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Abstract

This paper studies the accuracy/efficiency trade-off in proba-
bilistic diagnosis formulated as finding the most-likely expla-
nation (MPE) in a Bayesian network. Our work is motivated
by a practical problem of efficient real-time fault diagnosis
in computer networks using test transactions, or probes, sent
through the network. The key efficiency issues include both
the cost of probing (e.g., the number of probes), and the com-
putational complexity of diagnosis, while the diagnostic ac-
curacy is crucial for maintaining high levels of network per-
formance. Herein, we derive a lower bound on the diagnostic
accuracy that provides necessary conditions for the number
of probes needed to achieve an asymptotically error-free di-
agnosis as the network size increases, given prior fault prob-
abilities and a certain level of noise in probe outcomes. Since
the exact MPE diagnosis is generally intractable in large net-
works, we investigate next the accuracy/efficiency trade-offs
for very simple and efficient local approximation techniques,
based on variable-elimination (the mini-bucket scheme). Our
empirical studies show that these approximations ”degrade
gracefully” with noise and often yield an optimal solution
when noise is low enough, and our initial theoretical analysis
explains this behavior for the simplest (greedy) approxima-
tion. These encouraging results suggest the applicability of
such approximations to certain almost-deterministic diagnos-
tic problems that often arise in practical applications.

Introduction
Accurate diagnosis of some unobserved states of the world
from the outcomes of some measurements, or tests, is one
of the most common problems occurring in practice. Nu-
merous examples include medical diagnosis, computer trou-
bleshooting, airplane failure isolation, noisy channel coding,
and speech recognition, just to name a few. However, an ac-
curate diagnosis often comes at a cost of large number of
tests or a computationally expensive inference. Thus, our
objective is to develop cost-efficient approaches to diagno-
sis that yield a good trade-off between the solution accuracy
and the computational efficiency.

A practical motivation for our work is the problem of
fault diagnosis in distributed computer systems by using a
selected set of probes, or test transactions, that can be sent
through the network in order to provide information about
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its components (e.g., a probe can be ping or traceroute com-
mand, test email message, or web-page access request). A
set of probe outcomes (e.g., response times or return codes)
can be used to diagnose the states of system components.
The rapid growth of distributed computer systems and net-
works in size and complexity makes fault diagnosis an in-
creasingly challenging task, and requires extremely efficient
inference techniques. The key efficiency issues include min-
imizing both the number of probes (tests) and the computa-
tional complexity of diagnosis while maximizing its accu-
racy. From a theoretical prospective, we wish to investigate
the achievable limits of diagnostic accuracy for given levels
of noise and fault probabilities.

We approach the problem from a probabilistic prospec-
tive and use the graphical probabilistic framework called
Bayesian (belief) networks (Pearl 1988) that provides a com-
pact representation for multivariate probabilistic distribu-
tions and allows for efficient inference techniques. Given
a set of observations (e.g., probe outcomes), the diagnosis
problem can be formulated as finding the most-likely vec-
tor of states of all unobserved nodes (e.g., network com-
ponents), called the most-likely explanation (MPE). Clearly,
there are alternative formulations of the diagnosis problem,
such as, for example, finding the posterior probability distri-
bution for each node and selecting the k most-likely faults.
However, in this paper, we focus on the MPE formulation,
which is in our view a more general approach that does not
make any additional assumptions (e.g., about the number
of faults). This approach is sometimes criticized as being
too complex and computationally intractable; note, however,
that updating the probability of a single node is also an NP-
hard problem (Cooper 1990) that can be (in the worst case)
as time consuming as finding an MPE. This is exactly why
the main focus of this paper is on approximation techniques
and their accuracy/efficiency trade-offs.

The complexity of inference is usually associated with
large probabilistic dependencies recorded during inference
(clique size, or induced width)(Dechter 1996). Thus, a pop-
ular approximation approach is to restrict the complexity by
focusing only on local interactions. We investigated the per-
formance of two local inference techniques, greedy-mpe and
approx-mpe(1), which are the simplest members of the para-
metric family of variable-elimination algorithms known as
mini-bucket approximations (Dechter & Rish 1997; 2002).

560    AAAI-02 

From: AAAI-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved. 



