
Using Prior Knowledge: Problems and Solutions

Vinay K. Chaudhri, Mark E. Stickel, Jerome F. Thomere, Richard J. Waldinger
{ chaudhri, stickel, thomere, waldinger} @ai.sri.com

Artificial Intelligence Center
SRI International

333 Ravenswood Ave, Menlo Park, CA 94025

Abstract
Encoding knowledge is time consuming and expensive. A
possible solution to reduce the cost of developing a new
knowledge base (KB) is to reuse existing knowledge.
Previous work addressing this problem has focused on
standards for representing, exchanging, and accessing
knowledge (Genesereth and Fikes 1992), (Chaudhri et al.
1998), and on creating large repositories of knowledge
(Lenat and Guha 1990). Results on the level of reuse
achievable have been reported (Cohen et al. 1999). In this
paper, we focus on the process of reuse and report a case
study on constructing a KB by reusing existing knowledge.
The reuse process involved the following steps: translation,
comprehension, slicing, reformulation, and merging. We
discuss technical problems encountered at each of these
steps and explain how we solved them.

Introduction

A possible approach to reduce the cost of developing a new
knowledge base (KB) is to amortize the high cost of
encoding knowledge across multiple projects. To enable
the reuse of knowledge across multiple projects, several
complimentary approaches have been attempted.
Standards for representing, exchanging, and accessing
knowledge have been developed (Genesereth and Fikes
1992),(Chaudhri et al. 1998). Large repositories of
knowledge have been constructed to serve as the starting
point for new KB development (Lenat and Guha 1990).
 This paper is about the process of knowledge reuse that
builds upon the earlier work by starting from an existing
repository of knowledge, and by using the standards for
representing and exchanging knowledge in the
development process. This process is based on an actual
KB construction project, and involved the following steps:
comprehension, translation, slicing, reformulation, and
merging. We discuss technical problems encountered at
each step and how we solved them.

Experimental Setup

The focus for the KB development was defined by the
Crisis Management Challenge Problem (CMCP) (IET et
al. December 1997),(Cohen et al. 1998). The CMCP

Copyright © 2000, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

defined a collection of test questions of interest to an
analyst dealing with an international crisis. The objective
of the KB development task was to assist the analyst in
answering those questions.

The questions were specified using a question grammar.
The grammar consisted of a set of parameterized questions
or PQs, each of which had a large number of instantiations.
An example question is, ‘ ‘ What { risks, rewards} would
<InternationalAgent> face/expect in
<InternationalActionType>?’ ’ . An example instantiation
is, ``What risks can Iran expect in attacking targets in
Saudi Arabia?’ ’ . The KB development included several
test cycles with the test phase based on questions derived
from the question grammar, but not previously seen by the
system developers. A major test cycle was conducted at
the end of the year with several small-scale tests in
between. The results reported here are based on the work
conducted over a period of two years.

Teams led by Teknowledge and SAIC developed the
systems for answering the questions. SRI was a part of the
SAIC team, and this paper concerns primarily the work
conducted at SRI.

The KB was developed using the KIF syntax
(Genesereth and Fikes 1992), augmented with the standard
relation names derived from the OKBC knowledge model
(Chaudhri et al. 1998). SNARK, SRI’s New Automated
Reasoning Toolkit, a first-order theorem prover, was used
as an inference tool to answer the questions (Stickel et al.
1994). The details of the KB content and the inferences
performed are available elsewhere (Chaudhri et al. 2000).

The KB development started from the HPKB upper
ontology (HPKB-UL) that contains roughly 3000 most
general terms derived from the Cyc KB (Lenat 1997). Four
members of the SAIC team -- SRI, Knowledge Systems
Laboratory (KSL), Stanford, Formal Reasoning Group
(FRG), Stanford, and Northwestern University (NWU) --
addressed portions of the CMCP and developed somewhat
independent KBs. After the first year of the project, KSL
Stanford merged the KBs from SRI, KSL Stanford, and
FRG Stanford, and the resulting KB was the starting point
for the development for the second year.

Problems in Reusing Prior Knowledge

The reuse process reported here is a result of the practical
needs of the project. A similar process has been adopted
by others (Valente et al. 1999).

