
Optimal Schedules for Parallelizing Anytime Algorithms: The Case of
Independent Processes

Lev Finkelstein and Shaul Markovitch and Ehud Rivlin

Computer Science Department
Technion, Haifa 32000

Israel
{lev,shaulm,ehudr}@cs.technion.ac.il

Abstract

The performance of anytime algorithms having a non-
deterministic nature can be improved by solving simul-
taneously several instances of the algorithm-problem
pairs. These pairs may include different instances
of a problem (like starting from a different initial
state), different algorithms (if several alternatives ex-
ist), or several instances of the same algorithm (for non-
deterministic algorithms).
In this paper we present a general framework for opti-
mal parallelization of independent processes. We show
a mathematical model for this framework, present algo-
rithms for optimal scheduling, and demonstrate its use-
fulness on a real problem.

Introduction
Assume that we try to train an expert system for identifying
paintings with a good potential. Assume that we possess a
set of example paintings and that we have an access to two
human experts in this field for tagging examples. The tagged
examples are passed to an inductive algorithm for generating
a classifier. Our goal is to obtain a classifier of a given qual-
ity (judged, for example, using a validation set). Since we
do not assume that the two experts have necessarily similar
views of what is considered to be a good painting, we want
to train a classifier based on examples tagged by the same
expert. On one hand, we would like to finish the task as fast
as possible, which could be achieved by parallel training.
On the other hand, we would like to minimize the total num-
ber of examples sent to tagging, which can be achieved by
choosing only one expert. We can also design a more elab-
orated schedule where we switch between the above modes.
Assuming that there is a known cost function that specifies
the tradeoff between learning time and tagging cost, what
should be the optimal schedule for minimizing this cost?

Another example is a Mars mission which is out of wa-
ter. There are two known sources of water in two opposite
directions. Two robots are sent to the two sources. Our goal
is to get water as fast as possible using minimal amount of
fuel. Again, given the tradeoff between the cost of fuel and

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

the cost of waiting for water, what should be the optimal
schedule for the robots?

What is common to the above examples?

• There are potential benefits to be gained from the uncer-
tainty in solving more than one instance of the algorithm-
problem pair. In the first example, the probabilistic char-
acteristics of the learning process are determined by the
learning algorithm. Learning from the two experts can be
considered as two instances of the same problem. In the
second example, the probabilistic characteristics of each
of the robot processes are determined by the terrain and
are different for the two directions.

• Each process is executed with the purpose of satisfying a
given goal predicate. The task is considered accomplished
when one of the instances is solved.

• If the goal predicate is satisfied at time t∗, then it is also
satisfied at any time t > t∗. This property is equivalent
to quality monotonicity of anytime algorithms (Dean &
Boddy 1988; Horvitz 1987), while solution quality is re-
stricted to Boolean values.

• Our objective is to provide a schedule that minimizes
the expected cost, maybe under some constraints. Such
problem definition is typical for rational-bounded reason-
ing (Simon 1982; Russell & Wefald 1991).

This problem resembles those faced by contract al-
gorithms (Russell & Zilberstein 1991; Zilberstein 1993).
There, the task is, given resource allocation, to construct an
algorithm providing a solution of the highest quality. In our
case, the task is, given quality requirement, to construct an
algorithm providing a solution using minimal resources.

There are several research works that are related to the
above framework. Simple parallelization, with no infor-
mation exchange between the processes, may speedup the
process due to high diversity in solution times. For ex-
ample, Knight (1993) showed that using many reactive in-
stances of RTA* search (Korf 1990) is more beneficial than
using a single deliberative RTA* instance. Yokoo & Ki-
tamura (1996) used several search agents in parallel, with
agent rearrangement after pregiven periods of time. Janaki-
ram, Agrawal, & Mehrotra (1988) showed that for many
common distributions of solution time, simple paralleliza-
tion leads to at most linear speedup. One exception is

AAAI-02 719

From: AAAI-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

the family of heavy-tailed distributions (Gomes, Selman, &
Kautz 1998) for which it is possible to obtain super-linear
speedup by simple parallelization.

A superlinear speedup can also be obtained when we have
access to the internal structure of the processes involved. For
example, Clearwater, Hogg, & Huberman (1992) reported
superlinear speedup for cryptarithmetic problems as a result
of information exchange between the processes. Another
example is the works of Kumar and Rao (1987; 1987; 1993)
devoted to parallelizing standard search algorithms where
superlinear speedup is obtained by dividing the search space.