The mini-bucket scheme is closely related to other local ap-
proximations, such as iterative belief propagation (IBP) and
generalized belief propagation (GBP) algorithms (Yedidia,
Freeman, & Weiss 2001), that recently became the state-of-
the-art approximation techniques successfully used in prac-
tical applications such as probabilistic error-correcting cod-
ing (Frey & MacKay 1998). The mini-bucket algorithms
can be viewed as simplified, non-iterative versions of those
approaches. The reason for focusing on the mini-bucket
scheme instead of those more popular techniques was our
desire to gain a theoretical understanding of the empirical
success of the mini-bucket scheme on problems with low-
noise (nearly-deterministic) dependencies, reported both in
this paper and in the existing literature (Dechter & Rish
1997; 2002). Also, we hope that a theoretical understand-
ing of very simple local approximations can later provide us
with insights for the analysis of more complicated iterative
approximations1.

In this paper, we (1) propose a Bayesian network formula-
tion for the problem of fault diagnosis in distributed systems
using probes; (2) derive a bound on the diagnosis accuracy
and analyze it with respect to the problem parameters such
as noise level and the number of tests, suggesting feasible
regions when an asymptotic (with problem size) error-free
diagnosis can be achieved; (3) evaluate empirically the per-
formance of two efficient local approximation schemes with
respect to network parameters, such as the level of noise;
and (4) provide some theoretical explanation of the accu-
racy vs. noise relation. In summary, the accuracy of diag-
nosis is affected both by the quality of a model (diagnosis
error based on the exact MPE solution) and by the accu-
racy of approximation to MPE. Our results suggest that the
quality of approximation is higher for higher-quality (i.e.,
higher-MPE) models, and that it ”degrades gracefully” with
increasing noise. On the other hand, the computational com-
plexity of the approximation used here is linear in the num-
ber of nodes, instead of exponential for exact inference. We
conclude that simple local inference algorithms provide a
promising approach to handling large-scale diagnosis, espe-
cially for low-noise problems often encountered in various
practical application areas.

The rest of the paper is structured as follows. The next
section provides background information on Bayesian net-
works and defines the fault diagnosis problem. Then, in the
subsequent section, a theoretical bound on the diagnosis ac-
curacy is derived. Next, we analyze the complexity of di-
agnosis and study the approximation schemes. The paper
concludes with a summary and discussion of related work.

Background and problem formulation
As a motivating application, we consider a particular prob-
lem of network fault diagnosis using probes, although most
of our results can be applied in a more general setting. Let
us assume simplified model of a computer network where

1To the best of our knowledge, existing theoretical analysis of
IBP and GBP properties is mostly focused on their convergence
but does not address directly their behavior on low-noise problems
(Weiss 2000; Yedidia, Freeman, & Weiss 2001).

Figure 1: A two-layer Bayesian network structure for a set
X = (X1, X2, X3) of network elements and a set of probes
T = (T1, T2).

each node (router, server, or workstation) can be in one of
two states, 0 (fault) or 1 (no fault). The states of n network
elements are denoted by a vector X = (X1, ..., Xn) of unob-
served Boolean variables. Each probe, or test, Tj , originates
at a particular node (probing workstation) and goes to some
destination node (server or router). We also make an as-
sumption that source routing is supported, i.e. we can spec-
ify the probe path in advance. A vector T = (T1, ..., Tm)
of observed Boolean variables denoting the outcomes (0 -
failure, 1 - OK) of m probes. Lower-case letters, such as
xi and tj , denote the values of the corresponding variables,
i.e. x = (x1, ..., xn) denotes a particular assignment of
node states, and t = (t1, .., tm) denotes a particular out-
come of m probes. We assume that the probe outcome is
affected by all nodes on its path, and that node failures are
marginally independent. These assumptions yield a causal
structure depicted by a two-layer Bayesian network, such as
one shown in Figure 1. The network represent a joint prob-
ability P (x, t):

P (x, t) =
n∏

i=1

P (xi)
m∏

j=1

P (tj |pa(tj)), (1)

where P (tj |pa(tj)) is the conditional probability distribu-
tion (CPD) of node Ti given the set of its parents Pai, i.e.
the nodes pointing to Ti in the directed graph, and P (xi) is
the prior probability that Xi = xi. Formally, a Bayesian net-
work BN over a set of variables X1, ..., Xk is a tuple (G,P)
where G is the directed acyclic graph encoding the indepen-
dence assumptions of the joint distribution P (X), and where
P = {P (xi|pa(xi))} is the set of all CPDs.

