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Abstract

Much work in AI deals with the selection of proper actions in
a given (known or unknown) environment. However, the way
to select a proper action when facing other agents is quite un-
clear. Most work in AI adopts classical game-theoretic equi-
librium analysis to predict agent behavior in such settings.
Needless to say, this approach does not provide us with any
guarantee for the agent. In this paper we introduce compet-
itive safety analysis. This approach bridges the gap between
the desired normative AI approach, where a strategy should
be selected in order to guarantee a desired payoff, and equi-
librium analysis. We show that a safety level strategy is able
to guarantee the value obtained in a Nash equilibrium, in sev-
eral classical computer science settings. Then, we discuss the
concept of competitive safety strategies, and illustrate its use
in a decentralized load balancing setting, typical to network
problems. In particular, we show that when we have many
agents, it is possible to guarantee an expected payoff which
is a factor of 8/9 of the payoff obtained in a Nash equilib-
rium. Finally, we discuss the extension of the above concepts
to Bayesian games, and illustrate their use in a basic auctions
setup.

Introduction

Deriving solution concepts for multi-agent encounters is a
major challenge for researchers in various disciplines. The
most famous and popular solution concept in the economics
literature is the Nash equilibrium. Although Nash equilib-
rium and its extensions and modifications are powerful de-
scriptive tools, and have been widely used in the AI liter-
ature (see e.g. (Rosenschein & Zlotkin 1994; Kraus 1997;
Sandholm & Lesser 1995)), their appeal from a normative
AI perspective is somewhat less satisfactory.1 We wish
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1If we restrict ourselves to cases where there exists an equilib-
rium in dominant strategies (as is done in some of the CS literature;
see e.g. (Nisan & Ronen 1999)) then the corresponding equilib-
rium is appealing from a normative perspective. However, such
cases rarely exist.

to equip an agent with an action that guarantees some de-
sired outcome, or expected utility, without relying on other
agents’ rationality.

This paper shows that, surprisingly, the desire for ob-
taining a guaranteed expected payoff, where this payoff
is of the order of the value obtained in a Nash equilib-
rium, is achievable in various classical computer science
settings. Our results are inspired by several interesting ex-
amples for counter-intuitive behaviors obtained by follow-
ing Nash equilibria and other solution concepts (Roth 1980;
Aumann 1985). One of the most interesting and challeng-
ing examples has been introduced by Aumann (Aumann
1985). Aumann presented a 2-person 2-choice (2× 2) game
g, where the safety-level (probabilistic maximin) strategy of
the game is not a Nash equilibrium of it, but it does yield
the expected payoff of a Nash equilibrium of g. This obser-
vation may have significant positive ramifications from an
agent’s design perspective. If a safety-level strategy of an
agent guarantees an expected payoff that equals its expected
payoff in a Nash equilibrium, then it can serve as a desirable
robust protocol for the agent!

Given the above, we are interested in whether an optimal
safety level strategy leads to an expected payoff similar to
the one obtained in a Nash equilibrium of simple games that
represent basic variants of classical computer science prob-
lems. As we show, this is indeed the case for 2 × 2 games
capturing simple variants of the classical load balancing and
leader election problems.

A more general question refers to more general 2 × 2
games. We show that if the safety-level strategy is a (strictly)
mixed one, then its expected payoff is identical to the ex-
pected payoff obtained in a Nash equilibrium in any generic
non-reducible 2×2 game. We also show that this is no longer
necessarily the case if we have a pure safety-level strat-
egy. In addition, we consider general 2-person set-theoretic
games (which naturally extend 2× 2 leader election games)
and show that if a set-theoretic game g possesses a strictly
mixed strategy equilibrium then the safety level value for a
player in that game equals the expected payoff it obtains in
that equilibrium.

Following this, we define the concept of C-competitive
safety strategies. Roughly speaking, a strategy will be called
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a C-competitive safety strategy, if it guarantees an expected
payoff that is 1

C of the expected payoff obtained in a Nash
equilibrium. We show that in an extended decentralized load
balancing setting a 9/8-competitive strategy exists, when the
number of players is large. We also discuss extensions of
this result to more general settings. Then, we discuss C-
competitive strategies in the context of Bayesian games. In
particular we show the existence of an e-competitive safety
strategy for a classical first-price auctions setup.