The case of non-deterministic algorithms that can be
restarted an arbitrary number of times, was analyzed in de-
tails by Luby, Sinclair, & Zuckerman (1993) for the case of
single processor and by Luby & Ertel (1994) for the mul-
tiprocessor case. In particular, it was proven that for a sin-
gle processor, the optimal strategy is to periodically restart
the algorithm after a constant amount of time until the so-
lution is found. This strategy was successfully applied to
combinatorial search problems (Gomes, Selman, & Kautz
1998). Restart strategy, however, cannot be applied to our
settings, since we consider a finite number of heterogeneous
processes and do not assume the availability of infinite num-
ber of instances of the same process.

An interesting approach in a domain-independent di-
rection is based on “portfolio” construction (Huberman,
Lukose, & Hogg 1997; Gomes & Selman 1997). This
approach provides the processes (agents) with a different
amount of resources, which enabled to reduce both the ex-
pected resource usage and its variance. The experiments
showed the applicability of this approach to many hard com-
putational problems. In the field of anytime algorithms,
similar works were mostly concentrated on scheduling dif-
ferent anytime algorithms or decision procedures in order
to maximize overall utility (like in the work of Boddy &
Dean (1994)). Their settings, however, are different from
those presented above.

The goal of this research is to develop algorithms that
design an optimal scheduling policy based on the statis-
tical characteristics of the process(es). We present a for-
mal framework for scheduling parallel anytime algorithms.
Finkelstein, Markovitch, & Rivlin (2001) present such
framework for the case where the processes share resources
(a single processor model). In this work we present sim-
ilar framework for the case where the processes are inde-
pendent in the sense that usage of resources by one process
does not imply constraints on usage of resources of the oth-
ers. The framework assumes that we know the probability
of the goal condition to be satisfied as a function of time
(a performance profile (Simon 1955; Boddy & Dean 1994)
restricted to Boolean quality values). We analyze the prop-
erties of optimal schedules for suspend-resume model and
present an algorithm for building optimal schedules. Finally,
we present experimental results.

Motivation: a simple example
Before starting the formal discussion, we would like to give
a simple example. Assume that two instances of DFS with
random tie-breaking are applied to a simple search space

shown in Figure 1. We assume that each process uses a
separate processor. There is a very large number of paths
to the goal, half of them of length 10, and the other half
of length 40. When one of the instances finds a solution,
the task is considered accomplished. We have two utility

40

10

40

10

BA
10

40

10

40

Figure 1: A simple search task: two instances of DFS search for a
path from A to B. Scheduling the processes may reduce cost.

components – the time, which is the elapsed time required
for the system to find a solution, and the resources, which
is total CPU time consumed by both processes. If the two
search processes start together, the expected time usage will
be 10 × 3/4 + 40 × 1/4 = 17.5 units, while the expected
resource usage will be 20×3/4+80×1/4 = 35 units. If we
apply only one instance, both time and resource usage will
be 10×1/2+40×1/2 = 25 units. Assume now that the first
process is active for the first 10 time units, then it stops and
the second process is active for the next 10 time units, and
then the second process stops and the first process continues
the execution. Both the expected time and resource usage
will be 10×1/2+20×1/4+50×1/4 = 22.5 units. Finally,
if we consider a schedule, where the processes start together
and work in a simultaneous manner for 10 time units, and
only one continues the execution in the case of failure, the
expected time will be 10×3/4+40×1/4 = 17.5 units, while
the expected resource usage will be 20× 3/4 + 50× 1/4 =
27.5 units. It is easy to see, that the results for the last
two scenarios, with interleaved execution, are better than the
other results. The tradeoff between time and resource cost
determines the best model between the two – if time and
resource cost are equal, the last two models are equivalent.

A framework for parallelization scheduling
In this section we formalize the intuitive description of par-
allelization scheduling. This framework is similar to the
frameworks presented in (Finkelstein & Markovitch 2001;
Finkelstein, Markovitch, & Rivlin 2001).

