
UTTSExam: A Campus-Wide University Exam-Timetabling System

Andrew Lim, Juay-Chin Ang, Wee-Kit Ho, Wee-Chong Oon

School of Computing, National University of Singapore
3 Science Drive 2

Singapore 117543, Singapore
{alim, angjc, howk, oonwc}@comp.nus.edu.sg

Abstract
UTTSExam is the exam-scheduling portion of the University
Timetable Scheduler (UTTS) software, an automated
university timetabling program developed in the National
University of Singapore. It was successfully used to schedule
the examination timetable for the first semester of the
2001/2002 academic year in NUS, a task involving 27,235
students taking 1,350 exams. The use of the software resulted
in significant time savings in the scheduling of the timetable
and a shortening of the examination period. This paper
explains the development and design of UTTSExam.

Introduction
The National University of Singapore (NUS)1 introduced
the modular academic course structure in 1993. This
allowed students to choose the modules that they wished
to study in order to complete their degree requirements.
As a result of this added flexibility, the task of scheduling
the examination timetables in NUS became much more
complex, especially in view of the increasing number of
cross-faculty modules (i.e. modules that can be taken by
students from different faculties).
 The task of scheduling examination timetables was
previously done manually, an error-prone process that
tends to take several weeks to complete. As a result, in
1999 the university sponsored the development of the
University Timetable Scheduler (UTTS) software, an
automated university timetable-scheduling program. When
completed, the program is expected to automatically
schedule both the course and examination timetables for
all the faculties in the entire university that employ the
modular academic course structure.
 The course-scheduling portion of the program is
currently still under development (Lim et al. 2000a).
However, the exam-scheduling portion (Lim et al. 2000b),
called UTTSExam, has reached the deployment stage and
was used to generate the examination timetable for the
first semester of the 2001/2002 academic year in NUS.

1 http://www.nus.edu.sg

Copyright © 2002, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

This paper describes the steps involved in the development
of UTTSExam from its conception to its completion,
along with a breakdown of the inner workings of each
portion of the software.

Problem Description
This examination-timetabling problem (ETTP) involves
creating a schedule such that a set of examinations is
allocated into venues with limited capacities within an
examination period. ETTP is an instance of the Constraint
Satisfaction Optimization Problem (CSOP) (Tsang 1993),
which is a combination of two types of problems. The first
is the Constraint Satisfaction Problem (CSP), which
involves:

• A set of variables X = {x1, …,xn}
• For each variable xi, a finite set Di of possible

values (its domain)
• A set of critical constraints restricting the values

that sets of variables may take simultaneously

 A solution to the CSP is an assignment of values to all
variables such that every constraint is satisfied. General
timetabling and scheduling problems, which are NP-Hard
(Garey and Johnson 1979), may be modeled as a CSP. In
particular, the ETTP can be modeled as a CSP by treating
each examination as a variable, and the domain of each
variable would be the available examination sessions. The
ETTP has a further provision that the solution should take
up as few sessions as possible. The two critical constraints
for all ETTP are as follows:

• Two examinations that are taken by any particular
student cannot be scheduled in the same session.

• The total number of candidates taking the papers
scheduled in a particular venue must not exceed
the venue’s capacity.

 Real-life ETTP problems also have another set of non-
critical constraints, which may be violated while still
retaining the feasibility of the solution. The quality of two
feasible solutions may be measured by a weighted sum of
its non-critical constraint violations. The best fulfillment

838 IAAI-02

From: AAAI-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

of these non-critical constraints, as measured by a
weighted sum, is an optimization problem.

 In the case of the first semester of the 2001/2002
academic year in NUS, this involves 27,235 students each
taking one or more of 1,350 examinations (for a total of
100,599 student-examination tuples), to be scheduled in
the following venues (Table 1):

Alias Venue Capacity
STC Suntec City Exhibition Hall 1600
GYM Gymnasium 312
MPH1 Multi-Purpose Sports Hall 1 750
MPH2 Multi-Purpose Sports Hall 2 850
CH Competition Hall 396
EH Eusoff Hall 175
TH Temasek Hall 136
LT8 Lecture Theatre 8 117
LT11 Lecture Theatre 11 125
LT13 Lecture Theatre 13 81
LT17 Lecture Theatre 17 112

Table 1: List of Examination Venues

 The examination period was from the 12th to 26th
November 2001. There were 3 sessions a day (morning,
afternoon and evening) for the 12 available days in this
period, equaling 36 sessions in total. Suntec City is a
commercial venue that was unavailable for the last 5
sessions of the examination period.

