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Abstract

We present the theory behind TOD (the Temporal Object Dis-
coverer), a novel unsupervised system that uses only temporal
information to discover objects across image sequences ac-
quired by any number of uncalibrated cameras. The process
is divided into three phases: (1) Extraction of each pixel’s
temporal signature, a partition of the pixel’s observations
into sets that stem from different objects; (2) Construction
of a global schedule that explains the signatures in terms of
the lifetimes of a set of quasi-static objects; (3) Mapping of
each pixel’s observations to objects in the schedule accord-
ing to the pixel’s temporal signature. Our Global Scheduling
(GSched) algorithm provably constructs a valid and complete
global schedule when certain observability criteria are met.
Our Quasi-Static Labeling (QSL) algorithm uses the sched-
ule created by GSched to produce the maximally-informative
mapping of each pixel’s observations onto the objects they
stem from. Using GSched and QSL, TOD ignores distract-
ing motion, correctly deals with complicated occlusions, and
naturally groups observations across cameras. The sets of 2D
masks recovered are suitable for unsupervised training and
initialization of object recognition and tracking systems.

Introduction

Computers capable of intelligent interaction with physical
objects must first be able to discover and recognize them.
“Object Discovery” (OD) is the problem of grouping all ob-
servations springing from a single object without including
any observations generated by other objects (for an exam-
ple see Figure 1). Because robust OD is a prerequisite for
reasoning about physical objects, relationships, actions and
activities, OD is of fundamental importance to Al systems
seeking to interact with the physical world. A number of
different approaches have been considered that make differ-
ent assumptions about the world.

Static OD systems seek to discover objects in single im-
ages without using temporal information. Object recogniz-
ers may be used to discover known objects in static images
(Papageorgiou & Poggio 2000; Schiele & Crowley 2000).
The primary limitation of object recognizers is the often ex-
tensive training they require to discover objects. Static OD
approaches that do not require an a priori model of each
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Figure 1: Sample OD results for TOD, a direct implemen-
tation of the theory presented in this paper. (top) Exam-
ples from sequences acquired by three different uncalibrated
cameras. (bottom) The objects discovered. The complete re-
mote is recovered even though it is partially occluded by ei-
ther the bowl or the rabbit in every image in which cameras
0 and 1 observe it. Notably, temporal information alone is
sufficient to group the pixels in and across the cameras.

object of interest typically rely upon local homogeneity of
color (Liu & Yang 1994), texture (Mao & Jain 1992), or a
combination of these cues (Belongie et al. 1998). Because
real objects are not visually homogeneous through space,
traditional segmentation often returns pieces of objects or
incorrectly groups parts stemming from multiple objects.
Dynamic OD systems find objects that move indepen-
dently in the world and so introduce temporal information
into the mix. The discovery of moving objects typically
depends upon spatial homogeneity of motion flow vectors
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(Wang & Adelson 1994); sometimes this data is also com-
bined with texture or color (Altunbasak, Eren, & Tekalp
1998). Dynamic OD systems often rely upon background
subtraction (Toyama et al. 1999) to initially separate mov-
ing objects from a static background. Dynamic OD systems
typically require high frame rates and cannot separate ob-
jects from the person manipulating them.

In this paper we present the theory behind TOD, the Tem-
poral Object Discover. TOD is a system that uses tempo-
ral rather than spatial information to discover objects across
multiple uncalibrated cameras. We decompose the prob-
lem of object discovery into three phases: (1) Generation
of a temporal signature for each pixel; (2) Construction of
a global schedule that satisfies the constraints encoded in
the temporal signatures; (3) Explanation of each individual
pixel’s temporal signature in terms of a mapping from its
observations to objects in the global schedule.

Because we do not use spatial information, our approach
complements the existing body of segmentation work, most
of which relies upon local spatial homogeneity of color, tex-
ture or optical flow. Despite ignoring spatial information,
TOD achieves good results even on sequences having com-
plex object occlusion relationships (see Figure 1). The ad-
vantages of our method include: (1) Human supervision
is not required; (2) Low frame rates (i.e., 1-5Hz) suffice;
(3) Entire objects are discovered even in some cases where
they are always partially occluded; (4) The approach scales
naturally to and benefits from multiple uncalibrated cam-
eras. The recovered multi-view 2D masks are suitable for
unsupervised training and initialization of object recognition
and tracking systems.