Let S be a set of states, t be a time variable with non-
negative real values, and A be a random process such that
each realization (trajectory) A(t) of A represents a mapping
from R+ to S. Let G : S → {0, 1} be a goal predicate. Let
A be monotonic over G, i.e. for each trajectory A(t) of A
the function ĜA(t) = G(A(t)) is a non-decreasing function.
Under the above assumptions, ĜA(t) is a step function with
at most one discontinuity point, which we denote by t̂A,G

(this is the first point after which the goal predicate is true).
If ĜA(t) is always 0, we say that t̂A,G is not defined. There-
fore, we can define a random variable, which for each trajec-

720 AAAI-02

tory A(t) of A with t̂A,G defined, corresponds to t̂A,G. The
behavior of this variable can be described by its distribution
function F (t). At the points where F (t) is differentiable,
we use the probability density f(t) = F ′(t).

This scheme resembles the one used in anytime algo-
rithms. The goal predicate can be viewed as a special case
of the quality measurement used in anytime algorithms, and
the requirement for its non-decreasing value is a standard
requirement of these algorithms. The trajectories of A cor-
respond to conditional performance profiles (Zilberstein &
Russell 1992; Zilberstein 1993).

In practice, not every trajectory of A leads to goal predi-
cate satisfaction even after infinitely large time. That is why
we define the probability of success p as the probability of
selecting a trajectory A(t) that leads to satisfaction of G
within finite time (i.e. with t̂A,G defined) 1.

Assume now that we have a system of n random pro-
cesses A1, . . .An with corresponding distribution functions
F1, . . . , Fn and goal predicates G1, . . . , Gn. We define a
schedule of the system as a set of binary functions {θi},
where at each moment t, the i-th process is active if θi(t) =
1 and idle otherwise. We refer to this scheme as suspend-
resume scheduling.

A possible generalization of this framework is to extend
the suspend/resume control to a more refined mechanism al-
lowing us to determine the intensity with which each process
acts. For software processes that means to vary the fraction
of CPU usage; for tasks like robot navigation this implies
changing the speed of the robots. Mathematically, using in-
tensity control is equivalent to replacing the binary functions
θi with continuous functions with a range between 0 and 1.

Note that scheduling makes the term time ambiguous.
On one hand, we have the subjective time for each process
which is consumed only when the process is active. This
kind of time corresponds to some resource consumed by the
process. On the other hand, we have an objective time mea-
sured from the point of view of an external observer. The
performance profile of each algorithm is defined over its
subjective time, while the cost function (see below) may use
both kinds of times. Since we are using several processes,
all the formulas in this paper are based on the objective time.

Let us denote by σi(t) the total time that process i has
been active before t. By definition,

σi(t) =
∫ t

0

θi(x)dx. (1)

In practice σi(t) provides the mapping from the objective
time t to the subjective time of the i-th process, and we re-
fer to them as subjective schedule functions. Since θi can
be obtained from σi by differentiation, we often describe
schedules by {σi} instead of {θi}.

The processes {Ai} with goal predicates {Gi} running
under schedules {σi} result in a new process A, with a goal
predicate G. G is the disjunction of Gi (G(t) =

∨
i Gi(t)),

1Another way to express the possibility that the process will
not stop at all is to use profiles that approach 1 − p when t → ∞.
We prefer to use p explicitly because the distribution function must
meet the requirement limt→∞ F (t) = 1.

and therefore A is monotonic over G. We denote the dis-
tribution function of the corresponding random variable by
Fn(t, σ1, . . . , σn), and the corresponding distribution den-
sity by fn(t, σ1, . . . , σn).

Assume that we are given a monotonic non-decreasing
cost function u(t, t1, . . . , tn), which depends on the objec-
tive time t and the subjective times per process ti. Since
the subjective times can be represented as σi(t), we actually
have u = u(t, σ1(t), . . . , σn(t)).

The expected cost of schedule {σi} can be, therefore, ex-
pressed as2

Eu(σ1, . . . , σn) =∫ +∞

0

u(t, σ1, . . . , σn)fn(t, σ1, . . . , σn)dt
(2)

(for the sake of readability, we omit t in σi(t)). Under the
suspend-resume model assumptions, σi must be differen-
tiable (except a countable set of rescheduling points), and
have derivatives of 0 or 1 that would ensure correct values
for θi. Under intensity control assumptions, the derivatives
of σi must lie between 0 and 1.

We consider two alternative setups regarding resource
sharing between the processes:

1. The processes share resources on a mutual exclusion ba-
sis. An example for such framework are several algo-
rithms running on a single processor.