Previous work has been concerned with comparing the
payoffs that can be obtained by an optimal centralized (and
Pareto-efficient) controller to the expected payoffs obtained
in the Nash-equilibria of the corresponding game (Koutsou-
pias & Papadimitriou 1999). That work is in the spirit of
competitive analysis, a central topic in theoretical computer
science (Borodin & El-Yaniv 1998). Our work can be con-
sidered as suggesting a complementary approach, compar-
ing the safety-level value to the agent’s expected payoff in
a Nash equilibrium. Needless to say that in computational
settings, where failures are possible, and rationality assump-
tions about participants’ behavior should be minimized, a
safety-level strategy has a special appeal, especially when it
yields a value that is close to the expected payoff obtained
in a Nash equilibrium.

Basic definitions and notations

A game is a tuple G = 〈N =
{1, . . . , n}, {Si}n

i=1, {Ui}n
i=1〉, where N is a set of n

players, Si is a finite set of pure strategies available to
player i, and Ui : Πn

i=1Si → � is the payoff function of
player i.

Given Si, we denote the set of probability distributions
over the elements of Si by ∆(Si). An element t ∈ ∆(Si) is
called a mixed strategy of player i. It is called a pure strategy
if is assigns probability 1 to an element of Si, and it is called
a strictly mixed strategy if it assigns a positive probability to
each element in Si. A tuple t = (t1, . . . , tn) ∈ Πn

i=1∆(Si)
is called a strategy profile. We denote by Ui(t) the expected
payoff of player i given the strategy profile t.

A strategy profile t = (t1, . . . , tn) is a Nash equilibrium
if ∀i ∈ N , Ui(t) ≥ Ui(t1, t2, . . . , ti−1, t

′
i, ti+1, . . . , tn) for

every t′i ∈ Si. The Nash equilibrium t = (t1, . . . , tn) is
called a pure strategy Nash equilibrium if ti is a pure strat-
egy for every i ∈ N . The Nash equilibrium t = (t1, . . . , tn)
is called a strictly mixed strategy Nash equilibrium if for ev-
ery i ∈ N we have that ti is a strictly mixed strategy.

Given a game g and a mixed strategy of player i, t ∈
∆(Si), the safety level value obtained by i when choos-
ing t in the game g, denoted by val(t, i, g), is the mini-
mal expected payoff that player i may obtain when employ-
ing t against arbitrary strategy profiles of the other players.
A strategy t′ of player i for which val(., i, g) is maximal
is called a safely-level strategy (or a probabilistic maximin
strategy) of player i.

A strategy e ∈ Si dominates a strategy f ∈ Si if for ev-
ery (s1, s2, . . . , si−1, si+1, . . . , sn) ∈ Πj �=i∆(Sj) we have

Ui(s1, . . . , sj−1, e, sj+1, . . . , sn) ≥
Ui(s1, . . . , sj−1, f, sj+1, . . . , sn), with a strict inequality
for at least one such tuple.

A game is called non-reducible if there do not exist e, f ∈
Si, for some i ∈ N , such that e dominates f . A game
is called generic if for every i ∈ N , and pair of strategies
e, f ∈ Πn

j=1Sj , we have that Ui(e) = Ui(f) only if player
i’s strategies in e and f coincide.

A game is called a 2×2 game if n = 2 and |S1| = |S2| =
2.

Decentralized load balancing

In this section we consider decentralized load balancing,
where two rational players need to submit messages in a
simple communication network: a network of two parallel
communication lines e1, e2 connecting nodes s and t. Each
player has a message that he needs to deliver from s to t,
and he needs to decide on the route to be taken. The com-
munication line e1 is a faster one, and therefore the value
of transmitting a single message along e1 is X > 0 while
the value of transmitting a single message along e2 is αX
for some 0.5 < α < 1. Each player needs to decide on
the communication line to be used for sending its message
from s to t. If both players choose the same communication
line then the value for each one of them drops in a factor of
two (a player will obtain X

2 if both players choose e1, and a
player will obtain αX

2 if both players choose e2). In a matrix
form, this game can be presented as follows:

M =
(

X/2, X/2 X, αX
αX, X αX/2, αX/2

)

Proposition 1 The optimal safety-level value for a player
in the decentralized load balancing game equals its expected
payoff in the strictly mixed strategy equilibrium of that game.