The remainder of the paper is structured as follows. First
we introduce the quasi-static world assumed by TOD. Then
we describe how each pixel’s temporal signature is con-
structed. Following the section on signature construction,
we introduce GSched, an algorithm that creates a valid and
complete schedule of object lifetimes when certain observ-
ability criteria are met. We then present the QSL algorithm
that solves the labeling problem using each pixel’s temporal
signature and the global schedule created by GSched. We
conclude with a discussion of some limitations of temporal
information and a short look at promising directions for fu-
ture work.

TOD and the Quasi-static Model

In this section we define the quasi-static world model used
throughout the remainder of the paper. This model is attrac-
tive because it imposes enough restrictions on the world to
be theoretically treatable while maintaining practical appli-
cation to real systems. The quasi-static model assumes that
the only objects of interest are those that undergo motion
on some time interval and are stationary on some other time
interval (i.e., objects that stay still for a while). Thus the
quasi-static world model targets objects that are picked up
and set down while ignoring the person manipulating them.*

10Of course, according to the quasi-static world model when a

person is completely stationary he/she becomes an object of inter-
est.
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Figure 2: A global schedule consists of the lifetimes of a
set of quasi-static objects and a special static background
object (Obj0). The ordering of the object lifetimes in this
figure is arbitrary and should not be interpreted as a layered
representation containing occlusion information.

The following definitions will be used throughout the paper
in connection with the quasi-static model:

Physical object: A chunk of matter that leads to consistent
observations through space and time. Physical objects are
objects in the intuitive sense. We define physical objects
in order to contrast them with quasi-static objects. In the
quasi-static world, a single physical object may be inter-
preted as any number of quasi-static objects. A physical
object is mobile if it is observed to move in the scene.

Quasi-static object: The quasi-static world interpretation
of a mobile physical object that is stationary over a par-
ticular time interval. For every interval on which a mobile
physical object is observed to be stationary, the quasi-
static world model interprets the physical object as a
unigque quasi-static object that arrives at the beginning of
the stationary interval and departs at the end of the sta-
tionary interval. A single quasi-static object can only ar-
rive once and depart once. We use the term object vari-
ously throughout the paper to refer to a physical object, a
quasi-static object, and to a quasi-static object’s entry in
the global schedule. Where the usage of the word object
is not clear from the context, we use a fully descriptive
phrase instead.

Quasi-static object lifetime: The time interval over which
a mobile physical object is stationary at a single location.
When a mobile physical object m moves around the scene
and is stationary at multiple physical locations, each sta-
tionary location i is interpreted as a separate quasi-static
object o;.

Global schedule: A set of quasi-static objects and their
lifetimes (Figure 2).

Pixel visage: A set of observations at a given pixel that are
interpreted as stemming from a particular quasi-static ob-
ject. Each of a pixel’s visages is disjoint with its other
visages and forms a history of a particular quasi-static



object’s visual appearance through time according to the
pixel. The pixel visage v is said to be observed by pixel
p at time ¢ if the observation made by p at ¢ isin v. A
pixel visage is valid if each of its observations stems from
a single quasi-static object.

The quasi-static world model assumes that each pixel can
reliably group observations that stem from a single quasi-
static object. In other words, the observations belonging to
one visage for a particular pixel are discriminable from the
observations belonging to any other visage for that pixel.
The next section presents the method we use to perform this
grouping into visages. The following scheduling and label-
ing sections then describe how to determine the identity of
the quasi-static object responsible for each visage.

Computing Temporal Signatures

In the first phase of object discovery, signature extraction,
we start with a pixel’s sequence of observations and par-
tition them into pixel visages, sets of observations that all
stem from a single object. A pixel’s visages directly encode
the temporal structure in the pixel’s observation history in
the form of a temporal signature. The set of temporal sig-
natures gathered across all views will later be used in the
schedule generation phase to hypothesize the existence of
a small set of objects whose arrivals and departures explain
the signatures. The hypothesized set of objects, or global
schedule (Figure 2), is in turn used during the labeling phase
to determine the mapping from observations to objects. Be-
fore describing our temporal signature generation algorithm,
we first take a moment to define what we mean by temporal
signature and several other related terms.