From: AAAI-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

Translation
Translation is the process of taking the well-formed
sentences in one representation language as input and
producing the equivalent well-formed sentences of another
representation language as output. Our translation step
was limited to syntactic transformations and constant
renaming. Any further processing, for example, choosing
alternative syntactic forms in the target representation
language or dealing with representation differences is
handled as a separate step in the reuse process. It is
possible that for some sentences in the input representation
language, there is no equivalent sentence in the output
language. Such a situation did not arise in our application.

The HPKB-UL was available in the MELD format (a
language used by Cycorp) and was not directly readable by
our system. In conjunction with KSL Stanford, we
developed a translator to load the HPKB-UL into any
OKBC-compliant server. Since the HPKB-UL contains
mostly structural information (Pease et al. 2000), this
translator handles structural information in the KB. The
structural information includes classes, functions, relations,
class-subclass relationships, and facets. While doing this
translation, we had to define equivalence between relation
names in the HPKB-UL and the OKBC knowledge model.
For example, the relation #$genls in the HPKB-UL is
equivalent to the relation subclass-of in the OKBC
knowledge model. The translation process benefited
significantly by the existence of the OKBC knowledge
model into which many of the representation constructs
from the HPKB-UL could be mapped. We also converted
the case-sensitive names from the HPKB-UL to case-
insensitive names. For example, the constant name
#$performedBy from the HPKB-UL was mapped to
performed-by. The syntactic translation was a low-effort
engineering task, and accounted for a small fraction of the
KB development time.

Comprehension
Before a knowledge engineer reuses an ontology, its
contents and organization must be understood. Two
techniques enabled ontology comprehension. First, we
used our graphical visualization tool, GKB-Editor (Paley et
al. 1997), to explore the HPKB-UL. The taxonomy and the
relationship browsers of the GKB-Editor were instrumental
in helping us understand the interrelationships between
classes and predicates of the HPKB-UL. During the KB
development process, the GKB-Editor’s browsing
capabilities were extensively used to search for necessary
concepts and to identify the location in the taxonomy for a
new concept. Second, the extensive documentation
accompanying the Integrated Knowledge Base
Environment (IKB) clarified many design decisions and
presented the KB content in many different ways. (IKB is
a portion of the Cyc KB that was distributed to the
participants of the project.) For example, the IKB
documentation included a glossary of terms organized by
domains such as time, space, geography, communication

actions, etc. The IKB also included a search facility that
linked the English words in Wordnet to the corresponding
concept names in the KB.

Slicing
Slicing involves selecting a portion of an input ontology
for use in a new application. Using all of the input
ontology may not be desirable for the following reasons.
First, all of the input ontology may not be needed for a new
application. Second, importing all of it may make the
resulting KB unnecessarily complex. Third, there may be
aspects of the input ontology that the target inference tool
is unable to handle, and that must be removed. Finally,
some of the representation decisions made in the input
ontology may not be acceptable to the target application.

Two technical problems must be solved for slicing.
First, we need to decide what portions of the input
ontology we need to slice. We call the portion of the input
ontology that needs to be extracted the seed. Second, we
need a computational procedure that extracts out just the
right amount of terms from the input ontology.

More formally, an ontology contains a set O of
sentences of the following form.�

 (class X), where X ∈ C, and C is a set of classes�
 (relation X), where X ∈ R, and R is a set of relations�
 (function X), where X ∈ F, and F is a set of functions�
 (individual X), where X∈ I, and I is a set of individuals�
 (subclass-of X Y), where X,Y ∈ C�
 (instance-of X Y), where X ∈ C ∪ I,Y ∈ C�
 (arity X N), where X ∈ R ∪ F, and N is a positive

integer�
 (nth-domain X N Y), where X ∈ R ∪ F, N is a positive

integer, and Y ∈ C�
 (range X Y), where X ∈ F, and Y ∈ C	
 (nth-domain-subclass-of X N Y), where X ∈ R ∪ F, N

is a positive integer less than the arity of R, and Y ∈ C

 (range-subclass-of X Y), where X ∈ F, and Y ∈ C�
 (r X V), where r ∈ R�
 (template-slot-value X Y V), where X ∈ C, Y ∈ R, and