2. The processes are fully independent. An example for such
framework are n algorithms running on n processors.

The difference between these two alternatives is the addi-
tional constraints on σi: in the case of shared resources
the sum of derivatives of σi cannot exceed 1, while in the
case of independent processes this constraint does not exist.
Our goal is to find a schedule that minimizes the expected
cost (2) under the corresponding constraints.

The current paper is devoted to the case of indepen-
dent processes. The case of shared resources was studied
in (Finkelstein, Markovitch, & Rivlin 2001).

Suspend-resume based scheduling
In this section we consider the case of suspend-resume based
control (σi are continuous functions with derivatives 0 or 1).

Claim 1 The expressions for the goal-time distribution
Fn(t, σ1, . . . , σn) and the expected cost Eu(σ1, . . . , σn) are
as follows3:

Fn(t, σ1, . . . , σn) = 1 −
n∏

i=1

(1 − Fi(σi)), (3)

Eu(σ1, . . . , σn) =∫ +∞

0

(
u′

t +
n∑

i=1

σ′
iu

′
σi

)
n∏

i=1

(1 − Fi(σi))dt.
(4)

2It is possible to show that the generalization to the case where
the probabilities of success pi are not 1 is equivalent to replacing
Fi(t) and fi(t) by piFi(t) and pifi(t) respectively.

3u′
t and u′

σi
stand for partial derivatives of u by t and by σi

respectively.

AAAI-02 721

The proofs in this paper are omitted due to the lack of space,
and can be found in (Finkelstein, Markovitch, & Rivlin
2002).

In this section we assume that the total cost is a linear
combination of the objective time cost and the resource cost,
and that the resource cost is proportional to the subjective
time spent:

u(t, σ1, . . . , σn) = at + b
n∑

i=1

σi(t). (5)

Without loss of generality we can assume a + b = 1, which
leads to the following minimization problem:

Eu(σ1, . . . , σn) =∫ ∞

0

(
(1 − c) + c

n∑
i=1

σ′
i

)
n∏

j=1

(1 − Fj(σj))dt → min,

(6)

where c = b/(a+b) can be viewed as a normalized resource
weight. For the case of suspend-resume scheduling we have
the constraints following from the nature of the problem:

σ′
i ∈ {0, 1}. (7)

Necessary conditions for optimal solution for two
processes
Let A1 and A2 be two independent processes. For suspend-
resume model, only three states of the system are possible:
A1 is active and A2 is idle (S01); A1 is idle and A2 is ac-
tive (S10); and both A1 and A2 are active (S11). We ignore
the case where both processes are idle, since removing such
state from the schedule will not increase the cost.

Assume that the system continuously alternates between
the three states: S01 → S10 → S11 → S01 → This
scheme is general if the time spent at each state is allowed
to be zero. We call each triplet

〈
S01, S10, S11

〉
a phase and

denote phase k by Φk . We denote the time when state Sx of
Φk ends by txk (x ∈ {01, 10, 11}). For illustration see Figure
2. Let us denote by ζx

k the total cumulative time spent in state

s s s s s s

t10k−1 t11k−1

S01

t01k

S10

t10k

S11

t11k

S01

t01k+1

Φk−1 Φk Φk+1

Figure 2: Notations for times, states and phases.

Sx in phases 1 to k. There is a one-to-one correspondence
between the sequence {ζx

k } and the sequence {txk}, and

ζ10
k−1 + ζ11

k−1 + ζ01
k = t01

k ,

ζ11
k−1 + ζ01

k + ζ10
k = t10

k ,

ζ01
k + ζ10

k + ζ11
k = t11

k .

By definition of txk , the subjective schedule functions σ1 and
σ2 in time intervals [t11

k−1, t
01
k) (state S01) have the form

σ1(t) = t − t11
k−1 + ζ01

k−1 + ζ11
k−1 = t − ζ10

k−1,

σ2(t) = ζ10
k−1 + ζ11

k−1.
(8)

Similarly, in the intervals [t01
k , t10

k) (state S10) the subjective
schedule functions are defined as

σ1(t) = ζ11
k−1 + ζ01

k ,

σ2(t) = t − t01
k + ζ10

k−1 + ζ11
k−1 = t − ζ01

k .
(9)

Finally, in the intervals [t10
k , t11

k) (state S11) the subjective
schedule functions can be represented as

σ1(t) = t − t10
k + ζ11

k−1 + ζ01
k = t − ζ10

k ,

σ2(t) = t − t10
k + ζ11

k−1 + ζ10
k = t − ζ01

k .
(10)