Stationary interval: A period of time during which every
observation made by a given pixel stems from a single
quasi-static object. A stationary interval is said to belong
to the pixel visage that contains its observations. In Figure
3, the stationary intervals are labeled A through G.

Interruption: A non-stationary interval that comes be-
tween two stationary intervals belonging to the same pixel
visage. In Figure 3, the gap between stationary intervals
B and C' and the gap between C and D and the gap be-
tween F' and G are all interruptions.

Transition: An non-stationary interval that comes between
two stationary intervals belonging to different pixel vis-
ages. Every transition contains either the arrival of an ob-
ject or the departure of a different object. In Figure 3, the
gaps between stationary intervals A and B, between D
and E and between E and F’ are transitions.

Unambiguoustransition: A transition in a signature that
admits only one interpretation. If the object that suppos-
edly arrived at a particular transition was previously ob-
served at some time prior to the transition, then the object
cannot have arrived during the transition. Similarly, if the
object that supposedly departed at a particular transition
is again observed at some time after the transition, then
the object cannot have departed during the transition. In
Figure 3 the first and third transitions are unambiguous
because they cannot involve 0. The second transition is

60 second pixel history for the pixel at camera 4, row 150, col 85
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Figure 3: A pictorial walk-through of the constituents of a
pixel’s temporal signature starting from the pixel’s sequence
of observations and working down to through an unambigu-
ous labeling of several transitions observed by the pixel.

ambiguous because it could contain the arrival of 2 or the
departure of 1.

Temporal signature: A pixel’s temporal signature (Figure
3) encodes the temporal structure found in its observa-
tion history. This representation includes the transitions
the pixel has witnessed as well as a pixel visage for each
unique quasi-static object the pixel observes. In Figure 3,
the stationary intervals for the three pixel visages are la-
beled 0 through 2 according to the visage observed on the
interval.

Because we are interested in determining the utility of
temporal information for OD, we ignore spatial information
in every phase of the algorithm. This means that during the
temporal signature generation phase, we assume that know-
ing the visual appearance of an object in one pixel provides
zero information about the object’s visual appearance in ev-
ery other pixel. Our method for signature extraction depends
upon the following definition of an atomic interval and in-
volves several steps:

Atomicinterval: An atomic interval A is any sequence of
at least two observations A = (z;, 11, -. , Zitn) SUCh
that the difference between the first observation’s time-
stamp and the last observation’s time-stamp exceeds the
minimum time for stability ¢,,;, and A does not contain a
proper subsequence that also spans ., .

Temporal signature construction

1. Check every atomic interval A for stationarity by veri-
fying that every observation® z; € A is close to every
other observation z; € A in visual appearance space (in

2The observations used to compute the temporal signatures are

spatially averaged over a 3x3 region to remove high frequency spa-
tial artifacts. This step is essential for real image sequences.
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our current implementation we measure distance in RGB
color space).

2. Group temporally overlapping atomic stationary intervals
into spanning stationary intervals. Because we consider
stationarity on atomic intervals rather than on spanning
intervals, the visual appearance of an object in a pixel is
allowed to change as long as the change is gradual (e.g.,
movement of the sun across an outdoor scene).

3. Construct a pixel visage by collecting the observations
from spanning stationary intervals that share the same vi-
sual appearance. To evaluate whether two spanning sta-
tionary intervals share the same visual appearance, we
evaluate whether the temporally nearest ends of the two
spanning intervals are close in RGB color space (using
the means of the nearest atomic intervals).