(arity R 2) is in O

The relation symbols class, individual, subclass-of,
instance-of, and template-slot-value have meanings as
defined in the OKBC specification (Chaudhri et al. 1998).
The sentence (class X) means that X is a set or a unary
relation. The sentence (individual X) means that X is not a
set. The sentence (subclass-of X Y) means that the class X
is a subset of class Y. The sentence (instance-of X Y) means
that individual X is a member of the set Y. The sentence
(relation X) means that X is a relation. The sentence
(function X) means that X is a function. Every class is a
unary relation, therefore, C⊆R. The relation symbols
range, and range-subclass-of specify the type restriction on
the value of a function. If (range F C), the value returned
by F must be an instance of the class C. If (range-subclass-

of F C), then the value returned by F must be a sub class of
the class C. The relation arity specifies the number of
arguments of a function or relation. If (arity R 3), the
relation R can have exactly three arguments. The relation
symbols nth-domain and nth-domain-subclass-of specify
the type restriction on the arguments of the functions and
relations. If (nth-domain R i C), then the ith argument of
the relation R must be an instance of the class C. Similarly,
if (nth-domain-subclass-of R i C), the ith argument of the
relation R must be a subclass of C.

The seed S is a set containing sentences of the form
(class X), (relation X), (function X), and (individual X),
where X ∈ C ∪ R ∪ F ∪ I. Based on the knowledge of the
target application, we were able to identify S. At the
beginning of a project, all needed terms may not be
included in S in the initial estimate of S. As the KB
evolves, the seed can be revised. In practice, it was
sufficient to recompute the slice once every six months.

The slice L is a subset of O. We would like to compute L
in a way that all the useful information from the source
ontology is incorporated into the KB being developed. We
call a slice maximal with respect to S if any inferences
involving S that can be performed using O can be
performed using L. We call a slice L that is maximal with
respect to S as minimal with respect to S if there is no L’ ⊂
L that is maximal with respect to S.

A trivial way to compute L is to simply return S. In
general, S is not a maximal slice of O with respect to S. Let
us define an algorithm to compute the maximal slice of O,
with respect to S.

Algorithm MaximalSlice
Input: Input ontology O, and seed S
Output: L, a slice of O, with respect to S
1. Let S’ = { X | (class X) ∈ S, or (relation X) ∈ S, or

(function X) ∈ S, or (individual X) ∈ S}.
2. Set L = S.
3. For every X ∈ S’ , if (nth-domain X N Y) ∈ O, add Y to

S’ , and add (class Y) and (nth-domain X N Y) to L.
4. For every X ∈ S’ , if (nth-domain-subclass-of X N Y) ∈

O, add Y to S’ , and add (nth-domain-subclass-of X N
Y) and (class Y) to L.

5. For every X ∈ S’ , if X ∈ F, and if (range X Y) ∈ O,
add Y to S’ , and add (range X Y) and (class Y) to L.

6. For every X ∈ S’ , if X ∈ F, and if (range-subclass-of X
Y) ∈ O, add Y to S’ , and add (range-subclass-of X Y)
and (class Y) to L.

7. For every X ∈ S’ , if X ∈ C, and if (subclass-of X Y) ∈
O, add Y to S’ , and add (subclass-of X Y) and (class Y)
to L.

8. For every X ∈ S’ , if (instance-of X Y) ∈ O, add Y to S’ ,
and add (instance-of X Y) and (class Y) to L.

9. For every X ∈ S’ , if (r X V) ∈ O, add (r X V) to L. If
(class V) ∈ O, add (class V) to L, and V to S’ . If

(individual V) ∈ O, add (individual V) to L, and V to
S’ .

10. For every X ∈ S’ , if (template-slot-value X r V) ∈ O,
add (template-slot-value r X V) to L. If (class V) ∈ O,
add (class V) to L, and V to S’ . If (individual V) ∈ O,
add (individual V) to L, and V to S’ .

11. Repeat steps 7 through 10 until L does not change.
12. Return L.

The algorithm MaximalSlice works by first determining all
the relevant classes, and then computing their upward
closure in the graph of taxonomic relationships.

Theorem 1: The algorithm MaximalSlice produces a slice
L of O, which is maximal with respect to S.
Theorem 2: The algorithm MaximalSlice is polynomial in
the size of C.