Substituting the expressions for σi into (6) and using the
constraints for suspend-resume scheduling (7), we obtain the
following function to minimize:

Eu(ζ01
1 , ζ10

1 , ζ11
1 , . . .) =

∞∑
k=0

[
(1 − F2(ζ10

k−1 + ζ11
k−1))

∫ ζ01
k

ζ01
k−1

(1 − F1(x + ζ11
k−1))dx

+ (1 − F1(ζ11
k−1 + ζ01

k))
∫ ζ10

k

ζ10
k−1

(1 − F2(x + ζ11
k−1))dx

+ (1 + c)
∫ ζ11

k

ζ11
k−1

(1 − F1(x + ζ01
k))(1 − F2(x + ζ10

k))dx

]
.

(11)

The minimization problem (11) is equivalent to the original
problem (6), and the dependency between their solutions is
described by (8), (9) and (10). The only constraints are the
monotonicity of the sequence {ζx

k} for a fixed x, and there-
fore we obtain

ζx
0 = 0 ≤ ζx

1 ≤ ζx
2 ≤ . . . ≤ ζx

k ≤ (12)

Since (11) reaches its optimal values either when

du

dζx
k

= 0 for k = 1, . . . , n, . . . , (13)

or on the border described by (12), we can prove the follow-
ing theorem:

Theorem 1 (The chain theorem for two processes)
1. The value for ζ01

k+1 may either be ζ01
k , or can be computed

given ζ11
k−1, ζ01

k , ζ10
k and ζ11

k using the formula

− f2(ζ10
k + ζ11

k)
∫ ζ01

k+1

ζ01
k

(1 − F1(x + ζ11
k))dx−

(1 + c)
∫ ζ11

k

ζ11
k−1

(1 − F1(x + ζ01
k))f2(x + ζ10

k))dx+

(1 − F1(ζ11
k−1 + ζ01

k))(1 − F2(ζ11
k−1 + ζ10

k))−
(1 − F1(ζ11

k + ζ01
k+1))(1 − F2(ζ10

k + ζ11
k)) = 0.

(14)

722 AAAI-02

2. The value for ζ10
k+1 may either be ζ10

k , or can be computed
given ζ01

k , ζ10
k , ζ11

k and ζ01
k+1 using the formula

− f2(ζ10
k + ζ11

k)
∫ ζ01

k+1

ζ01
k

(1 − F1(x + ζ11
k))dx−

f1(ζ11
k + ζ01

k+1)
∫ ζ10

k+1

ζ10
k

(1 − F2(x + ζ11
k))dx+

c(1 − F1(ζ01
k + ζ11

k))(1 − F2(ζ10
k + ζ11

k))−
c(1 − F1(ζ11

k + ζ01
k+1))(1 − F2(ζ11

k + ζ10
k+1)) = 0.

(15)

3. The value for ζ11
k+1 may either be ζ11

k , or can be computed
given ζ10

k , ζ11
k , ζ01

k+1 and ζ10
k+1 using the formula

− f1(ζ11
k + ζ01

k+1)
∫ ζ10

k+1

ζ10
k

(1 − F2(x + ζ11
k))dx−

(1 + c)
∫ ζ11

k+1

ζ11
k

f1(x + ζ01
k+1)(1 − F2(x + ζ10

k+1))dx+

(1 − F1(ζ11
k + ζ01

k+1))(1 − F2(ζ10
k + ζ11

k))−
(1 − F1(ζ01

k+1 + ζ11
k+1))(1 − F2(ζ10

k+1 + ζ11
k+1)) = 0.

(16)

This theorem shows a way to compute the values for ζx
k in

a sequential manner, each time using four previously com-
puted values. This leads to the following algorithm for build-
ing an optimal schedule.

Optimal solution for two processes: an algorithm4

Assume that S01 is the first state which takes a non-zero
time (ζ01

1 > 0). By Theorem 1, given the values of ζ11
0 =

0, ζ01
1 , ζ10

1 and ζ11
1 we can determine all the possible values

for ζ01
2 (either ζ01

1 or one of the roots of (14)). Given the
values up to ζ01

2 , we can determine the values for ζ10
2 , and

so on.
Therefore, the first three values of ζ (given ζ01

1 �= 0)
provide us with a tree of possible values of ζx

k . The
branching factor of this tree is determined by the number
of roots of (14), (15) and (16). Each possible sequence
ζ01
1 , ζ10

1 , ζ11
1 , . . . can be evaluated using (11). The series in

that expression must converge, so we stop after a finite num-
ber of points. For each triplet Z1 = 〈ζ01

1 , ζ10
1 , ζ11

1 〉 we can
find the best sequence using one of the standard search algo-
rithms, such as Branch-and-Bound. Let us denote the value
of the best sequence for Z1 by Eu(Z1). Performing global
optimization of Eu(Z1) by ζ01

1 , ζ10
1 and ζ11

1 provides us with
an optimal solution for the case where S01 is the first state
of non-zero time.