Establishing a Global Schedule

In the second phase of object discovery, schedule construc-
tion, we use the set of temporal signatures gathered across
all pixels in all views to hypothesize the existence of a small
set of objects whose arrivals and departures satisfy the con-
straints of the signatures and thus explain them. This hy-
pothesized set of objects and object lifetimes constitutes a
global schedule (Figure 2). For a global schedule to be valid,
the lifetime of each quasi-static object it contains must ex-
actly match an interval on which some mobile physical ob-
ject was stationary in the scene. To be complete, a global
schedule must explain every transition observed by some
pixel. A valid and complete global schedule is a correct
schedule in the intuitive sense.

Each pixel’s temporal signature places constraints upon
the global schedule (see Figure 4). In order to be valid and
complete, a global schedule must all of these constraints. In
general, the constraints from temporal information alone are
not enough to completely determine the schedule. Specif-
ically, temporal information cannot determine whether an
object o has arrived or departed unless o has both arrived
and departed during the period of observation. Even though
temporal information cannot, in general, completely deter-
mine a global schedule, many cases exist where temporal
information does suffice. In fact, if the following observ-
ability criteria are met, the Global Scheduling (GSched) al-
gorithm we present later in this section is guaranteed to find
a complete and valid global schedule using only temporal
information.

GSched Observability Criteria: Temporal  information
alone is sufficient to construct a valid and complete global
schedule if the following observability criteria are met:

1. Valid visages criterion: Every pixel visage is valid.
In other words, within each pixel, observations of each
object are correctly grouped. In our implementation
this generally implies that all of a stationary pixel’s ob-
servations of a stationary object lie in a small region of
RGB space.

2. Temporally discriminability criterion: Across all
pixels, every arrival and departure event is tempo-
rally discriminable from every other event. Essentially,
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Figure 4: The arrival and departure times for a visage v are
constrained by observation of another visage that bounds v.
In this example, 0 bounds both 1 and 2. The constraints for
2 are shown. To explain 2, the global schedule must contain
an object that arrives during 2’s arrival interval and departs
during 2’s departure interval.

when the transition intervals from all the signatures are
considered together, each event must clearly stand out
as separate from the others.

3. Clean world criterion: Every quasi-stationary object
both arrives and departs.®

4. Observability criterion: For every object o, some
pixel p observes both the arrival and departure of o
(neither event is hidden by some other object) and fur-
thermore p is able to unambiguously identify either o’s
arrival or o’s departure (Figure 3). This criterion be-
comes more likely to be met as the number of different
viewpoints of each object increases.

The criteria listed above lead directly to the straightfor-
ward global scheduling algorithm presented below.

Global Scheduling (GSched) algorithm Given that the
GSched observability criteria listed above are met, the fol-
lowing algorithm establishes a valid and complete global
schedule:

1. Build a global list E' of unambiguous events by creating
a set of events that explains each unambiguous transition.
The unambiguous transitions are processed in order from
shortest transition to longest. If no event in E explains an
unambiguous transition when the transition is processed,
anew event is added to F that does explain the transition.
If the observability criterion is met, E will contain at least
one unambiguous event (arrival or departure) for every
quasi-static object in the scene.

2. Foreacheventein E:

(a) Remove e from E.

(b) If e is the arrival of an object o, find the correspond-
ing departure of o by determining the latest time ¢ at
which o is observed by some pixel that observes e. If
some event ¢/ € E matches ¢, then ¢/ must be the de-
parture of o according to the temporal discriminability
criterion. If ¢’ exists, remove it from E so that it is not
processed twice. Create a global object hypothesis g;
with lifetime spanning from the time of arrival (deter-
mined from e) to the time of departure ¢. Enter g; into
the the global schedule S.

3The background is treated specially and is the union of all ob-
jects that never arrive nor depart.



(c) If eis the departure of an object o, find the correspond-
ing arrival of o by determining the earliest time ¢ at
which o is observed by some pixel that observes e. If
some event ¢/ € E matches ¢, then ¢’ must be the ar-
rival of o according to the temporal discriminability cri-
terion. If ¢’ exists, remove it from E so that it is not
processed twice. Create a global object hypothesis g;
with lifetime spanning from the time of arrival ¢ to the
time of departure (determined from e). Enter g; into the
the global schedule S.