We now specify the quantitative part of those network,
i.e. the CPDs P (tj |pa(tj)). In general, a CPD defined
on binary variables is represented as a k-dimensional ta-
ble where k = |Pa(tj)|. Thus, just the specification com-
plexity is O(2k) which is very inefficient, if not intractable,
in large networks with long probe path (i.e. large par-
ent set). It seems reasonable to assume that each element
on the probe’s path affects the probe’s outcome indepen-
dently, so that there is no need to specify the probability
of Ti for all possible value combinations of Xi1 , ..., Xik

(the assumption known as causal independence (Pearl 1988;
Heckerman & Breese 1995)). For example, in the absence of
uncertainty, a probe fails if and only if at least one node on
its path fails, i.e. Ti = Xi1 ∧ ...∧Xik

, where ∧ denotes log-
ical AND, and Xi1 , ..., Xik

are all the nodes probe Ti goes

AAAI-02    561



through; therefore, once it is known that some Xij
= 0, the

probe fails independently of the values of other components.
In practice, however, this relationship may be disturbed by
”noise”. For example, a probe can fail even though all nodes
it goes through are OK (e.g., if network performance degra-
dation leads to high response times interpreted as a failure).
Vice versa, there is a chance the probe succeeds even if a
node on its path is failed, e.g. due to routing change. Such
uncertainties yield a noisy-AND model which implies that
several causes (e.g., node failures) contribute independently
to a common effect (probe failure)and is formally defined as
follows:

P (t = 1|x1, . . . , xk) = (1 − l)
n∏

xi=0

qi, and (2)

P (t = 1|x1 = 1, ..., xk = 1) = 1 − l, (3)

where l is the leak probability which accounts for the cases
of probe failing even when all the nodes on its path are OK,
and the link probabilities, qi, account for the second kind
of ”noise” in the noisy-AND relationship, namely, for cases
when probe succeeds with a small probability qi even if node
Xi on its path fails2.

Once a Bayesian network is specified, the diagnosis task
can be formulated as finding the maximum probable expla-
nation (MPE), i.e. a most-likely assignment to all Xi nodes
given the probe outcomes, i.e. x∗ = arg maxx P (x|t).
Since P (x|t) = P (x,t)

P (t) , where P (t) does not depend on
x, we get x∗ = arg maxx P (x, t).

Accuracy of diagnostis
In this section, we will derive a lower bound on the diag-
nosis error. Note that the bound is not tight in many cases,
and defines only necessary conditions for the asymptotically
error-free diagnosis. Identifying tighter error bounds and
thus more accurate conditions for error-free MPE diagnosis
appears to be a much harder problem and remains a direction
for future work 3

The error of the MPE diagnosis, denoted ErrMPE , is de-
fined (similarly to 0/1 classification error) as the probability
of making a mistake, i.e. the probability P (X �= X∗(T))
that the diagnosis vector X∗(T) differs from the true state
of unknown variables, a random vector X (by its definition

2Note that this noisy-AND definition is equivalent to the noisy-
OR definition in (Pearl 1988; Henrion et al. 1996) if we replace
every value by its logical negation (all 0’s will be replaced by 1’s
and vice versa). We also note that instead of considering the leak
probability separately, we may assume there is an additional ”leak
node” always set to 0 that affects an outcome of a probe Ti accord-
ing to its link probability (1 − li).

3This problem can be viewed as an asymptotic error analysis of
a constrained code, where the probe outcomes ”encode” the node-
state vector, but the encoding is restricted by the nature of probes
(logical-AND functions of node states) and by the network topol-
ogy constraints on the possible set of probes. Note that well-known
information-theoretic result, the Shannon’s limit (Shannon 1948;
Cover & Thomas 1991)), provides the asymptotic error for MAP
decoding in case of unconstrained codes; extending this result to a
particular type of a constrained code may not be straightforward.

as the most-likely explanation, X∗(T) is the deterministic
function of the random probe vector T, assuming a deter-
ministic tie-breaking rule given multiple MPEs). Then, by
the rule of total probability, we get

ErrMPE = P (X �= X∗(T)) =
∑
x,t

P (x �= x∗(t),x, t) =

∑
x,t

P (x, t)P (x �= x∗(t)|t).