It is possible to produce a smaller slice if one has
additional knowledge about the sorts of axioms that are of
interest for the target application. For example, suppose X
is a subclass-of Y, and Y is a subclass-of Z, and that X is in
the seed, but Y and Z are not. If there is no (template-slot-
value Y r V) sentence in O, and if it is not used in any nth-
domain, nth-domain-subclass-of, range, and range-
subclass-of sentence, it may be dropped from the closure
by asserting X as a subclass-of Z. This does not change
any inferences of interest that can be performed about X.
An example definition of interestingness follows.

Definition 1. A class X is of interest with respect to a seed
S if one of the following holds.

 X is the root of the class-subclass graph�
 The sentence (nth-domain Y N X) is in O, and Y is in S�
 The sentence (nth-domain-subclass-of Y N X) is in O,

and Y is in S�
 The sentence (range Y X) is in O, and Y is in S�
 (range-subclass-of Y X) is in O, and Y is in S�
 (template-slot-value X r V) is in O

Using this definition, one can compute an interesting
superclass of a class X as follows. For every (subclass-of X
Y) sentence in O, the superclass Y is interesting if Y is of
interest. If Y is not of interest check to see if Z is of
interest, where (subclass-of Y Z) is in O. If Z is of interest,
Z is an interesting superclass of X. For a rooted and
connected taxonomy, this process is guaranteed to
terminate. An interesting type of a class or an individual
may be computed analogously.

Algorithm MinimalMaximalSlice
Input: Input ontology O, seed S, and slice L produced by
MaximalSlice
Output: L, a slice of O, with respect to S

1. Steps 1 through 6 are the same as the algorithm
MaximalSlice.

7. For every (subclass-of X Y) in L, compute interesting
parent Z as in Definition 1, add (subclass-of X Z) and
(class Z) to L, and Z to S’ .

8. For every (instance-of X Y) in L, compute interesting
parent Z as in Definition 1, add (instance-of X Z) and
(class Z) to L, and Z to S’ .

9. Steps 9 through 12 are the same as in the algorithm
MaximalSlice.

Theorem 3: The algorithm MinimalMaximalSlice
produces a slice L of O, which is minimally maximal with
respect to S assuming the interestingness of a class as
defined in Definition 1.

During the first year of the project, we used the trivial slice
of the HPKB-UL, that is, we just used the constant names
and documentation strings. During the second year, we
used the MaximalSlice. The motivation for
MinimalMaximalSlice was to argue that while reusing an
ontology, it is not necessary to agree with everything in the
source ontology, especially those terms and representations
that can be sliced away. The terms that can be sliced away
are like the binary code in a compiled program that never
needs to be exposed to the knowledge engineer.

To consider the generality of the results of this section,
let us compare the knowledge model considered here with
some other well-known systems. The relation symbols
taken from the OKBC knowledge model, class, individual,
subclass-of, template-slot-value, and instance-of, or their
equivalents are supported by a wide range of knowledge
representation systems such as LOOM (MacGregor 1991),
Classic (Borgida et al. 1989), and Ontolingua (Farquhar et
al. 1997). Since slots are binary relations, the nth-domain
restriction, for n=1, is equivalent to the domain restriction
on a slot, and for n=2, is equivalent to the value type
restriction. The domain and value type restrictions are
commonly supported. Higher arity relations, functions,
nth-domain-subclass-of, and range-subclass-of are not
supported in the OKBC knowledge model and the
description logic systems such as Classic. The equivalent
relations, for example, arg1Genls, resultGenls, are in the
HPKB-UL, and are used extensively in the Cyc KB.
Numeric and cardinality restrictions on slot values are
supported in the OKBC knowledge model, LOOM, and
CLASSIC, but are not considered here. It is,
straightforward to extend the slicing algorithms to include
numeric and cardinality constraints. Supporting constructs
such as disjoint-with, same-values, not-same-values, etc.
remains open for future work.

Reformulation
Reformulation is the process of taking an input theory and
transforming its representation. Reformulation is

synonymous with morphing (Chalupsky 2000). A common
reason for reformulation is that in the target system the
reformulated theory may be more efficient to reason with
than the original theory. We reformulated the HPKB-UL to
convert every Functional Predicate into functions. We
explain this reformulation in more detail.