Scheduling Strategy
In general, there are two approaches to the scheduling of
university timetables, namely centralized or de-
centralized. Both approaches have their own advantages
and disadvantages.
 Initially, we utilized the centralized approach, whereby a
central authority uses the software to schedule the
timetable for the entire university. In theory, this grants a
global view of the problem domain, presenting all the
information necessary to best create the timetable.
Unfortunately, the sheer size of the problem proved to be
too difficult, such that the scheduling program was unable
to create a high-quality feasible timetable. Furthermore,
co-ordination between the faculties and the central
authority was difficult and error-prone.
 Alternatively, the de-centralized approach lets each
faculty schedule its own examination timetable using its
own venue resources. However, this approach would
rapidly become infeasible as more cross-faculty modules
are introduced, since it works best if communication
between faculties can be reduced to a minimum. There is
also a problem in scheduling large examinations if the
faculty does not have access to large venues.

 We eventually adopted a hybrid centralized and de-
centralized approach to scheduling (Ho, Lim and Oon
2002). Before student registration, the examinations’
enrolment estimates were used to proportionally allocate
a fixed number of seats for each faculty (called their
venue partition). Each faculty would then schedule their
exams according to their venue partitions, disregarding the
actual venues and the effects of cross-faculty modules.
These faculty timetables are then merged into a campus-
wide tentative timetable.
 The central authority would be able to obtain the
finalized information for each exam after student
registration. At this point, the tentative timetable is
updated with the finalized information. Finally, the exams
would then be allocated to their actual venues, verified by
the individual faculties and published. This approach
proved to create a much better timetable than the initial
centralized approach.

Application Description
The structure of the UTTSExam program is governed by
the hybrid scheduling approach. Aside from the basic
functions of data entry and scheduling, facilities must be
provided for venue partitioning and transfer and
communication of data. Minor side-applications include
the creation of a candidate seating plan and the printing of
reports.

Hardware & Software
The system was coded in Java 1.3 with Swing™
components using the IBM VisualAge™ for Java 3.5
software and Microsoft Access™ 2000 databases. The
central machine used was a Pentium-800 PC with 256MB
RAM.

System Design
There are two versions of UTTSExam. The Registrar
Version is the full-fledged program that has access to all
the features of the program. This is controlled by the
Registrar’s Office (the central authority). Instead, the
individual faculties operate the stripped-down Faculty
Version, which they use to enter the enrolment estimates
for their faculty’s examinations, as well as schedule their
faculty timetables according to their venue partitions.
 The UTTSExam system design is based on the 3-Tier
architecture that is commonly used when building
Client/Server applications. It keeps distinct the GUI,
object oriented and data storage portions of our program.
By separating the system into 3 tiers, they can be worked
on independently (Reese, 1997).
 UTTSExam is divided into the following 3 tiers. The
View tier involves the graphical user interface. The
Application tier is composed of the modules in an object-
oriented paradigm that manipulate the objects in the
system. This includes the scheduling engine, the printing
modules and the report generator. Finally, the Persistence

IAAI-02 839

layer consists of the actual database access. Figure 1
shows the system design.

View Layer

Application
Layer

Persistence
Layer

View 1 View nView 2

Application Manager

Persistence Manager

Microsoft Access

Scheduling
Engine

Print
Manager

Report
Generator

DB

Figure 1: UTTS System Architecture

Variable Definitions
UTTSExam contains several screens that enable the user
to define all the variables of the timetabling problem,
including:

• Examination information
• Venue information
• Candidate information
• Exam session particulars
• Constraint definitions

 The Faculty version can only make changes and assign
constraints to exams pertaining to that particular faculty.

Constraint Definitions
Of particular interest are the constraint definitions. It is
imperative that the program allows the users to define all
the necessary constraints. UTTSExam allows the
definition of a multitude of constraints:

• Separate all examinations with different duration.
• Spread all examinations of a student over the

examination period as much as possible.