Note, that the value of ζ01
1 may also be 0 (if S10 or S11

happen first), so we need to compare the value obtained by
optimization of the triplet ζ01

1 , ζ10
1 and ζ11

1 with the value
obtained by optimization of the triplet ζ10

1 , ζ11
1 and ζ01

2 given
ζ01
1 = 0, and with the value obtained by optimization of the

triplet ζ11
1 , ζ01

2 and ζ10
2 given ζ01

1 = ζ10
1 = 0.

4Due to the lack of space we present only the main idea of the
algorithm.

Using optimal scheduling for parallelizing the
Latin Square problem

We tested our algorithm for optimal scheduling of indepen-
dent processes solving the partial Latin Square problem. The
task is to use N colors to color a N × N square such that
each color appears only once at each row and each column.
Some of the tiles may be already colored.

We assume that we are allocated two processors and that
we attempt to accelerate the time of finding a solution by
starting from two different initial configurations in parallel.
Each of the processes employs heuristic DFS with the First-
Fail heuristic (Gomes & Selman 1997). We also assume that
there is a cost associated with the actual CPU time consumed
by each of the processors. Note that our goal is not to build
the best algorithm for solving this problem but rather to find
the best schedule for the two instances of the given algo-
rithms.

Our experiments were performed with N = 20 and 10%
of the square pre-colored. The performance profile was in-
duced based on a run of 50, 000 instances. We compare the
optimal schedule produced by our algorithm to the schedule
which runs both processes in parallel.

0

200

400

600

800

1000

1200

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 c
os

t

Normalized resource weight

Optimal schedule
Simultaneous

Figure 3: Average cost as a function of normalized resource
weight c.

Figure 3 shows how the tradeoff between time and CPU
cost influences the resulting cost of the schedules. Each
point represents an average over 25, 000 pairs of problems.
The x axis corresponds to the normalized weight c of the
CPU cost. Thus, c = 0 means that we consider elapsed time
only; c = 1 means that we consider CPU time only; and
c = 0.5 means that the costs of elapsed and CPU time are
equal. The y axis stands for the average cost measured by
the number of generated nodes.

We can see that when the weight of CPU time is high
enough, the optimal schedules found by our algorithm out-
perform the simple parallelization scheme.

Conclusions
In this work we present a theoretical framework for opti-
mal scheduling of parallel anytime algorithms for the case

AAAI-02 723

of independent processes. We analyze the properties of op-
timal schedules for the suspend-resume model, and provide
an algorithm for designing such schedules. Initial experi-
mentation demonstrates the merit of our scheduling algo-
rithm. The advantage of optimal scheduling over simple par-
allelization becomes more significant when the weight of the
resource cost increases.

One potential weakness of the presented algorithm is
its high complexity. This complexity can be represented
as a multiplication of three factors: 3-variable function
minimization, Branch-and-Bound search and solving Equa-
tions (14), (15) and (16). The only exponential component
is the Branch-and-Bound search. We found, however, that
in practice the branching factor, which is roughly the num-
ber of roots of the equations above, is rather small, while
the depth of the search tree can be controlled by iterative-
deepening strategies. The presented framework can be gen-
eralized for an arbitrary number of processes although a
straightforward generalization will lead to complexity ex-
ponential by this number.

Our algorithm assumes the availability of the performance
profiles of the involved processes. Such performance pro-
files can be derived analytically using theoretical models of
the processes or empirically from previous experience with
solving similar problems. Online learning of performance
profiles, which could expand the applicability of the pro-
posed framework, is a subject of ongoing research.