The proof of the above proposition appears in the full pa-
per. The above proposition shows that an agent can guar-
antee itself an expected payoff that equals its payoff in a
Nash equilibrium of the decentralized load balancing game.
This is obtained using a strategy that differs from the agent’s
strategies in the Nash equilibria of that game (which do not
provide that guarantee).

Leader election: decentralized voting

In a leader election setting, the players vote about the iden-
tity of the player who will take the lead on a particular task.
A failure to obtain agreement about the leader is a bad out-
put, and can be modelled as leading to a 0 payoff. Assume
that the players’ strategies are either “vote for 1” or “vote
for 2”, denoted by a1, a2 respectively, then Ui(aj , ak) > 0,
where i, j, k ∈ {1, 2}, and j �= k. Notice that this setting
captures various forms of leader election, e.g. when a player
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prefers to be selected, when it prefers the other player to be
selected, etc. In a matrix form, this game can be presented
as follows (where a, b, c, d > 0):

M =
(

a, b 0, 0
0, 0 c, d

)

Proposition 2 The optimal safety-level value for a player
in the leader election game equals its expected payoff in the
strictly mixed strategy equilibrium of that game.

The proof of the above proposition appears in the full pa-
per. The above proposition shows that a agent can guaran-
tee itself an expected payoff that equals its payoff in a Nash
equilibrium of the leader election game. As in the decentral-
ized load balancing game, this is obtained using a strategy
that differs from the agent’s strategies in the Nash equilibria
of that game (which do not provide that guarantee).

Safety level in general 2 × 2 games

The results presented in the previous sections refer to 2-
person 2-choice variants of central problems occurring in
computational contexts. However, it is of interest to see
whether these can be extended to other forms of 2×2 games.
It is easy to observe that both the load balancing and the
leader election settings can be represented as non-reducible
generic 2 × 2 games. The same is true with regard to the
game presented by Aumann:

M =
(

2, 6 4, 2
6, 0 0, 4

)

We can now show:

Theorem 1 Let G be a 2 × 2 non-reducible generic game.
Assume that the optimal safety level value of a player is ob-
tained by a strictly mixed strategy, then this value coincides
with the expected payoff of that player in a Nash equilibrium
of G.

Sketch of proof: Denote the strategies available to the
players by a1, a2. Use the following notation: a =
U1(a1, a1), b = U1(a1, a2), c = U1(a2, a1), d =
U1(a2, a2), e = U2(a1, a1), f = U2(a1, a2), g =
U2(a2, a1), h = U2(a2, a2)

If a strictly mixed strategy Nash equilibrium exists then it
should satisfy that:

qa + (1 − q)b = qc + (1 − q)d
and

pe + (1 − p)g = pf + (1 − p)h

where p and q are the probabilities for choosing a1 by
players 1 and 2, respectively.

We get that we should have qa + b − qb = qc + d − qd,
which implies that q(a − b − c + d) = d − b. Similarly, we
get that we should have pe + g − pg = pf + h− ph, which
implies that p(e − g − f + h) = h − g.

Hence, in a strictly mixed strategy Nash equilibrium we
should have:

q =
d − b

a − b − c + d
and

p =
h − g

e − g − f + h

Notice that since the game is generic then d �= b. If d > b
then if q is not in between 0 and 1 then c > a which will
contradict non-reducibility. If d < b then in if q is not in
between 0 and 1 then a > c, which also contradicts non-
reducibility. Similarly, since the game is generic then h �= g.
If h > g then if p is not in between 0 and 1 then f > e which
will contradict non-reducibility. If h < g then in if p is not
in between 0 and 1 then e < f , which also contradicts non-
reducibility.

Given the above we get that p and q define a strictly mixed
strategy equilibrium of G.

Consider now the safety level strategy of player 1. If
player 1 chooses a1 with probability p′ then it satisfies that:

p′a + (1 − p′)c = p′b + (1 − p′)d

This implies that we need to have p′a + c − p′c = p′b +
d − p′d, which implies p′(a − c − b + d) = d − c. Hence,
we have

p′ =
d − c

a − c − b + d
and

1 − p′ =
a − b

a − c − b + d

Compute now the expected payoff for player 1 in the
strictly mixed Nash equilibrium, given that 1 − q =

a−c
a−b−c+d , we have that:

qa + (1 − q)b =
(d − b)a + (a − c)b

a − b − c + d
=

da − cb

a − b − c + d

The expected payoff of the safety level strategy for player
1 will be:

p′a + (1 − p′)c =
(d − c)a + (a − b)c

a − b − c + d
=

da − cb

a − b − c + d

Hence, we get that the expected payoffs of the Nash equi-
librium and the safety level strategies for player 1 coincide.
The computation for player 2 is similar.
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The case of pure safety-level strategies