• Any 2 papers of a student should be placed
minimally x sessions or y days apart.

• Paper A be placed x days away from Paper B
• Paper A be placed x sessions away from Paper B
• Paper A to be held before Paper B
• Paper A and Paper B to be held at the same time
• Paper A and Paper B are not to be held at the

same time
• Paper A and Paper B to be held at the same time

and same venue
• Paper A to be held as early/late as possible in the

examination period
• Paper A is to be held in session s
• Paper A is not to be held in session s
• Paper A is to be held on/before/after date d
• Paper A is to be held within period (d1, d2)
• Paper A must not be held during period (d1, d2)
• Paper A is to be held in week n.
• Paper A is to be held at venue v.
• Paper A is to be held at a venue belonging to

venue group g.

For ease of entry, UTTSExam also allows the definition of
examination paper groups. In this way, the user can define
both intra- and inter-group constraints, thereby allowing
the definition of constraints between several papers at a
time. In addition, the introduction of paper groups allows
the following constraints:

• At most x papers from this group can be held in
the same time slot

• Papers in this group must be held as far apart as
possible

 Figure 2 shows the Constraint Definition Screen.

Figure 2: Constraint Definition Screen

Venue Partitioning
When the faculties’ enrolment estimates have been made,
this information is used to proportionally assign venue
partitions to each faculty in the form of the number of
seats for each session. The heuristics used are given in the
next section. UTTSExam provides a user interface for the
manipulation and assignment of venue partitions to the
faculties.

840 IAAI-02

Import/Export
Co-ordination between the faculties and the Registrar’s
Office is achieved via a central database. The Faculty
Version allows the exporting of the enrolment estimates
and examination information for retrieval by the
Registrar’s Office. With this information, the venue
partitioning is done and uploaded to the database for
retrieval by the faculties. The faculties then schedule their
timetables and export the results. The merging of the
various faculties’ timetables is then done. This collated
timetable is once more uploaded to the database for
verification by the individual faculties. Once the changes
are finalized, the timetable can be published.

Output
Various reports can be created for reference by the
program. These include the interim and finalized
timetables; the constraints defined; examination, venue
and candidate information; and the seating plan for each
session. All of these reports are generated in html files, so
that they can be displayed on the university webpages.
 Figure 3 gives a section of the timetable generated for
semester 1 of the 2001/2002 academic year.

Figure 3: Scheduled timetable output

Scheduling Engine
The heart of the program is the scheduling engine,
including the merging process. The system allows manual
intervention both before and after the automated
scheduling process. The timetabling administrator might
wish to manually insert some examinations into specific
slots before invoking the scheduling engine. He can also
tweak the generated timetable after the scheduling is done.
 The details of the scheduling algorithm are given in the
next section. Figure 4 shows the Scheduling Screen.

Figure 4: Scheduling Screen

IAAI-02 841

Uses of AI Technology
The main aim of UTTSExam is to create the examination
timetable for NUS, and to that end there are three separate
processes to examine, namely the venue partitioning
process, the scheduling of the faculty timetables and the
merging of the faculty timetables into the collated whole.
 Venue partitioning is a complex problem. In order to
decide the size and composition of the venue partitions to
be allocated to each faculty, the following criteria must be
taken into account:

• Obviously, the number of seats allocated should
be proportional to the total candidacy of the
faculty.

• The number of large papers for that faculty
determines the number of large venue partitions
given.

• Each faculty should be given extra seats so that
they have some room to maneuver when
scheduling the papers. However, the number of
extra seats should not be strictly proportional to
the total candidacy of the faculty. If too few extra
seats are given, they are superfluous. Also,
faculties with large candidacies tend to not need
many extra seats since they have many small
papers.