HPKB-UL represents the functional relationships as
predicates. For example, even though mother is a function,
it is represented in the HPKB-UL as a relation. Such
predicates are instances of the class Functional Predicate.
There are two differences between using functions and
relations for representing functional relationships.

First, functions are a more compact way to state that the
relationship between two objects is single-valued and that
when a function is applied to an object (or a set of objects),
the value indeed exists (Bundy 1977). To assert the same
information using relations, one needs to also specify that
the cardinality of the relation is 1. Thus, when we represent
mother as a function, we are guaranteed that every
individual has one and only one mother. When we
represent mother by a relation, we do not get any such
guarantees unless we also assert the cardinality constraint.

Second, using functions, the paramodulation rule of
inference can be applied. The benefits of using functions
are enhanced while using equality reasoning. SNARK,
like most theorem provers, uses the paramodulation rule of
inference while reasoning with equality. The
paramodulation rule, given an assertion such as a = b,
allows us to simplify a formula such as (R a) to (R b). If
we use functions instead of relations, it introduces equality
in the KB. For example, (mother sue john) is replaced by
sue = mother (john). SNARK is then able to use the
paramodulation rule of inference for reasoning with such
formulas. The paramodulation rules of inference can
sometimes lead to faster and shorter proofs. But in other
cases, the search space can become larger.

The implementation of this reformulation was
straightforward because we were dealing with only
structural information. Implementing this reformulation for
general axioms remains open for future research.

Merging
Merging involves ensuring that the merged KBs use the
same constant names when they mean the same thing, and
that they represent the same information identically
(McGuinness et al. 2000). Merging assumes the existence
of two independently developed KBs that need to be
combined to produce a new KB. The merging task for our
KB development effort was primarily performed by KSL
Stanford, and the details may be found elsewhere
(McGuinness et al. 2000). The merging step was made
easier by the fact that the KBs were developed using a
standard syntax: ANSI KIF extended by standard relation
names from the OKBC knowledge model. We, however,
needed to invest some effort in resolving the conflicts

arising from the merge. We give here one example of the
representational difference that arose during the merge
process.

The merge process revealed that the KBs developed by
SRI and KSL Stanford both represented situations in which
one agent supports or opposes another. To represent an
action, in which one agent supports another action, say a
terrorist attack, there are two alternatives. First, one can
define a class supporting-terrorist-attack and create an
individual member of this class to represent an instance of
a supporting action. Second, one can define a slot called
supports on the class action, which can take an instance of
terrorist-attack as a value. If the KBs to be merged use
these different representations for supporting actions, then
the merge phase should either use one representation over
the other or add axioms defining equivalence between the
two representations. In the current merge, a meeting was
organized between KSL and SRI to resolve this difference,
and the solution that defines the slot supports on class
action was adopted.

In a KB development project, the merging effort can be
reduced by proactive means. For example, if the
development process is driven by reuse, a global catalogue
for constant names is maintained, and a style guide is
followed for inventing new names, the problem of the
same terms meaning the same thing can be reduced.

Experimental Results on Knowledge Reuse

We have three objectives in presenting the experimental
results: to characterize the KB development process, to
give specific examples of knowledge reuse to highlight that
the results are based on some nontrivial examples of reuse,
and finally to show the level of reuse achieved.

An overview of the KB development process is shown
in Figure 1. The KB development started from the HPKB-
UL. We took a slice of the HPKB-UL that was extended
to create the KB CMCP-98. Two other KBs were
developed independently at Stanford – the Supports KB
was developed by KSL, and the Capability KB was
developed by the Formal Reasoning Group. At the end of
the first year, these KBs were merged to produce a new KB
called the SAIC merged ontology (MO). The development
for the second year of the project started by taking a slice
of the SAIC MO, which was extended to produce CMCP-
99, the KB for the second year.

While interpreting the empirical results presented next it
is helpful to understand the relationship between the test
questions between the two years. During the second year,
many of the questions were repeated from the first year,
and several new questions were introduced. In terms of the
domain content, the test questions during the first year
involved organizations, agents, geographical regions,
products and economic measures. During the second year,
several different kinds of actions, interests and historical
case descriptions were introduced. Even though there was

a substantial overlap in the content, the test problems
differed significantly across the two years.