Since P (x �= x∗(t)|t) = Ix�=x∗(t), where Is is the indicator
function (Is = 1 if s = true and Is = 0 otherwise), we
obtain

ErrMPE =
∑
x,t

P (x, t)Ix�=x∗(t) = (4)

∑
t

(1 − P (x∗(t)|t)) = 1 −
∑
t

P (x∗(t), t). (5)

From now on, we will use x∗ as a shorthand for x∗(t).
Assumptions. In order to simplify our further analysis, we
will use the following notation. We denote as p the max-
imum prior probability over all nodes and their possible
states, i.e. p = maxi max{P (Xi = 0), 1 − P (Xi = 0)}.
For example, we may assume that all nodes have same
prior probabilities, and that p > 0.5 is the probability of
being in the OK state (p = P (Xi = 1)). Also, we
denote as α0 the maximum conditional probability value
(over all test variables and their corresponding parent as-
signments) attained when a test outcome is 0, namely,
α0 = maxi maxpa(ti) P (ti = 0|pa(ti)). Similarly, we
define α1 = maxi maxpa(ti) P (ti = 1|pa(ti)). Then we
get P (x∗, t) = maxx

∏n
j=1 P (xj)

∏m
i=1 P (ti|pa(ti)) ≤

≤ pn
∏

ti=0 α0

∏
ti=1 α1 = pnαr

0α
m−r
1 , where r is the

number of ti = 0 in t. Since there are
(
m
r

)
vectors t having

exactly r variables Ti assigned ti = 0, we obtain

∑
t

P (x∗, t) ≤ pn
m∑

r=0

(
m

r

)
αr

0α
m−r
1 = pn(α0 + α1)m (6)

and therefore, we get ErrMPE = 1 −
∑

t P (x∗, t) ≥
LMPE , where LMPE is the lower bound on the MPE di-
agnosis error. Thus, we just proved the following

Lemma 1 Given Bayesian network BN=(G,P) defining a
joint distribution P (x, t) as specified by the equation 1,
the MPE diagnosis error is given by ErrMPE = 1 −∑

t P (x∗, t) ≥ LMPE , and

LMPE = 1 − pn(α0 + α1)m = 1 − [p(α0 + α1)m/n]n, (7)

where p = maxi max{P (Xi = 0), 1 − P (Xi = 0)}, and
αk = maxi maxpa(ti) P (ti = k|pa(ti)).

Our next question is whether an error-free diagnosis is
achievable asymptotically with n → ∞. We will assume
a constant test rate k = m/n (inspired by similar notion
of code rate measuring the redundancy added to the input
signal in order to decrease the decoding error in noisy chan-
nel coding). From the lower bound on the diagnosis error
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(expression 7), we get the following necessary condition of
(asymptotic) error-free diagnosis:

lim
n→∞

[p(α0 + α1)k]n → z, (8)

where the limit z must satisfy z ≥ 1. This is equivalent to

p(α0 + α1)k ≥ 1 ⇔ (α0 + α1)k ≥ 1/p. (9)

Note that 1 ≤ 1/p ≤ 2 and 1 ≤ α0 + α1 ≤ 2. The largest
1/p = 2 (the ”worst case” in terms of diagnostic error) cor-
responds to uniform priors P (Xi). Then, in order to achieve
an error-free diagnosis, it is necessary to have k ≥ 1, i.e.
m ≥ n. In general, from 9 we get the following condition
on the ”amount of redundancy”, or ”code rate” k = m/n,
necessary for the error-free diagnosis (note that the condition
may not be sufficient for actually achieving zero error since
we still have to investigate when the lower bound LMPE is
achievable):

LMPE = 0 ⇔ k = m/n ≥ log(1/p)
log(α0 + α1)

(10)

Applying the lemma 1 to the particular case of noisy-
AND diagnosis with probing, we get the following

Corollary 2 Given Bayesian network BN=(G,P) defining
a joint distribution P (x, t) as specified by the equation
1, where all nodes Xi have same prior probability p =
P (Xi = 0) ≤ 0.5, and where all P (tj |pa(tj)) are noisy-
AND CPDs having same link probability q, leak probability
l, and the number of parents r, the MPE diagnosis error is
at least

LM = 1 − (1 − p)n((1 − l)(1 − qr) + 1)m. (11)