The reader may wonder whether the previous result can be
also proved for the case where there are no restrictions on
the structure of the safety-level strategy of the game g. As
we now show, there exists a generic non-reducible 2 × 2
game g, where the optimal safety level strategy for a player
is pure, and the expected payoff for that player is lower than
the expected payoff for that player in all Nash equilibria of
g.

Consider a game g, where U1(1, 1) = 100, U1(1, 2) =
40, U1(2, 1) = 60, U1(2, 2) = 50, and U2(1, 1) =
100, U2(1, 2) = 210, U2(2, 1) = 200, U2(2, 2) = 90. In
a matrix form this game looks as follows:

M =
(

100, 100 40, 210
60, 200 50, 90

)

It is easy to check that g is generic and non-reducible. The
game has no pure Nash equilibria. In a strictly mixed strat-
egy equilibrium the probability q of choosing a1 by player
2 should satisfy 100q + 40(1 − q) = 60q + 50(1 − q), i.e.
that 60q + 40 = 10q + 50, q = 0.2. In that equilibrium the
probability that player 1 will choose a1 is p = 0.5, and the
expected payoff of player 1 is 100q + 40(1 − q) = 52. The
safety-level strategy for player 1 is to perform a2, guarantee-
ing a payoff of 50, given that (a2, a2) is a saddle point in a
zero-sum game where the payoffs of player 2 are taken to be
the complement to 0 of player 1’s original payoffs. Hence,
the value of the safety level strategy for player 1 is 50 < 52.

Beyond 2 × 2 games

The leader election game is an instance of a more general
set of games: set-theoretic games. In a set theoretic game
the sets of strategies available to the players are identical,
and the payoff of each player is uniquely determined by the
set of strategies selected by each player. For example, in
a 2-person set-theoretic game we will have that U1(s, t) =
U1(t, s), U2(s, t) = U2(t, s) for every s, t ∈ S1 = S2. No-
tice that set-theoretic games are very typical to voting con-
texts.

We can prove the following:

Proposition 3 Given a 2-person set theoretic game g with a
strictly mixed strategy Nash equilibrium, then the value of an
optimal safety level strategy of a player equals its expected
payoff in that equilibrium.

The proof of the above proposition appears in the full
paper. Notice that the proposition considers games with a
strictly mixed strategy Nash equilibrium. The proposition
does not hold without this restriction.

Competitive safety strategies

Let S be a set of strategies. Consider a sequence of games
(g1, g2, . . . , gj , . . . ) where i is a player at each of them, its
set of strategies at each of these games is S, and there are j
players, in addition to i, in gj . As an example, consider a se-
quence of decentralized load balancing settings. The (n−1)-
th game in this extended load-balancing setting will consist
of n players, one of them is i. The players submit their mes-
sages along e1 and e2. The payoff for player i when partic-
ipating in an n-person decentralized load balancing game is
X
k (resp. αX

k ) if he has chosen e1 (resp. e2) and additional
k − 1 participants have chosen that communication line.

A mixed strategy t ∈ ∆(S) will be called a C-competitive
safety strategy if there exists some constant C > 0, such that

lim
j→∞

nash(i, gj)
val(t, i, gj)

≤ C

where nash(i, gj) is the lowest expected payoff player i
might obtain in some equilibrium of gj , and val(t, i, gj) is
the expected payoff guaranteed for i by choosing t is the
game gj .

The extended decentralized load balancing setting is a
typical and basic network problem. If C is small, a C-
competitive safety strategy for that context will provide a
useful protocol of behavior.

We can show:

Theorem 2 There exists a 9/8-competitive safety strategy
for the extended decentralized load-balancing setting.

Sketch of proof: Consider the following strategy profile
for the players in an n-person decentralized load balancing
game: players {1, 2, . . . , 
 1

1+αn�} will choose e1, and the
rest will choose e2. W.l.o.g we assume that i = 1 is the
player for which we will make the computation of expected
payoffs. It is easy to verify that the above strategy profile
is an equilibrium of the game, with an expected payoff for
player i that is bounded above by

X(1 + α)
n

(∗)
.