 Currently, the process of venue partitioning is done
manually. Although an automated venue-partitioning tool
implementing the above heuristics is planned, manual
intervention is probably still necessary. This is because it
is difficult to specify all the pertinent constraints for a
program to use, but relatively easy for a human to keep
track of them. For example, past experience may reveal
that one faculty tends to have many heavily constrained
papers, and therefore needs larger partitions. This
information is hard to express to an automated program.
 When the venue partitions are obtained, the faculty
timetables are scheduled using the Combined Method for
solving CSOP (Ho and Lim, 2001). This involves first
employing a stochastic search technique to find a high-
quality solution that may violate some hard constraints.
This solution is then used to guide a selection algorithm
with consistency checking to create a feasible timetable
with minimal changes to the initial solution. UTTSExam
uses the Genetic Algorithm (Marin 1998) with Tabu
Search post-optimization (Rayward-Smith et al. 1996),
which is used to guide the Variable Ordering Method with
AC-3 (Mackworth 1977) consistency checking.
 To merge the faculty timetables, UTTSExam once again
makes use of the Variable Ordering Method with AC-3. As
each examination is considered, the program tries to
schedule it into the slot depicted by the faculty timetable.
If this causes a conflict, the examination is set aside.
When all the examinations have been considered, the
program attempts to insert the remaining exams into the
schedule by a trial and error process: the program chooses

a slot, then inserts the offending examination into it by
removing the conflicting exams that were originally in the
slot. This process is repeated several times until no such
improving exchanges can be found.
 If there are examinations left that still cannot be
scheduled, there is no recourse but to contact the relevant
faculties to request a loosening of the constraints. For the
first semester of 2001/2002, there were 12 examinations
left over at the end of the process. These were eventually
inserted into the schedule after discussion with the
relevant faculties.
 This process produced a much better timetable than
making use of the Combined Method alone to schedule
the entire timetable. In fact, over 1000 examinations could
not be scheduled using the Combined Method alone.

Application Use and Payoff
UTTSExam was used to create the examination timetable
for the recently completed semester 1 of the 2001/2002
academic year. The semester 2 examination timetable has
already been scheduled based on the enrolment estimates.
At the time of writing, student registration is under way.
Upon its completion, the merging process could then
begin.
 Even though the program has only been used for one
semester so far, the benefits of automating examination
timetabling is obvious:

• In this initial implementation of the program, data
entry and constraint specification was the most
time-consuming part of the process, taking up to
2 weeks. However, subsequent semesters require
much less data entry since the examination
information remains largely the same. The actual
scheduling, once the data entry was completed,
takes less than 5 minutes.

• Assuming that the constraints entered are
accurate, UTTSExam ensures that the produced
timetable is conflict-free. This is especially
important when taking into account the added
complexity that cross-faculty modules bring to
the task.

• Last-minute changes can be quickly catered for.
• Since each faculty is using the same system, all

the output formats have been standardized.
• The speed of the system allows experimentation

with different parameters and policies.
Previously, the NUS examination period usually
spanned a month, and there were only 2 sessions
a day. It is only with the automated system that
the new policy of 3-session days over 2 weeks
could be implemented.

• The shortening of the examination period means
that the renting of commercial venues (like
Suntec City) is minimized. This translates to a
substantial monetary saving.

842 IAAI-02

Application Development and Deployment
The UTTSExam program started development in NUS in
mid-1999 when it became obvious that the introduction of
cross-faculty modules would make the scheduling of
course and examination timetables an increasingly
difficult process. The existing manual timetabling process
became exceedingly time-consuming, and cases of
overlooked conflicts became more and more frequent.
NUS therefore provided funding for the development of
the University Timetable Scheduler program. This
provided for two full-time application programmers and
finances for research into timetable scheduling
algorithms.
 To facilitate the development of the program, a
timetabling committee was set up containing two
representatives from the administrative sections of each
of the seven involved faculties, along with representatives
from the Registrar’s Office. Weekly meetings were held
between the committee and the development team to
discuss design issues, required features and other
important points. Frequent email correspondence helped
to keep both parties up to date with developments.
 The initial meetings were concerned largely with
formulating a data representation scheme that was
sufficient to handle the requirements of the problem.
Once that was done, the development team began
converting the existing data from the university’s central
database into the UTTSExam format, while the faculty
representatives worked out their respective constraints. To
facilitate the entry of these constraints into the system,
the Faculty Versions of UTTSExam was developed.
Meanwhile, research was being done on various
scheduling methods.
 When all the data was obtained, preliminary
experiments on scheduling the timetables for the entire
university produced discouraging results. Due to the
enormity of the problem, the scheduling engine was
unable to create a feasible timetable at all (over 1000
examinations could not be placed within the examination
period). We then decided to try the distributed approach,
making use of the Faculty Versions (which were originally
intended for data entry purposes only) by allowing each
faculty to perform their own scheduling based on venue
partitions.
 Interestingly, even though the Faculty Versions made
use of the same scheduling algorithm, this partition-
schedule-merge approach managed to produce a timetable
that was able to fit in all but 12 exams. After negotiation
with the individual faculties, these exams were
incorporated with the minimum of hassle.
 As with all initial deployments of new software, there
were a few teething problems. Up until the deadline for
the publication of the timetable, numerous last-minute
changes had to be made as a result of occurrences like late
registrations and invigilator unavailability. There were also
a few data entry errors that went unnoticed until very late
in the process, which is always a potential problem on

