satisfy � ( � � corresponding to some clause � � ):

1. either there exists a literal of � such that its underlying
variable is not in � � , in which case add this literal to � �
so that � � satisfies 	 � ����� 
 ��� � � .

2. There exists no such literal then check the redundancy
of � � in 	 � ����� . If it is irredundant then the implicant
found by this test will replace the witness of � � other-
wise reject � and reset the witnesses modified by this
step to their previous values.

At the end of these steps the clause � , if not rejected, is
added to the current set of clauses. This algorithm is not
guaranteed to terminate because it may happen that at some
step no clause maintaining the irredundancy is, after many
attempts, randomly selected. One can limit the number of at-
tempts for finding a clause that maintains the irredundancy
if added. If this limit is reached, the generator answers that
it has failed to generate an irredundant formula at the given
number of clauses. This will, for example, stop the algo-
rithm if the formula is unsatisfiable before the required num-
ber of clauses is reached.

Conclusion
We have empirically shown that redundancy is a characteris-
tic that conditions the hardness of the random formulas. We
have given results which show that irredundant formulas are
harder than redundant ones both for local search procedures
and proof procedures such as DPL-like procedures. We also
have exhibited that random formulas become less and less
redundant as their size increases. Since these formulas are



used as benchmarks to compare algorithms and to choose
the best settings for their parameters, one has to be care-
ful no to exploit this characteristic to improve an algorithm.
If an algorithm A exploits only the redundancy to improve
over an algorithm B then the performances of A and B will
converge when the number of variables increases. We sug-
gest to compare algorithms on irredundant random formulas
and to try to improve algorithms on these formulas, instead.
To this end we have given an algorithm of a generator of
irredundant formulas which avoids some clause redundancy
checks.

This work can be generalized by studying the redondancy
in realistic problems and its impact on their hardness. It
would also be interesting to identify the possible other char-
acteristics of this type so that the challenging small size for-
mulas for SAT algorithms will be structurally identical to the
larger ones.
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