Consider now the following strategy t for player i: se-
lect e1 with probability α

1+α and select e2 with probability
1

1+α . It is easy to see that t (if adopted by all participants)
is not a Nash equilibrium. However, we will show that it is
a competitive safety strategy for small C > 0 . Consider
an arbitrary number of participants n, where β(n−1) of the
other (i.e. excluding player i) n−1 participants use e2 while
the rest use e1, for some arbitrary 0 ≤ β ≤ 1. The expected
payoff obtained using t will be:

1
1 + α

αX

β(n − 1) + 1
+

α

1 + α

X

(1 − β)(n − 1) + 1
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This value is greater or equal to:

1
1 + α

αX

βn + 1
+

α

1 + α

X

(1 − β)n + 1

The above equals

Xα

1 + α
[

1
βn + 1

+
1

(1 − β)n + 1
]

Simplifying the above we get:

Xα

1 + α

n + 2
(1 + βn)(n − βn + 1)

= (∗∗)

Dividing (*) by (**) we get that the ratio is:

(1 + α)2

α

(β − β2)n2 + n + 1
n(n + 2)

When n approaches infinity the above ratio approaches

(1 + α)2

α
(β − β2)

Given that 0.5 ≤ α < 1 and 0 ≤ β ≤ 1 we get that the
above ratio is bounded by 9/8 as desired.

Extensions: Arbitrary speeds and m links

In this section we generalize the result obtained in the con-
text of decentralized load balancing to the case where we
have m parallel communication lines leading from source to
target. The value obtained by the agent (w.l.o.g. agent 1)
when submitting its message along line i, where ni agents
have decided to submit their messages through that line is
given by X·αi

ni
, where 1 = α1 ≥ α2 ≥ · · · ≥ αm > 0.

Our extension will enable to handle the general binary
case where 0 < α < 1, as well as to discuss cases where
a safety level strategy can be very effective in the general
m-lines situation.

Using the ideas developed for the case m = 2, we can
now show:

Theorem 3 There exists a Σm
i=1αiΣ

m
i=1Πj �=iαj

m2Πm
i=1αj

–competitive
safety strategy for the extended decentralized load-
balancing setting, when we allow m (rather than only 2)
parallel communication lines, and arbitrary αi’s.

The proof of Theorem 3, as well as of the following corol-
laries appear in the full paper.

In the general binary case, where α1 = 1, and α2 = α,
where 0 < α ≤ 1, the above implies the existence of an

(1 + α)2

4α

competitive strategy.

Corollary 1 Given an extended load balancing setting,
where m = 2, with arbitrary speeds of the communication
lines (0 < α ≤ 1), there exists a 4

3 -competitive strategy.

Consider now the general m-links (i.e. m parallel com-
munication lines) case. The average network quality (or
speed), Q, can be defined as Σm

i=1αi

m . A network will be
called k-regular if Q

αm
≤ k. Many networks are k-regular

for small k. For example, if αm ≥ 0.5 as before, then the
network is 2-regular regardless of the number of edges.

Corollary 2 Given a k-regular network, there exists a k-
competitive safety strategy for the extended decentralized
load-balancing setting, when we allow m (rather than only
2) parallel edges.

Together, Theorem 3 and corollaries 1 and 2 extend the
results on decentralized load balancing to the general case
of m parallel communication lines.

Competitive safety analysis in Bayesian games

The results presented in the previous sections refer to games
with complete information. Similar ideas however can be
applied to games with incomplete information. We now
show the use of competitive safety strategies in games with
incomplete information. We have chosen to consider a very
basic mechanism, the first-price auction. The selection of
first-price auction is not an accident. Auctions are funda-
mental to the theory of economic mechanism design, and
among the auctions that do no possesses a dominant strat-
egy, assuming the independent private value model, first-
price auctions are probably the most common ones.

We consider a setting where a good g is put for sale, and
there are n potential buyers. Each such buyer has a valuation
(i.e. maximal willingness to pay) for g that is drawn from a
uniform distribution on the interval of real numbers [0, 1].
The valuations are assumed to be independent from one an-
other. In a first price auction, each potential buyer is asked
to submit a bid for the good g. We assume that the bids of
a buyer with valuation v is a number in the interval [0, v].2
The good will be allocated to the bidder who submitted the
highest bid (with a lottery to determine the winner in a case
of a tie).

