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Research Overview 
Multi-agent Systems (MAS) meld the research fields of 
Distributed Computing and Artificial Intelligence into a 
field called Distributed Artificial Intelligence (DAI).  MAS 
fit nicely into domains that are naturally distributed and 
require automated reasoning to solve problems.  Sensible 
Agents are one MAS designed for domains with a high 
level of dynamism and uncertainty.  A central problem in 
MAS is finding the correct organizational structure for the 
agents (e.g. hierarchical, peer group, etc.) in which 
responsibilities to plan for and execute goals are allocated.  
In dynamic situations, it is unreasonable to expect a single 
organizational structure to be appropriate at all times.  For 
proof of this, one needs only look at human management 
theory and practice.  Human corporations often reorganize 
to face new environmental conditions.  Sensible Agents 
attack this problem with Dynamic Adaptive Autonomy 
(DAA), which allows them to reorganize themselves 
during runtime to solve different problems in the face of a 
changing environment.   
Some specific research that has contributed to flexible, 
adaptive multi-agent coordination includes partial global 
planning (Durfee and Lesser, 1987), organizational self-
design (Ishida et al., 1992), STEAM flexible teamwork 
(Tambe, 1997), and RETSINA matchmaking (Sycara and 
Pannu, 1998). However, these techniques do not 
specifically adapt agent planning-interaction styles. 

DAA allows agents to dynamically form, modify, and 
dissolve goal-oriented problem-solving agreements with 
other agents in a robust and flexible manner.  As a member 
of a problem-solving organization, Sensible Agents 
establish their role in interacting with others by selecting 
an autonomy level for each goal they intend to pursue: (1) 
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Command driven—agent does not plan but obeys orders 
given by another agent, (2) Consensus—agent works as a 
team member to devise plans, (3) Locally Autonomous / 
Master—the agent plans alone, unconstrained by other 
agents, and may or may not give orders to command-
driven followers. 

Each Sensible Agent (Barber et al., 2000) is composed of 
the following components: (1) the Action Planner; (2) the 
Perspective Modeler; (3) the Conflict Resolution Advisor; 
and (4) the Autonomy Reasoner.  Domain-specific 
information, processing rules, and state are restricted to the 
Action Planner module, while remaining modules are 
domain-independent. 

Sensible Agents are capable of performing: (1) trade-off 
assessment regarding the impact of local decision-making 
and goal satisfaction on system objectives, (2) their own 
behaviors by planning for a goal (local or system) and/or 
executing actions to achieve the goal, (3) group behaviors 
by forming binding autonomy agreements (e.g. consensus 
groups, master agent planning for group of command-
driven agents) (4) self-organization by determining the best 
problem-solving organization, autonomy level, to 
optimally satisfy a goal, and (5) preferential learning for 
associating autonomy levels to situations.   

Demonstration 
The Sensible Agent Testbed provides an infrastructure of 
well-defined, publicly available interfaces where 
distributed agents operate and communicate. The end-user 
can interact with the testbed from the viewpoint of (1) the 
environment, by defining scenarios and injecting 
contingencies, or (2) the decision maker, by participating 
in planning and execution and receiving assistance from 
other Sensible Agents. 

Sensible Agent capabilities will be demonstrated in the 
naval radar frequency management (NRFM) domain.  This 
domain requires maintaining a set of position and 
frequency relationships among geographically distributed 
radars such that radar interference is minimized. Radar 
interference occurs primarily when two or more radars are 
operating in close proximity at similar frequencies.  For a 
typical group of naval ships, it may take hours or days for a 
human assisted by a rule-based system to determine an 
optimal position and frequency.  Unfortunately, the 
environment typically changes much faster than the human 
can respond.  Local decisions impact the entire system, 
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requiring tradeoffs between local goal (e.g. keep my radars 
interference free) and system goals (e.g. keep radars in my 
group of ships interference free). 

The NRFM Sensible Agent demonstration is used to 
determine the performance of Sensible Agents under 
different problem solving organizations.  Agents monitor a 
naval radar for interference from external sources, and, if 
interference is detected, attempt to eliminate it by working 
alone or with others (Goel et al., 1998).  Several different 
operating scenarios are demonstrated.  Each Sensible 
Agent has the following capabilities: 
Communication: the ability to send messages to another 
agent and to asynchronously respond to sent messages.  
Communication takes the form of (1) requesting/supplying 
information, (2) forming Autonomy Level Agreements, (3) 
reporting a conflict, (4) reporting a solution to a conflict.   
Sensing: the ability to sense the position of other ships.  
Agents can also sense their level of interference, but cannot 
sense the source.  If an agent detects interference it initiates 
problem solving to minimize the interference. 
Environmental modeling: the ability to maintain an 
internal, local, model of the agent’s world, separate from 
the simulation model of the world.  Each agent is aware of 
the initial state of the system (ship positions and 
frequencies), however as the simulation progresses, an 
agent’s local model may deviate from the world model.  
The agents use communication and sensing to update their 
local models.   
Planning: the ability to plan at each of the autonomy 
levels described above.  Successful planning for this 
problem hinges on an agent’s ability to determine 
interference-free frequency assignments.  Agents do this by 
modeling the spectrum of available frequencies and the 
necessary frequency differences (delta frequencies) for 
each known pair of radars.  Agents then attempt to make 
assignments that meet all delta-frequency constraints 
within the restricted frequency space.  Three algorithms are 
available to each agent’s planner and are associated with 
the appropriate autonomy level classification.  
 An agent attempting to resolve interference in a locally 
autonomous fashion will plan alone.  The agent will use its 
internal world model to find a frequency that is likely to be 
interference-free. The frequencies of other radars in the 
system are modeled as constraints on the search process.  If 
no frequencies are found, searching continues at regular 
time intervals until one is found or a random “deadlock” 
time limit is reached.  If the agent determines that the 
system is in deadlock (with respect to its interference 
state), it will choose a random frequency to pull the system 
out of deadlock.   
 Only the master plans in a master/command-driven 
relationship.  If the master or its command-driven agents 
are experiencing interference, the master attempts to 
eliminate the interference through iterative assignments.  
First, it chooses its own frequency in the manner described 
above, but without considering the frequencies of its 
command-driven agents as constraints.  It then determines 
an interference-free frequency for each command-driven 

agent, adding these frequencies as constraints, until all 
assignments have been made.  If no set of satisfying 
assignments is found, the planning process is restarted.  
Once a solution has been found, the assignments are passed 
to the command-driven agents.  Command-driven agents 
may report back to the master if they are still experiencing 
interference after the assignment.  This may occur when 
the master’s internal model does not match the world state.  
 Each agent involved in consensus interaction plays an 
equal part in determining frequency assignments.  First, 
each agent independently carries out the master/command-
driven planning algorithm with the other members of the 
consensus group treated as command-driven agents.  At the 
conclusion of this phase, each agent proposes its solution 
to the rest of the consensus group during a synchronization 
phase.  Each agent includes an estimate (based on its 
internal model) of the expected interference for each radar.  
Each consensus member deterministically selects the 
proposal with the least amount of estimated interference, 
and the agents assign frequencies accordingly. 
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