The HPKB-UL had about 16,434 axioms, and our initial
slice of it contained 446 axioms. The CMCP-98 KB had
5943 axioms. The SAIC merged ontology contained
21,223 axioms. (We have excluded many ground facts
from this count.) The slice of the merged ontology that was
used for the development during the second year contained
5360 axioms. The CMCP-99 KB contained 22,902
axioms. The slice of HPKB-UL was recomputed three
times over a period of two years. The final slice of HPKB-
UL contained 2544 axioms.

To highlight the nature of reuse, we consider two
representations. One of the questions answered by our
system was:

Has post-Shah Iran launched ballistic missiles in wartime?

The upper ontology had a class representing weapons. We
extended it by creating ballistic-missiles as a new subclass
of the class representing weapons that already existed. The
verb ''launch'' in the questions was mapped to the action
attack, which was a subclass of an already existing class
hostile-social-action. The class of actions in the HPKB-
UL had several slots. The slot performed-by on an action
specified the doer of the action, and device-used specified
the tool that was used in performing that action. Finally,
we specified the temporal extent of the question by
defining a constant representing the time reign-of-shah and
then using the temporal comparison starts-after-ending-of,
from the HPKB-UL. The resulting formalization follows:
(and
 (attack ?act)
 (performed-by ?act Iran)
 (device-used ?act ballistic-missile)
 (starts-after-ending-of ?act reign-of-shah))

�������������! #"%$'&)()���*(+���#,-&/.10�2��435��()��67&)859���$:0
85�*&/;���<=<

The formalization of this question reuses primitives for
representing temporal knowledge and slots on actions from
the HPKB-UL. As another example, consider the question:

What risks can Iran expect in sponsoring a terrorist attack
in Saudi Arabia?

To answer questions of this type, one can use a cause effect
model involving five predicates: enables, causes, prevents,
maleficiary, and beneficiary. The predicates enables,
causes, and prevents are based on the common sense
language for reasoning about causation and rational action
previously developed elsewhere (Ortiz 1999). The relation
causes is used to represent the effects that are definitely
caused by an action, enables to represent those actions that
are made possible by an action, and prevents to represent
actions that are prevented by an action. The relation
maleficiary to relate an action to an agent who is harmed
by that action, and beneficiary to relate an action to an
agent who is benefited by that action. Thus, if an ?agent
performs an ?action1 that causes another action ?action2,
and the performer of ?action1 is maleficiary to ?action2,
then ?action2 is a risk in doing ?action1. Similarly, if an
?agent performs an ?action1 that prevents another action
?action2, and the performer of ?action1 is the beneficiary
of the ?action2, then ?action2 is a risk in doing ?action1.
The HPKB-UL contained a predicate cause-event-event
that was equivalent to causes. Adding the predicates
prevents, and enables extended the HPKB-UL. The
predicates beneficiary and maleficiary were reused directly
from the HPKB-UL.

The empirical results that we present here are based on a
reuse metric that was proposed earlier (Cohen et al. 1999).
The metric can be computed for either axioms or constant
names. Suppose a knowledge engineering task requires n
constants and k of those can be reused from an existing
KB; then, k/n measures the extent of reuse of the KB. The
reuse of axioms can be computed analogously. The results
are shown in Table 1.

The table first reports the constant reuse in constructing
the KB CMCP-99, that is, the KB at the end of the project.
We computed the reuse with respect to the HPKB-UL,
CMCP-98, and the pre-evaluation KB, that is the KB that
existed just before the final evaluation at the end of the
second year began. Constants include any class, relation,
function, or individual in the KB. The structural statements
include atomic statements, which use the relations
subclass-of, instance-of, nth-domain, nth-domain-subclass-
of, range-subclass-of, arity, subrelation-of, and disjoint-
with. The first numeric entry of 0.22 means that for
encoding all the structural statements in CMCP-99, 22% of
necessary constant symbols were already in the HPKB-UL.
Similarly, 29% of all the necessary constants for encoding
the statements containing implications were reused from
the HPKB-UL.