Note that in the absence of noise (l=0 and q=0) we get
LM = 1 − (1 − p)n2m, thus, for uniform fault priors,
p = 0.5, an error-free MPE diagnosis is only possible
if n = m, as we noted before; however, for smaller p,
zero-error can be achieved with smaller number of probes.
Namely, solving LM ≤ 0 for m yields the necessary con-
dition for zero lower bound, m ≥ −n log(1−p)

log(1+(1−l)(1−qr)) ,
plotted in Figure 2 as a function of p. Generally, solving
LM ≤ 0 for m provides a way of specifying the minimum
necessary number of probes that yield zero lower bound for
a specified values of other parameters4. Also, the expression
11 error (bound) increases with increasing number of nodes
n, fault probability p, leak probability l, and link probabil-
ity q, but decreases with increasing number of probes m and
probe route length r, which agrees with ones intuition that
having more nodes on probe’s path, as well as a larger num-
ber of probes, provides more information about the true node
states.

Diagnosis complexity and approximations
We focus first on the MPE diagnosis in the absence of noise
(i.e., for deterministic test outcomes). The deterministic

4Clearly, finding a set of probes that may actually achieve the
bound, if such set of probes exists, is a much harder task.

Figure 2: Minimum number of probes m to guarantee zero
error bound, versus fault prior p: low prior yields lower than
n = 15 number of probes.

CPDs reduce to a set of constraints imposed by the test out-
comes on the values of X1, ..., Xn. For example, in the
fault diagnosis domain, each probe outcome Ti = ti im-
poses a logical-AND constraint ti = xi1 ∧ ... ∧ xik

on the
values of its parent nodes Xi1 , ..., Xik

. The MPE diagno-
sis becomes a constrained optimization problem of finding
x∗ = arg maxx1,...,xn

∏n
j=1 P (xj) subject to those con-

straints. In a particular case of uniform priors P (xj), di-
agnosis is reduced to solving a constraint satisfaction prob-
lem. The problem can also be cast as a constraint satisfaction
rather than optimization if there exist a unique solution sat-
isfying the constraints (see (Brodie, Rish, & Ma 2001) for
more details on how to construct such probe sets).

Although constrained optimization and constraint satis-
faction problems (CSPs) are generally NP-hard, it is inter-
esting to note that the probing domain yields a tractable set
of constraints.
Proposition 3 A set of constraints tj = xj1 ∧ ... ∧ xjk

,
j = 1, ..., m over a set of variables X1, ..., Xn, where
xi ∈ {0, 1}, tj ∈ {0, 1} for i = 1, ..., n and j = 1, ..., m,
defines a propositional Horn theory, and can be, therefore,
solved in O(n) time by the unit-propagation algorithm

Indeed, each successful probe yields a constraint xi1 ∧ ... ∧
xik

= 1 which implies xi = 1 for any node Xi on its path;
the rest of the nodes are only included in constraints of the
form xi1∧...∧xik

= 0, or equivalently, ¬xi1∧...∧¬xik
= 1

imposed by failed probes which yields a Horn theory (i.e.
a conjunction of clauses, or disjuncts, where each disjunct
includes no more than one positive literal. Thus, a O(n)-
time algorithm assigns 1 to every node appearing on the path
of a successful probe, and 0 to the rest of nodes. This is
equivalent to applying unit propagation to our Horn theory.

In the presence of noise, the MPE diag-
nosis task can be written as finding x∗ =
arg maxx1 . . .maxxn

∏
i P (xi|pai) =

= arg max
x1

F1(x1) . . .max
xn

Fn(xn, Sn), (12)

where each Fi(xi,Si) =
∏

xk
P(xk|pa(xk)) is the product

of all probabilistic components involving Xi and a subset of
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lower-index variables Si ⊆ {X1, ...,Xi−1}, but not involv-
ing any Xj for j > i. The set of all such components is also
called the bucket of Xi (Dechter 1996). An exact algorithm
for finding MPE solution, called elim-mpe (Dechter 1996),
uses variable-elimination (also called bucket-elimination) as
a preprocessing: it computes the product of functions in the
bucket of each variable Xi, from i = n to i = 1 (i.e.,
from right to left in the equation 12), maximizes it over
Xi, and propagates the resulting function f(·) to the bucket
of its highest-order variable. Once variable-elimination is
completed, the algorithm finds an optimal solution by a
backtrack-free greedy procedure that, going from i = 1 to
i = n (i.e., in the opposite direction to elimination), assigns
Xi = arg maxxi Fi(xi,Si = si) where Si = si is the cur-
rent assignment to Si. It is shown that elim-mpe is guaran-
teed to find an optimal solution and that the complexity of
the variable-elimination step is O(n · exp(w∗)) where w∗,
called the induced width, is the largest number of arguments
among the functions (old and newly recorded) in all buckets
(Dechter 1996). For the probing domain, it is easy to show
that w∗ ≥ k where k is the maximum number parents of a
probe node, and w∗ = n in the worst case.