Steps a and b are valid because some pixel p’ has observed
both the arrival and departure of o (according to the observ-
ability criterion). Thus p’ is guaranteed to have observed e
regardless of whether e is an arrival or departure, and p’ has
observed o at least as early and at least as late as any other
pixel.

M apping Observationsto Objects

During the labeling phase of object discovery, we use the
schedule generated by the GSched algorithm and the tem-
poral signature computed during the first phase to map the
observations in each pixel visage to the objects in the sched-
ule that those observations could have stemmed from. This
labeling of observations is the ultimate goal of object dis-
covery. Once each observation has been mapped to the ob-
jects that could have given rise to it, we can easily assem-
ble multi-view 2D masks of each object from the observa-
tions attributed to the object. In this section we describe our
Quasi-Static Labeling (QSL) algorithm for solving the map-
ping problem, and argue that (1) Given a valid and complete
global event schedule such as that returned by GSched, each
pixel’s observation labeling problem is independent of ev-
ery other pixel’s observations; (2) The QSL algorithm pro-
duces the maximally-informative mapping of a pixel’s ob-
servations onto the objects they stem from. We begin this
section by defining the observation labeling problem.

Observation labeling problem Given a pixel p and a valid
and complete global schedule, determine for each of p’s
visages v; the smallest set of quasi-static objects in the
schedule guaranteed to contain the actual quasi-static ob-
ject that generated p’s observations of v;.

Because we do not assume an object is visually homo-
geneous through space, we cannot link observations across
pixels based on similarity of color and/or texture. Rather,
to conclude that two pixels have observed the same object
o, both pixels must have made observations that are tempo-
rally consistent with the arrival and departure of o. The only
information salient to this decision are the times at which o
arrives and departs. For every object, these arrival and depar-
ture times are contained in the global schedule. Thus, given
the complete global schedule, each pixel’s labeling problem
is independent of every other pixels’ observations.

The independence of labeling problems has several im-
portant consequences. First, any labeling algorithm that only
uses temporal information may be easily parallelized simply
by running multiple copies of a single labeler on subsets of
the pixels. Second, since each pixel’s labeling problem is in-
dependent of the pixel’s spatial location, we may treat every

pixel identically regardless of its physical location. In other
words, it doesn’t matter what camera, row, and column a
pixel comes from. Finally, this independence property al-
lows us to show that QSL generates the globally maximally-
informative mapping from observations to objects simply by
showing that QSL correctly solves the pixel labeling prob-
lem for any given pixel taken in isolation.

The remainder of this section is written from the perspec-
tive of a single pixel’s labeling problem and assumes the ex-
istence of a valid and complete global schedule containing
all known objects. We begin by defining several terms used
to describe the QSL algorithm. We then introduce the infer-
ence rules that drive QSL and show that each inference rule
leads to a valid mapping according to the constraints of the
quasi-static world model. Finally, we introduce the QSL al-
gorithm and argue that it recovers the maximally informative
mapping from observations to objects. To describe the infer-
ence rules and the labeling algorithm we need the following
definitions:

Contemporaneous object set: A contemporaneous object
set X is a set of objects such that each object 0 € X is
present in the scene at some time ¢. A maximal contem-
poraneous object set X" is the set of all objects present in
the scene at time ¢.

X; ={o:oispresent attime ¢}

Intersection set: For a pixel visage v, v’s intersection set
I, is the set of all objects such that each object is present
at every time at which v is observed.

I, = ﬂXt* t : v is observed at time ¢
t

Union set: For a pixel visage v, v’s union set U, is the set
of all objects such that each object is present at some time
at which v is observed.

U,=|JX; t:visobservedattime
t

Bounding visage: For pixel visages v and b, b is a bounding
visage of v if the following hold:

1. bis observed sometime prior to every observation of v;
2. bis observed sometime after every observation of v.

Bounded set For a pixel visage v, v’s bounded set B, is
the set of all objects such that each object is present at
every time that v is observed, and no object is present at
any time at which a bounding visage of v is observed. In
other words, a visage’s bounded set contains every object
whose lifetime is consistent with the visage’s constrained
arrival and departure intervals (see Figure 4).