The table next reports the level of reuse for axioms that
were actually used in answering the questions. The reuse
for non-ground statements is not reported, because the
number of such statements in the KB was low. The reuse
of the HPKB-UL in actually answering was somewhat
lower than in constructing the KB. There were no
implications in the HPKB-UL, and therefore, it was not
meaningful to report the reuse of implications from it. The
reuse of the pre-evaluation KB in answering the questions
was higher than in constructing the new KB.
>�?A@!BDCFEAG*HJI*KML�LONQPSR4TUKMIV?AWYXDKMZ[LVXD\[]_^/Ca`Jbc?A\)de]_^)C
?AWYXDKMZ[LV?Af*]_g)?ABDBDh%g/L*CMde]iKa?A\/L*jJCMIVkAg)ClL*]_XmKM\/L

n/o R)pYq r�Rsq/tVuYvwpxuzy R n5o R)pYq {Yvw|Aq7y Rw}~q �)u��XD]_^
IxCML*�#CMfx]�]_K
`Jb

� q {Yvw|Yq7vw{
r��

�S������y |xr�q7y o
R)p

� o Rs�
�S������y |xr�q7y o
R)p

����`Jb1�U�%� ��G �A� ��G �A� ��G E*�
��EV`Jb ��G E*� ��G �A� ��G E*�
��IxCM�7CM�Y?AB
`Jb ��G �A� ��G �*� ��G �A�

��� y o � tVuYvwpxu�y R � R)pY :ux{Yy Rw}¡q �)u
¢ vwuxpYq7y o R)p
n/o R)pYq r�Rsq
p � q {Yvw|Yq7vw{xr�� �S������y |xr�q7y o

R)p
����`Jb1�U�%� ��G EA� ��G E*� £%¤ ¥
��EV`Jb ��G ��E ��G �A� ��G �A¦
��IxCM�7CM�Y?AB
`Jb ��G §�� ��G �*§ ��G �A�

The absolute value of these numbers is of less interest than
the observation that the reuse of prior knowledge is indeed
possible. The reuse from the HPKB-UL is especially
interesting because it was not designed with the current
application in mind.

Scope for Future Work

In this project, we reused only constants, and structural
statements from the HPKB-UL, and did not reuse any
statements containing implications and non-ground facts
that were available in IKB. A hypothesis for future work
would be that since our KB shares the upper structure with
IKB, it would enable us to share the implications and non-
ground facts from the HPKB-UL with greater ease.
Exploring this hypothesis would also require us to extend
our work on slicing and reformulation. The slicing
techniques would need to be extended to slice out the
relevant rules. The representation differences are likely to
have a greater impact on rules than they had on the class-
subclass structure; therefore, new reformulation techniques
will need to be developed.

Apart from the technical issues associated with reuse,
there are human issues. Knowledge engineers prefer their

own representations to reusing someone else’s. In many
cases, using different representation does not necessarily
contribute to the overall system and makes it difficult to
scale the scope of a KB. We reuse other people’s software
routinely as long as it is well packaged, has a clear
functionality, and adds value to our work. Doing the same
for knowledge components has been a dream for the
community for a long time, and remains an open challenge
for the knowledge reuse technology.

Summary

We presented a case study in reusing prior knowledge. The
reuse of prior knowledge was done in the following steps:
translation, comprehension, slicing, reformulation, and
merging. The translation tools were developed to convert
a subset of MELD into KIF augmented with standard
relation names from the OKBC knowledge model. The
comprehension phase used graphical visualization tools
and the KB documentation. The slicing techniques were
developed to extract a portion of the existing KB to be
incorporated into the new KB. The representation was
reformulated so that the reused KB can be efficiently
reasoned with. The merging phase involved human
intervention to resolve the representation differences. We
presented several concrete examples of reuse for an
application in the crisis management domain, and
empirically argued that KB construction by reuse from
prior knowledge is indeed feasible. These results present
an advancement of the state of the art of KB construction
methods that start a new development from scratch.