The auction setup can be defined using a Bayesian game.3

In this game the players are the potential bidders, and the
payoff of a player with valuation v is v − p if he wins the
good and pays p, and 0 if he does not get the good. The
equilibrium concept can be also extended to the context of
Bayesian games. In particular, in equilibrium of the above

2In general, buyers may submit bids that are higher than their
valuations, but these strategies are dominated by other strategies,
and their existence will not effect the equilibrium discussed in this
paper.

3A formal definition and exposition of Bayesian games in our
context will be presented in the full paper
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game the bid of a player with valuation v is (1 − 1
n )v. Fol-

lowing the revelation principle, discussed in the economic
mechanism design literature, one can replace the above-
mentioned first-price auction with the following auction:
each bidder will be asked to reveal his valuation, and the
good will be sold to the bidder who reported the highest val-
uation; if agent i who reported valuation v′ will turn out to
be the winner then he will be asked to pay (1− 1

n )v′. It turns
out that reporting the true valuation is an equilibrium of that
auction, and that it will yield (in equilibrium) the same allo-
cation and payments as the original auction. It is convenient
to consider the above revelation mechanism, since when fac-
ing any number of participants, a bidder’s strategy in equi-
librium will always be the same.

A first-price auction setup will be identified with a se-
quence of (Bayesian) games (g1, g2, . . . ) where gj is the
Bayesian game associated with (the revelation mechanism
of) first-price auction with j + 1 potential buyers. The defi-
nition of C-competitive strategies can now be applied to the
above context as well.

The proof of the following appears in the full paper:

Theorem 4 There exists an e-competitive strategy for the
first-price auction setup.

Our result can be obtained also if we consider standard
first-price auctions, rather than the revelation mechanisms
associated with them; nevertheless, this will require to allow
a player to choose its action knowing the number of potential
bidders.

Discussion

Some previous work in AI has attempted to show the po-
tential power of decision-theoretic approaches that do not
rely on classical game-theoretic analysis. In particular, work
in theoretical computer science on competitive analysis has
been extended to deal with rationality constraints (Tennen-
holtz 2001), in order to become applicable to multi-agent
systems. We introduced competitive safety analysis, bridg-
ing the gap between the normative AI/CS approach and clas-
sical equilibrium analysis. We have shown that an observa-
tion, which is of great interest from a descriptive perspective
to economists, can be extended and generalized to provide a
powerful normative tool for computer scientists and AI re-
searchers interested in protocols for non-cooperative envi-
ronments. We have illustrated the use and power of com-
petitive safety analysis in various contexts. We have shown
general results about 2 × 2 games, as well as about games
with many participants, and introduced the use of competi-
tive safety analysis in the context of decentralized load bal-
ancing, leader election, and auctions. Notice that our work
is concerned with a normative approach to decision mak-
ing in multi-agent systems. We make no claims as for the
applicability of this approach for descriptive purposes. Al-
though there exists much literature on the failure of Nash
equilibrium, it is still the most powerful concept for action
prediction in multi-agent systems.

References
Aumann, R. 1985. On the non-transferable utility value:
A comment on the Roth-Shaper examples. Econometrica
53(3):667–677.

Borodin, A., and El-Yaniv, R. 1998. On-Line Computation and
Competitive Analysis. Cambridge University Press.

Koutsoupias, E., and Papadimitriou, C. 1999. Worst-Case Equi-
libria. In STACS.

Kraus, S. 1997. Negotiation and cooperation in multi-agent envi-
ronments. Artificial Intelligence 94:79–97.

Nisan, N., and Ronen, A. 1999. Algorithmic mechanism design.
Proceedings of STOC-99.

Rosenschein, J. S., and Zlotkin, G. 1994. Rules of Encounter.
MIT Press.

Roth, A. E. 1980. Values for games without side payments: Some
difficulties with current concepts. Econometrica 48(2):457–465.

Sandholm, T. W., and Lesser, V. 1995. Equilibrium Analy-
sis of the Possibilities of Unenforced Exchange in Multiagent
Syustems. In Proc. 14th International Joint Conference on Ar-
tificial Intelligence, 694–701.

Tennenholtz, M. 2001. Rational Competitive Analysis. In Proc. of
the 17th International Joint Conference on Artificial Intelligence,
1067–1072.

AAAI-02    409