B, =1, — U U, b : b isabounding visage of v
b

Given the quasi-static assumptions, the object bounded set
B, for a visage v contains the actual object observed by
V.
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For all X} such that red is observed at t

Figure 5: The relationship between the sets for a visage red.
Because O(red) is in By.q, O(red) is also in each of the
other sets. Similarly, since O(red) is in front of every object
in U,..q, O(red) is also in front of every object in each of the
other sets.

Object function: The object function O(v) = o maps a
visage v onto an object o. This function represents ab-
stractly the true state of the world. The goal of the label-
ing process is to find the smallest set of candidate objects
C such that O(v) € C is true given that the model as-
sumptions hold. In some cases it is not physically possible
to narrow C' down to a singleton.

Front function: The front function F'(C) = o fora pixel p
maps a set of candidate objects C onto the objecto € C
that is in front of the other objects. The front object o is
said to occlude the other objects in C. F(C) = ois
unique for all sets C such that for every other o’ € C,
at some time ¢, both o and o’ are simultaneously present
and p observes o at time ¢. Any subset of the union set for
a visage v that contains O(v) meets this condition. Like
the object function O(), F() represents abstractly the true
state of the world, not what we know about it.

The following lemmas and theorems provide the founda-
tion for the labeling algorithm. To make the discussion eas-
ier to follow, we use color names to refer to particular pixel
visages.

Lemma 1 For any pixel visage red, and any candidate ob-
ject set C such that every object in C' is present at some time
when red is observed and O(red) € C, O(red) = F(C)
(i.e., O(red) is in front of every other object in C).

This follows directly from the physics of the quasi-static
world.

Lemma 2 According to lemma 1, the following four state-
ments are all true:

L. O(red) = F(Byea);
2. Ored) = F(Iea);
3. O(red) = F(X}),

4. O(red) = F(Ureq).

These four statements follow directly from lemma 1 and
the relations: O(red) € Brea C ILrea € Xi C Uped,
for all ¢ such that red is observed at ¢. The relationships
between the sets and the object and front functions is illus-
trated in figure 5. These relationships follow directly from
the definitions of the sets and the object and front functions.

The following QSL Theorem is central to the QSL algo-
rithm. In essence, the QSL Theorem provides a general rule

Vt : red is observed at ¢;
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that allows us to use one pixel visage’s union set (e.9., Upjue)
to rule out candidates for O(red) for some other visage red.
Iterative invocation of this theorem forms the heart of QSL
and allows us to find the most informative mapping from
visages to objects.

Theorem 3 QSL Theorem Given distinct visages red, blue
and contemporaneous subsets X,.q, Xpue Such that
O(red) = F(Xyeq) and O(blue) = F(Xpiye):

Xpiwe CUrea = O(red) occludes O(blue)
= O(TEd) = F(Xred - Ublue)

Proof The gist of the proof hangs upon determining when
the front object of one set of objects occludes the front object
of another set of objects.

1. Xpiue € Ureda = O(red) ¢ Xpue- The front ob-
jectin Uyeq is O(red). Whenever a subset of U,..q con-
tains O(red), the front object of the subset is O(red).
Since Xy is a subset of U,.q and the front object
of Xpiue is O(blue) not O(red), Xpue Cannot contain
O(red).

2. O(red) ¢ Xpue = O(red) occludes o for every
object o € Xpe. According to the definition of the
union set, every object in U,.q iS present at some time
when red is observed. Thus Xy C U,eq guarantees
that red is observed at some time ¢ when o is present.
Since O(red) is the object visible whenever red is ob-
served, O(red) is in front of o at time ¢.

3. O(red) occludes o for every object o € Xpjue
= O(red) occludes O(blue). O(blue) € Xpye
satisfies the previous step.

4. O(red) occludes O(blue) = O(red) ¢ Uplye-
Since O(red) is in front of O(blue), O(red) cannot be
any object that is ever present when blue is observed.
Since every object in Uy, is present at some time when
blue is observed, no object in Uy, can be O(red).