Acknowledgements

This work was supported by DARPA’s High Performance
Knowledge Bases Project. We thank the co-developers of
the CMCP KBs at SAIC, KSL Stanford, FRG Stanford,
and NWU. We thank the developers of the CMCP that
defined the context of the KB development for the project.
We thank Cycorp for making the HPKB-UL available for
use in the project. We also thank the SRI staff members
Charlie Ortiz, and Nina Zumel for their technical
contributions to this work.

References

Borgida, A., Brachman, R. J., McGuinness, D. L., and
Resnick, L. A. (1989). “CLASSIC: A Structural Data
Model for Objects.” Proceedings of the 1989 ACM
SIGMOD International Conference on Management of
Data, Portland, OR, 58-67.

Bundy, A. (1977). “Exploiting the properties of functions
to control search.” D. A. I. Report No. 45, University of
Edinburgh.

Chalupsky, H. (2000). “Ontomorph: A System for
Translation of Symbolic Knowledge.” Seventh

International Conference on Knowledge Reprewentation
and Reasoning, Breckenridge, CO.

Chaudhri, V. K., Farquhar, A., Fikes, R., Karp, P. D., and
Rice, J. P. (1998). “OKBC: A Programmatic Foundation
for Knowledge Base Interoperability.” Proceedings of
the AAAI-98, Madison, WI.

Chaudhri, V. K., Lowrance, J. D., Stickel, M. E., Thomere,
J. F., and Waldinger, R. J. (2000). “Ontology
Construction Toolkit.” , SRI International, Menlo Park,
CA.

 Cohen, P., Chaudhri, V. K., Pease, A., and Schrag, B.
(1999). “Does Prior Knowledge Facilitate the
Development of Knowledge-based Systems.”
Proceedings of the AAAI-99, 221-226.

Cohen, P., Schrag, R., Jones, E., Pease, A., Lin, A., Starr,
B., Gunning, D., and Burke, M. (1998). “The DARPA
High-Performance Knowledge Bases Project.” AI
Magazine, 19(4), 25-49.

Farquhar, A., Fikes, R., and Rice, J. P. (1997). “A
Collaborative Tool for Ontology Construction.”
International Journal of Human Computer Studies, 46,
707--727.

Genesereth, M. R., and Fikes, R. E. (1992). “Knowledge
Interchange Format, Version 3.0 Reference Manual.”
(Logic-92-1).

IET, Alphatech, Pacific Sierra Research, and Cohen, P.
(December 1997). “HPKB year 1 end-to-end challenge
problem specification, version 1.1.”

Lenat, D. B. (1997). “Cyc Public Ontology.”
http://www.cyc.com/cyc-2-1/index.html.

Lenat, D. B., and Guha, R. V. (1990). Building Large
Knowledge-Based Systems, Addison Wesley, Reading,
MA.

MacGregor, R. (1991). “The evolving technology of
classification-based knowledge representation
systems.” Principles of semantic networks, J. Sowa, ed.,
385--400.

McGuinness, D., Fikes, R., Rice, J., and Wider, S. (2000).
“An Environment for Merging and Testing Large
Ontologies.” Seventh International Conference on
Knowledge Representation and Reasoning,
Breckenridge, CO.

Ortiz, C. L. (1999). “A Commonsense Language for
Reasoning about Causation and Rational Action.”
Artificial Intelligence Journal, 111(2), 73-130.

Paley, S. M., Lowrance, J. D., and Karp, P. D. (1997). “A
Generic Knowledge Base Browser and Editor.”
Proceedings of the Ninth Conference on Innovative
Applications of Artificial Intelligence.

Pease, A., Chaudhri, V. K., Farquhar, A., and Lehman, F.
(2000). “Practical Knowledge Representation and
DARPA's High Performance Knowledge Bases Project.”
Proceedings of the 7th International Conference on
Principles of Knowledge Representation and Reasoning,
Brekcenridge, Colorado.

Stickel, M., Waldinger, R., Lowry, M., Pressburger, T.,
and Underwood, I. (1994). “Deductive Composition of
Astronomical Software from Subroutine Libraries.”

Proceedings of the Twelfth International Conference on
Automated Deduction (CADE-12), 341--355.

Valente, A., Russ, T., MacGregor, R., and Swartout, W.
(1999). “Building and (Re)Using an Ontology of Air
Campaign Planning.” IEEE Intelligent Systems, 14(1),
27-36.