Since the exact MPE diagnosis is intractable for large-
scale networks, we focused on local approximation tech-
niques. Particularly, we used a simple (O(n) time)
backtrack-free greedy algorithm, called here greedy-mpe,
which performs no variable-elimination preprocessing, and
the simplest and fastest member of the mini-bucket approx-
imation family, algorithm approx-mpe(1) (Dechter & Rish
1997; 2002), that performs a very limited preprocessing sim-
ilar to relational arc-consistency (Dechter & Rish 2002) in
constraint networks.

The greedy algorithm greedy-mpe does no preprocessing
(except for replacing observed variables with their values in
all related function prior to algorithm’s execution). It com-
putes a suboptimal solution

x′ = (arg max
x1

F1(x1), . . . , ..., arg max
xn

Fn(xn, Sn = sn)),

(13)
where Si = si, as before, denotes the current assignment
to the variables in Sj computed during the previous i − 1
maximization steps.

Generally, the mini-bucket algorithms approx-mpe(i) per-
form a limited level of variable-elimination, similar to en-
forcing directional i-consistency, prior to the greedy assign-
ment. The preprocessing allows to find an upper bound U
on M = maxx P (x, t), where t is the evidence (clearly,
MPE = M/P (t)), while the probability L = P (x′, e) of
their suboptimal solution provides an lower bound on M .
Generally, L increases with the level of preprocessing con-
trolled by i, thus allowing a flexible accuracy vs. efficiency
trade-off. The algorithm returns the suboptimal solution x′

and the upper and lower bounds, U and L, on M ; ratio U/L
is a measure of the approximation error.

We tested greedy-mpe and approx-mpe(1) on the networks
constructed in a way that guarantees the unique diagnosis in
the absence of noise. Particularly, besides m tests each hav-
ing r randomly selected parents, we also generated n direct
tests T̂i, i = 1, ..., n, each having exactly one parent node

(a)

(b)

Figure 3: (a) Graceful degradation of the approximation
quality of both greedy solution and an approx-mpe(1) so-
lution with noise, where the approximation quality is mea-
sured as P (L/M) > 1 − e for e = 0.01 and e = 0.1;
the quality of approx-mpe(1) approximation degrades much
slower than the quality of the greedy solution for larger noise
(especially, for q > 0.3; (b) ”zooming-in” on the quality of
approx-mpe(1) for lower noise, q ≤ 0.32; the accuracy gets
higher for longer (more informative) probes (i.e., r = 8 vs.
r = 4).

Xi. It is easy to see that, for such networks, both greedy-mpe
and approx-mpe(1) find an exact diagnosis in the absence of
noise: approx-mpe(1) reduces to unit-propagation, an equiv-
alent of relational-arc-consistency, while greedy-mpe, ap-
plied along a topological order of variables in the network’s
directed acyclic graph (DAG)5, immediately finds the cor-
rect assignment which simply equals the outcomes of the
direct tests.

Adding noise in a form of link probability q caused grace-
ful degradation of the approximation quality, as shown in
Figure 3. The figure summarizes the results for 50 randomly
generated networks with n = 15 unobserved nodes (hav-
ing uniform fault priors p = P (xi = 0) = 0.5), n = 15
direct probes, one for each node, and n = 15 noisy-AND
probes, each with r = 4 randomly selected parents among

5A topological (or ancestral) ordering of a DAG is an ordering
where a child node never appears before its parent.
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Figure 4: The accuracy of the solution x′ found by algorithm
greedy-mpe, measured by L/M , where L = P (x′, t) and
M = P (x∗, t), versus M . The results obtained for

the unobserved nodes, zero leak l = 0 probability. The link
probability (noise level) q varied from 0.01 to 0.64, taking
15 different values; the results are shown for all noise lev-
els together. For each network, 100 instances of evidence
(probe outcomes) were generated by Monte-Carlo simula-
tion of x and t according to their conditional distributions.
Thus, we get 50x100=5000 samples for each value of noise
q.

