
Reinforcement Learning for Algorithm Selection

Michail G. Lagoudakis
Department of Computer Science

Duke University
Durham, NC 27708

mgl@cs.duke.edu

Michael L. Littman
AT&T Labs – Research and Duke University

Florham Park, NJ 07932
mlittman@research.att.com

Many computational problems can be solved by multi-
ple algorithms, with different algorithms fastest for different
problem sizes, input distributions, and hardware character-
istics. We consider the problem ofalgorithm selection: dy-
namically choose an algorithm to attack an instance or sub-
instances (due to recursive calls) of a problem with the goal
of minimizing the overall execution time. We formulate the
problem as a kind of Markov Decision Process (MDP), and
use ideas from reinforcement learning (RL) to solve it.

The process’ state consists of a set of instance features,
such as problem size. Actions are the different algorithms
we can choose from. Non-recursive algorithms are ter-
minal in that they solve the problem completely (terminal
state). Recursive algorithms create subproblems and there-
fore cause transitions to other states, making the task a se-
quential decision task. The immediate cost of a decision
is the real time taken for executing the selected algorithm
on the current instance, excluding time taken in recursive
calls. Thus, the total (undiscounted) cost during an episode
is the time taken to solve the problem. The goal is a policy
that minimizes the total cost/time. This process differs from
a standard MDP as it allows one-to-many state transitions
(multiple recursive calls at one level).

Our initial experiments focus on the problem oforder
statistic selection: given an array ofn (unordered) numbers
and some indexi, select the number that would ranki-th
if the array were sorted. We picked two algorithms such
that neither is best in all cases, otherwise learning would not
help. DETERMINISTIC SELECT (D) is anO(n) recursive al-
gorithm and HEAP SELECT (H) is anO(n logn) algorithm
that performs best for indices close to 1 orn. The process’
state consists of the sizen and the distanced of the indexi
from the closest end of the array (assuming symmetry). The
value of choosingH at some states = [n; d] is simply the
time it takes to solve the corresponding instance, since this
is a terminal algorithm. The optimal value of choosingD
can be expressed in terms of other state-action values:

Q ([n; d]; D) = min
a=fH;Dg

fQ ([n=5; n=10]; a)g+

min
a=fH;Dg

fQ
�
[n0; d0]; a

�
g+R ([n; d]; D) ;

whereR(s; a) is the immediate cost of choosing actiona
in states, andn0 � 7n=10 + 6. The states[n=5; n=10]

Copyright c
 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

and[n0; d0] correspond to the two recursive calls ofD. This
Bellman equation resembles the recurrence equation for the
running time of DETERMINISTIC SELECT (Cormen, Leiser-
son, and Rivest 1990):

T (n) � T (dn=5e) + T (7n=10 + 6) +O(n):

Our learning rule is a variation of Q-learning that combines
Monte-Carlo (MC) and Temporal Difference (TD) learning:
Q(s; a) = (1� �)Q(s; a) +

�

��
R(s; a) +R�(sn=5)

�
+min

a0

�
Q(s0; a0)

	�
;

whereR�(s) is the total cost of solving the subproblems
using the current greedy policy (no exploration). Thus, the
smaller subproblem is effectively pushed into the immediate
cost (MC) and the bigger one is used for bootstrapping (TD).

We trained the system on thousands of randomly gener-
ated inputs of size 10000 and various indices, using an1� �
policy and decreasing learning rate. Results are shown be-
low. The “cut-off point algorithm” usesH when the index
is within the first 13% or the last 7% of the input (as sug-
gested by the plot), andD otherwise. The learned algorithm
performs better with one exception due to the lack of the
assumed symmetry. Additional results and extensions are
available (Lagoudakis and Littman 2000).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

Index

Ti
m

e
(s

ec
)

Heap Select

Deterministic
 Select

 Learned
Algorithm

Cut−off Point
 Algorithm

References
Cormen, T.H.; Leiserson, C.E.; and Rivest R.L. 1990.Intro-
duction to Algorithms. Cambridge, Mass: MIT Press.

Lagoudakis, M.G., and Littman, M.L. 2000. Algorithm Se-
lection using Reinforcement Learning. InProceedings of the
Sixteenth International Conference on Machine Learning.
AAAI Press. To appear.

From: AAAI-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