References
Boddy, M., and Dean, T. 1994. Decision-theoretic delib-
eration scheduling for problem solving in time-constrained
environments. Artificial Intelligence 67(2):245–286.
Clearwater, S. H.; Hogg, T.; and Huberman, B. A. 1992.
Cooperative problem solving. In Huberman, B., ed., Com-
putation: The Micro and Macro View. Singapore: World
Scientific. 33–70.
Dean, T., and Boddy, M. 1988. An analysis of time-
dependent planning. In Proceedings of the Seventh Na-
tional Conference on Artificial Intelligence (AAAI-88), 49–
54. Saint Paul, Minnesota, USA: AAAI Press/MIT Press.
Finkelstein, L., and Markovitch, S. 2001. Optimal sched-
ules for monitoring anytime algorithms. Artificial Intelli-
gence 126:63–108.
Finkelstein, L.; Markovitch, S.; and Rivlin, E. 2001. Op-
timal schedules for parallelizing anytime algorithms. In
Papers from the 2001 AAAI Fall Symposium, 49–56.
Finkelstein, L.; Markovitch, S.; and Rivlin, E. 2002. Opti-
mal schedules for parallelizing anytime algorithms: The
case of independent processes. Technical Report CIS-
2002-04, CS department,Technion, Haifa, Israel.
Gomes, C. P., and Selman, B. 1997. Algorithm portfolio
design: Theory vs. practice. In Proceedings of UAI-97,
190–197. San Francisco: Morgan Kaufmann.
Gomes, C. P.; Selman, B.; and Kautz, H. 1998. Boosting
combinatorial search through randomization. In Proceed-
ings of the 15th National Conference on Artificial Intelli-
gence (AAAI-98), 431–437. Menlo Park: AAAI Press.

Horvitz, E. J. 1987. Reasoning about beliefs and actions
under computational resource constraints. In Proceedings
of UAI-87.
Huberman, B. A.; Lukose, R. M.; and Hogg, T. 1997. An
economic approach to hard computational problems. Sci-
ence 275:51–54.
Janakiram, V. K.; Agrawal, D. P.; and Mehrotra, R. 1988. A
randomized parallel backtracking algorithm. IEEE Trans-
actions on Computers 37(12):1665–1676.
Knight, K. 1993. Are many reactive agents better than
a few deliberative ones. In Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence,
432–437. Chambéry, France: Morgan Kaufmann.
Korf, R. E. 1990. Real-time heuristic search. Artificial
Intelligence 42:189–211.
Kumar, V., and Rao, V. N. 1987. Parallel depth-first search
on multiprocessors part II: Analysis. International Journal
of Parallel Programming 16(6):501–519.
Luby, M., and Ertel, W. 1994. Optimal parallelization
of Las Vegas algorithms. In Proceedings of the Annual
Symposium on the Theoretical Aspects of Computer Sci-
ence (STACS ’94), 463–474. Berlin, Germany: Springer.
Luby, M.; Sinclair, A.; and Zuckerman, D. 1993. Optimal
speedup of las vegas algorithms. Information Processing
Letters 47:173–180.
Rao, V. N., and Kumar, V. 1987. Parallel depth-first search
on multiprocessors part I: Implementation. International
Journal of Parallel Programming 16(6):479–499.
Rao, V. N., and Kumar, V. 1993. On the efficiency of
parallel backtracking. IEEE Transactions on Parallel and
Distributed Systems 4(4):427–437.
Russell, S., and Wefald, E. 1991. Do the Right Thing:
Studies in Limited Rationality. Cambridge, Massachusetts:
The MIT Press.
Russell, S. J., and Zilberstein, S. 1991. Composing real-
time systems. In Proceedings of the Twelfth National Joint
Conference on Artificial Intelligence (IJCAI-91), 212–217.
Sydney: Morgan Kaufmann.
Simon, H. A. 1955. A behavioral model of rational choice.
Quarterly Journal of Economics 69:99–118.
Simon, H. A. 1982. Models of Bounded Rationality. MIT
Press.
Yokoo, M., and Kitamura, Y. 1996. Multiagent real-time-
A* with selection: Introducing competition in cooperative
search. In Proceedings of the Second International Confer-
ence on Multiagent Systems (ICMAS-96), 409–416.
Zilberstein, S., and Russell, S. J. 1992. Efficient resource-
bounded reasoning in AT-RALPH. In Proceedings of the
First International Conference on AI Planning Systems,
260–266.
Zilberstein, S. 1993. Operational Rationality Through
Compilation of Anytime Algorithms. Ph.D. Disserta-
tion, Computer Science Division, University of California,
Berkeley.

724 AAAI-02