initial deployments. The automated system was able to
cater to all of these changes quickly while maintaining the
feasibility of the entire timetable, something that would be
immensely difficult to do manually.

Maintenance
Currently, the role of the Registrar’s Office central
authority is being played by the development team as
alterations to the program are made as required. Control
of the program will be handed over to Registrar’s Office
personnel in a few months, once some final issues are
ironed out. Since the program is simple and instinctive to
use, minimal training will be required (although an
understanding of scheduling and constraints would aid its
use). Data entry will also be minimal, as most modules
will have much the same information and constraints
across academic years.
 UTTSExam can already unabashedly claim to be able to
generate an examination timetable based on the more
commonly encountered constraints. However, there are
some rare special cases that need to be addressed. One
such case involves an examination that had to be divided
into two or more venues within the same session, since it
was offered to students from different faculties who must
be given different examinations (of the same module).
 We are confident that the UTTSExam program will be
able to produce examination timetables for NUS quickly
and efficiently for years to come.

Conclusion
This paper takes a look at what is required in the
development of the examination-scheduling portion of the
UTTS automated university timetable-scheduling program,
entitled UTTSExam. We described the size and
complexity of the problem of scheduling the exam
timetables for a large university like NUS that employs a
modular course structure with several cross-faculty
modules, along with the strategy employed to best
overcome these difficulties. The program’s design,
features and scheduling approach was also described.
 Even though UTTSExam has only been deployed for one
semester, the advantages of an automated examination-
scheduling program are obvious and significant. Despite
the difficulties encountered in its developmental process,
all agree that it has been well worth the effort. We hope
that our work will inspire other universities to consider
automated timetable scheduling as well.

References

Garey, M. R. and Johnson, D. S. Computers and
Intractability: A Guide to the Theory of NP-
Completeness, 1979.

IAAI-02 843

Ho, W. K. and Lim, A. A Hybrid-Based Framework for
Constraint Satisfaction Optimization Problems, in
International Conference on Information Systems (ICIS)
2001, pg. 65-76.

Ho, W. K.; Lim, A.; and Oon, W. C. UTTSExam: A
University Examination Timetabling System, submitted
to IEEE Intelligent Systems 2002.

Lim, A.; Oon, W. C.; Ang, J. C.; and Ho, W. K
Development of a Campus-wide University Course
Timetabling Application, in 3rd International Conference
on the Practice and Theory of Automated Timetabling
(PATAT) 2000, pg. 71-77.

Lim, A.; Ang, J. C.; Ho, W. K.; and Oon, W. C. A Campus-
Wide University Examination Timetabling Application,
in Innovative Applications in Artificial Intelligence
(AAAI/IAAI) 2000, pg. 1020-1025

Mackworth, A. K. Consistency in Networks of Relations,
in Artificial Intelligence 8 (1977): 88-119

Marin, H. T. “Combinations of GA and CSP Strategies for
Solving the Examination Timetabling Problem”, Ph.D.
thesis, Instiuto Technologico y de Estudios Superiores
de Menterrey, 1998.

Rayward-Smith, V. J.; Osman, I. H.; Reeves, C. R.; and
Smith, G. D. Modern Heuristic Search Methods, 1996.

Reese, G. Database Programming with JDBC and Java,
O’Reilly 1997.

Tsang, E. Foundations of Constraint Satisfaction, 1993.

844 IAAI-02