5. O(red) ¢ Uplye A O(red) = F(Xyed)

= O(red) = F(Xred — Ub]ue)-

The definitions and results presented above allow us to
state the Quasi Static Labeling (QSL) algorithm succinctly.
The algorithm maintains a collection R of statements of the
form O(v;) = F(C;), one for each visage v;, where the
elements of a set C; essentially encode a set of candidates
for the object that maps to visage v;, as determined by QSL
at some point in the algorithm. We start with an initial set
of true statements and attempt to produce new, smaller true
statements by applying the QSL Theorem. The ultimate goal
is to obtain for each visage the true statement with the small-
est possible front function subset argument.

Quasi-Static Labeling (QSL) algorithm Given a com-
plete global schedule, for each pixel p and its set of pixel
visages V,:

1. For each pixel visage v € V}, find v’s union set U,,.
2. For each pixel visage v € V,, find v’s bounded set B,,,

and add the statement O(v) = F(B,) to the collection
R. By Lemma 2 these are all true statements.



3. Repeatedly apply the QSL Theorem to appropriate
pairs of statements in R to shrink the subset argument
of one of the statements. Repeat until no further appli-
cations are possible.

If the QSL Theorem applies to a pair of statements, it
equally applies to the pair of statements if either statement’s
subset argument shrinks. Thus the result is independent
of the order in which the transformations are applied. Be-
cause the size of an argument subset is always smaller than
one of the parent statements and the size of these subsets
must remain positive, the algorithm is guaranteed to termi-
nate. The final candidate label set C* for each pixel visage
v can be read from the subset argument for v’s statement
O(v) = F(Cy)InR.

If there are m visages in the temporal signature and n ob-
jects in the global schedule (m < n), the number of times
the QSL Theorem can be invoked to remove objects from
subset arguments is bounded by mn, the maximum number
of objects in all subset arguments in R. The number of com-
parisons between subset arguments and union sets required
to find a match for the QSL Theorem is m? in the worst
case. Each set comparison involves at most n element com-
parisons. This gives QSL a worst-case runtime complexity
of m3n2.

Given a complete and valid global schedule S and a pixel
p having only valid visages, the labeling the QSL algorithm
returns is maximally-informative in the sense that it fully
preserves and utilizes the following observable properties of
the quasi-static world. Out of space considerations, we refer
you to (Sanders, Nelson, & Sukthankar 2002) for the proofs
of these theorems.

Theorem 4 For any object o € S and any two distinct vis-
ages v, v’ observed by p, the QSL algorithm never assigns
Ow)=0{)=o.

Theorem 5 For any visage v observed by p and any two
distinct objects 0,0’ € S, the QSL algorithm never assigns
OWw)=o0=0"

Theorem 6 For any object o € S, if p observes o’s arrival,
the QSL algorithm correctly assigns O(v) = o to the visage
v observed by p immediately after the arrival. Likewise if p
observes o’s departure, the QSL algorithm correctly assigns
O(v) = o to the visage v observed by p immediately before
the departure.

Theorem 7 For any visage v observed by p and object o €
S, the QSL algorithm determines O(v) # o if there exists
outside of o’s lifetime a time ¢ at which p observes v.

Theorem 8 For each of p’s visages v;, the QSL algorithm
determines O(v;) # o for every object o € S that is in front
of O(v;) in every world configuration that is consistent with
S and each of p’s visages.

Conjecture 9 For each of p’s visages v;, the QSL algorithm
determines O(v;) # o for every object o € S that is behind
O(v;) in every world configuration that is consistent with .S
and each of p’s visages.

The QSL algorithm uses the QSL theorem to implicitly
generate a directed acyclical graph encoding all occlusion
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Figure 6: Given a global schedule (i), observation of a
pixel’s visages (ii) determines a partial depth ordering of the
objects that map to the visages. This partial ordering can
be represented as a directed acyclical graph (iii). The ob-
jects with the dashed boundaries are not directly observed
by the pixel and so may be occluded or may simply not be
present in the part of the scene observed this pixel. When
a directed path between two objects exists, the object at the
end of the path is said to be in front of the object at the start
of the path while the object at the start of the path is said
to be behind the object at the end of the path. If two such
objects are present in the scene simultaneously, the in-front
object is said to occlude the behind object. Often (as in this
case) it is possible to determine the occlusion order of two
pixel visages without necessarily being able to uniquely de-
termine the global object that one or the other visage maps
to.