Figure 3a plots both for greedy-mpe and for approx-
mpe(1) the fraction of cases when the ratio L/MPE (where
L is the solution probability) was within the interval [1-e,1]
for small values of e. As expected, approx-mpe(1) yields
a slower accuracy degradation with noise, especially for
higher noise levels (i.e. even the simplest preprocessing pays
off). Also, we observed that longer probes (r = 8 vs. r = 4)
yield higher diagnosis accuracy, i.e. are more informative
(Figure 3b).

Also, as demonstrated in Figure 4 for the same set of ex-
periments as above (i.e., n = 14 and r = 4), the approx-
imation accuracy of greedy-mpe, measured as L/M where
L = P (x′, t) and M = P (x∗, t), clearly increases with in-
creasing value M , and therefore with the probability of the
exact diagnosis, which also depends on the ”diagnostic abil-
ity” of a probe set (for same probe set size, a better probe
set yields a higher MPE diagnosis, and therefore, a better
approximation quality). There is an interesting threshold
phenomenon, observed both for greedy-mpe and for approx-
mpe(1) solutions (the results for approx-mpe(1) are omitted
due to space restrictions), and for various problem sizes n:
the suboptimal solution x′ found by algorithm greedy-mpe
suddenly becomes (almost always) an exact solution x∗ (i.e.,
L/M = 1, where L = P (x′, t) and M = P (x∗, t)) when
M > θ where θ is some threshold value. For n = 15, the
threshold is observed between 2e − 6 and 3e − 6. A the-
oretical analysis in the next section yields a quite accurate
prediction of θ ≈ 2.46e − 6.

The effect of noise on approximation error
We will prove this claim formally for the simplest approxi-
mation algorithm greedy-mpe.

Let BN = (G, P ) be a Bayesian network, where T = t
is evidence, i.e. a value assignment t to a subset of variables
T ⊂ X. We will also make an important assumption that
the all observed variables are replaced by their values in all
CPD functions. Also, recall that Fi(xi, si) is the product
of functions in the bucket of Xi along the ordering o, given
the assignment si of some variables in the previous buckets.
Then

Lemma 4 [ greedy-mpe optimality.] Given a Bayesian net-
work BN = (G, P ), an evidence assignment T = t applied
to all relevant probability functions, and a topological or-
dering o of unobserved nodes in the graph G, the algorithm
greedy-mpe applied along o is guaranteed to find an optimal
MPE solution if P (x′, t) ≥ Fi(xi, s′i) for every i = 1, ..., n
and for every xi �= x′

i, where Si = s′i is a partial assignment
already found by greedy-mpe.

Proof. Clearly, the solution x′ found by greedy-mpe is opti-
mal, i.e. x′ = x∗ = arg maxx P (x, t) if P (x′, t) ≥ P (x, t)
for every x �= x′. Since x �= x′ implies xi �= x′

i for
some i (let us choose the smallest of such i’s), by the con-
dition of lemma we get P (x′, t) ≥ Fi(xi, s′i), and, there-
fore, P (x′, t) ≥

∏n
j=1 Fj(xj , sj) since each Fj(xj , sj) is a

product of probabilities, and therefore, 0 ≥ Fj(xj , sj) ≥ 1.
But

∏n
j=1 Fj(xj , sj) = P(x, t) by equation 12, which con-

cludes the proof.
We now discuss some particular classes of Bayesian net-

works that satisfy the conditions of lemma 4.

Lemma 5 (nearly-deterministic CPDs, no observations.)
Given a Bayesian network BN = (G, P ) having no ob-
served variables, and all conditional (and prior) probabili-
ties being nearly-deterministic, i.e. satisfying the condition
maxxi P (xi|pa(Xi)) > 1 − δ, where 0 ≤ δ ≤ 0.5,
algorithm greedy-mpe applied along a topological ordering
o of G is guaranteed to find an optimal MPE assignment if
(1 − δ)n ≥ δ.

Proof. Given a topological ordering and no evidence vari-
ables, the bucket of every node Xi contains a single function
P (xi|pa(Xi)). Thus, the greedy solution x′ yields P (x′) =∏n

i=1 maxxi P (xi|pa(Xi)) = (1 − δ)n, while any other x
has the probability P (x) =

∏n
i=1 P (xi|pa(Xi)) < δ since

for the very first i such that xi �= x′
i we get P (xi|pa(Xi)) <

δ and this value can only decrease when multiplied by other
probabilities 0 ≤ P (xj |pa(Xj)) ≤ 1.

Let us consider a simulation that happened to se-
lect only the most-likely values for T̂i and Ti, i.e.
t′i = arg maxti P (ti|pa(Ti)), which can be viewed as
an error-free ”transmission over a noisy channel”. From
3 we get maxti

P (ti|pa(Ti)) ≥ (1 − q); also, for
any t′′i �= arg maxti P (ti|pa(Ti)), P (t′′i |pa(Ti)) < q.
It is easy to show (similarly to lemma 4) that algo-
rithm greedy-mpe will find an assignment that produced
this most-likely evidence, thus yielding P (x′, t̂, t) =∏n

i=1 P (xi)
∏n

i=1 P (t̂i)
∏n

i=1 P (ti) > 1
2n (1 − q)n+m. On

the other hand, for any other x there exists Tj = tj where
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tj is not the most-likely choice for Tj given x, and thus
P (ti|pa(ti)) < q as can be seen from the noisy-AND defi-
nition. Thus, the greedy solution x′ is guaranteed to be op-
timal once for any x �= x′, P (x′, t̂, t) > P (x, t̂, t), i.e.
once (1 − q)n+m > q (the constant 1

2n on both sides of the
inequality was cancelled). Note that simulating an unlikely
evidence yields a low joint probability M = P (x∗, t̂, t) < q
for the optimal diagnosis x∗.

In our experiments, n = m = 15, thus resolving
(1−q)30 = q gives a threshold value q ≈ 0.0806, and there-
fore M = P (x′, t̂, t) = 1

215 (1 − q)30 > 1
215 q ≈ 2.46e − 6,

which is surprisingly close to the empirical threshold ob-
served in Figure 4 which separates suboptimal from the op-
timal behavior of algorithm greedy-mpe.

Discussion and conclusions
In this paper, we address both theoretically and empirically
the problem of the most-likely diagnosis given the obser-
vations (MPE diagnosis), studying as an example the fault
diagnosis in computer networks using probing technology.
The key efficiency issues include minimizing both the num-
ber of tests and the computational complexity of diagnosis
while maximizing its accuracy. Herein, we derive a lower
bound on the diagnostic accuracy that provides necessary
conditions for the number of probes needed to achieve an
asymptotically error-free diagnosis as the network size in-
creases, given a certain level of noise in probe outcomes
and prior fault probabilities. Since the exact MPE diag-
nosis is generally intractable in large networks, we inves-
tigate next the accuracy/efficiency trade-offs for very simple
and efficient approximation techniques, based on variable-
elimination (the mini-bucket scheme), and provide both an
empirical study on randomly generated networks and an ini-
tial theoretical explanation of the results. We show that
even the most simple and inexpensive members of the mini-
bucket algorithmic family (e.g., the greedy approximation)
often provide an exact solution given sufficiently low levels
of noise; as the noise increases, a ”graceful degradation” of
the accuracy is observed. Our results suggest the applicabil-
ity of such approximations to nearly-deterministic diagno-
sis problems that are often encountered in practical applica-
tions.

Although there exists an extensive literature on fault di-
agnosis in computer networks (Kliger et al. 1997; Huard
& Lazar 1996; I.Katzela & M.Schwartz 1995), we are not
aware of any previous work that would both consider the
problem of ”active” diagnosis using probes, and provide the-
oretical and empirical analysis of diagnostic error, as well as
a study of efficient approximation algorithms as presented in
this paper. A closely related recent work in (Brodie, Rish,
& Ma 2001) proposes efficient algorithms for the optimal
probe set construction, although only in deterministic set-
ting. Extending this approach to noisy environments is an
interesting direction for future work. Further investigation,
both theoretical and empirical, should focus on more ac-
curate, but also more expensive local approximation tech-
niques such as approx-mpe(i) and the related family of re-
cently proposed generalized belief propagation techniques

(Yedidia, Freeman, & Weiss 2001), as well as on the varia-
tional approximation techniques that has been successfully
used in two-layer noisy-OR networks for medical diagnosis
(Jaakkola & Jordan 1999).
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