relationships between schedule objects that are observable
given the schedule and a particular pixel’s signature (Fig-
ure 6). Once the observations in the sequence have been
mapped to the objects they stem from, it is trivial to assemble
multi-view 2D masks of the objects from the observations
attributed to them. Since the observations used to construct
the masks may come from any time during the sequence, a
complete object mask of an object that is never entirely visi-
ble at at any one time can be created from observations made
at various times when different parts of the object were vis-
ible.

Limitations of Temporal I nformation

The quasi-static world model assumes that a given stationary
physical object looks the same through time from each van-
tage point that observes it. In practice, when other objects
arrive or depart from the scene, the lighting conditions for a
stationary object (e.g., a toy rabbit) may be affected. Even
if the objects arriving and leaving do not occlude the part
of the rabbit a pixel observes, shadows and reflections from
the other objects can significantly alter the rabbit’s visual
appearance in the pixel. However, not all representations
of visual appearance are equally susceptible to shadows and
reflections. For example, an HSI color space may allow eas-
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ier rejection of appearance changes due to shadows than the
corresponding RGB color space.

While temporal information alone is often enough to both
construct a global schedule and map observations to objects
using that schedule, there are situations for each of these
tasks in which the problem cannot be completely solved us-
ing temporal information alone. Consider the scheduling
problem. In many real world situations, the clean world cri-
terion is not satisfied by some objects that either only arrive
or only depart. As was mentioned earlier, temporal informa-
tion by itself cannot determine whether an event is the arrival
or departure of an object o, unless o has also respectively
departed or arrived. While temporal information cannot re-
solve these tricky events, several straightforward and robust
spatial methods based upon edge features may be used in
concert with the temporal information to finish the job.

As with construction of a global schedule, mapping ob-
servations to objects cannot always be completely solved
using temporal information alone. Certain world configu-
rations are inherently ambiguous with respect to temporal
information alone. Instead of a single candidate quasi-static
object per visage, some visages have a set of possible objects
they could map to. Even in these difficult situations, QSL
determines the smallest set of candidates that fully covers
all possible world configurations. These sets, as provided
by QSL, could be combined with spatial techniques, such
as connected components, to finish constraining the assign-
ment of observations to objects.

Conclusion

TOD, as described by the theory in this paper, ignores dis-
tracting motion, correctly deals with complex occlusions,
and recovers entire objects even in cases where the objects
are partially occluded in every frame (see Figure 1 for ex-
ample results). Because we do not use spatial information to
perform our clustering, our approach is significantly differ-
ent from and complements traditional spatially based seg-
mentation algorithms. The advantages of our method in-
clude: (1) Human supervision is not required; (2) Low frame
rates (i.e., 1-5Hz) suffice; (3) Entire objects are discovered
even in some cases where they are always partially occluded;
(4) The approach scales naturally to and benefits from multi-
ple uncalibrated cameras. Since our approach is well suited
to train and initialize object recognition and tracking sys-
tems without requiring human supervision, our method rep-
resents significant progress toward solving the object dis-
covery problem.

A few promising directions for future work include: (1)
Using the 2D masks generated by TOD to train an object
recognizer automatically; (2) Integrating TOD with a spoken
language system where TOD is used to perceptually ground
the nouns; (3) Evaluating a variety of techniques for gener-
ating temporal signatures that allow the distinct visages and
temporal discriminability observability criteria to be weak-
ened; (4) Combining temporal and spatial information in a
unified framework that removes the requirement of tempo-
ral discriminability altogether; (5) Extending TOD to run
online by causing GSched and QSL to periodically commit
to their interpretations of the sequences; (6) Converting the
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deterministic scheduling and labeling phases into probabilis-
tic versions; (7) Integrating the currently separate schedul-
ing and labeling phases into a single phase. More details
are in (Sanders, Nelson, & Sukthankar 2002) available from
http://www.cs.rochester.edu/ sanders.
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