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Abstract 
This paper describes an analogy ontology, a formal 
representation of some key ideas in analogical processing, 
that supports the integration of analogical processing with 
first-principles reasoners.  The ontology is based on 
Gentner’s structure-mapping theory, a psychological 
account of analogy and similarity.  The semantics of the 
ontology are enforced via procedural attachment, using 
cognitive simulations of structure-mapping to provide 
analogical processing services.  Queries that include 
analogical operations can be formulated in the same way as 
standard logical inference, and analogical processing 
systems in turn can call on the services of first-principles 
reasoners for creating cases and validating their conjectures.  
We illustrate the utility of the analogy ontology by 
demonstrating how it has been used in three systems: A 
crisis management analogical reasoner that answers 
questions about international incidents, a course of action 
analogical critiquer that provides feedback about military 
plans, and a comparison question-answering system for 
knowledge capture.  These systems rely on large, general-
purpose knowledge bases created by other research groups, 
thus demonstrating the generality and utility of these ideas.   

Introduction 

There is mounting psychological evidence that human 
cognition centrally involves similarity computations over 
structured representations, in tasks ranging from high-level 
visual perception to problem solving, learning, and 
conceptual change [21].  Understanding how to integrate 
analogical processing into AI systems seems crucial to 
creating more human-like reasoning systems [12].  Yet 
similarity plays at best a minor role in many AI systems.   
Most AI systems operate on a first-principles basis, using 
rules or axioms plus logical inference to do their work.  
Those few reasoning systems that include analogy 
(cf.[1,37]) tend to treat it as a method of last resort, 
something to use only when other forms of inference have 
failed.  The exceptions are case-based reasoning systems 
[27,28], which started out to provide computational 
mechanisms similar to those that people seem to use to 

solve everyday problems.  Unfortunately, CBR systems 
generally have the opposite problem, tending to use only 
minimal first-principles reasoning.  Moreover, most of 
today’s CBR systems also tend to rely on feature-based 
descriptions that cannot match the expressive power of 
predicate calculus.  Those relatively few CBR systems that 
rely on more expressive representations tend to use 
domain-specific and task-specific similarity metrics.  This 
can be fine for a specific application, but being able to 
exploit similarity computations that are more like what 
people do could make such systems even more useful, 
since they will be more understandable to their human 
partners.   

While many useful application systems can be built with 
purely first-principles reasoning and with today’s CBR 
technologies, integrating analogical processing with first-
principles reasoning will bring us closer to the flexibility 
and power of human reasoning.  This paper describes a 
method for doing this.  The key idea is to use an analogy 
ontology that provides a formal, declarative representation 
of the contents and results of analogical reasoning.  The 
semantics of this ontology is defined by the underlying 
theory of analogy and similarity, structure-mapping [18].  
This semantics is enforced via procedural attachment, 
using the analogy ontology to set up computations that are 
solved by special-purpose analogical processing systems, 
and reifying the results of these programs in a way that can 
be used by first-principles reasoning systems.   

We start by reviewing relevant aspects of structure-
mapping theory.  Then we present the analogy ontology, 
and outline its implementation.  We then describe how 
these ideas have been used in three systems: analogical 
reasoning about historical precedents, critiquing military 
course of action sketches via cases, and answering 
comparison questions in knowledge capture systems.  We 
close by discussing related and future work.  

Prelude: Structure-mapping, SME, and MAC/FAC 

In structure-mapping theory [18], an analogy match takes 
as input two structured representations (base and target) 
and produces as output a set of mappings.  Each mapping 
consists of a set of correspondences that align base items 
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with target items and a set of candidate inferences, which 
are surmises about the target made on the basis of the base 
representation plus the correspondences.  The constraints 
that govern mappings, while originally motivated by 
psychological concerns [21], turn out to be equally 
important for the use of analogy in case-based reasoning, 
since they ensure that candidate inferences are well defined 
and that stronger arguments are preferred [11]. 

Two simulations based on structure-mapping are 
relevant to this paper.  The first, the Structure-Mapping 
Engine (SME) [1,7,11], is a cognitive simulation of 
analogical matching.    How SME works is described in 
[6,7,11].  Two characteristics are key to the work described 
here: 
• 

• 

                                                          

SME operates in polynomial time, using a greedy 
merge algorithm to provide a small number of mappings 
that best satisfy the constraints of structure-mapping. 

SME’s results are consistent with a large and growing 
body of psychological results on analogy and similarity 
[9], making its answers and explanations more likely to be 
accepted by human collaborators.  

The second simulation, MAC/FAC, is a two-stage model 
of similarity-based retrieval that is consistent with 
psychological constraints [14] and has been used in a 
fielded application [16].  The key insight of MAC/FAC is 
that memory contents should be filtered by an extremely 
cheap match that filters a potentially huge set of 
candidates, followed by a structural match (i.e., SME) to 
select the best from the handful of candidates found by the 
first stage1.  The extremely cheap match is based on 
content vectors, a representation computed from structured 
descriptions.  Content vectors are useful because the dot 
product of two content vectors provides an estimate of the 
quality of match between the corresponding structural 
descriptions (see [14] for details).   

The Analogy Ontology 

The analogy ontology defines the types of entities and 
relationships used in analogical processing.  The ontology 
can be grouped into cases, matches, pragmatic constraints, 
mappings, correspondences, candidate inferences and 
similarities and differences.  We discuss each in turn. 

Cases: Cases are collections of statements, treated as a 
unit.  We use the relation (ist-Information ?case

?fact) to indicate that statement ?fact is in the case 
?case.2  Cases can be explicitly named in the KB, via the 
function explicit-case-fn, whose single argument is a 
term naming the case.    

One important way of encoding task constraints in 
analogical reasoning is by specifying different collections 
of information about a term to be gathered from a 
knowledge base.  In the ontology these are represented 
simply as additional functions.  (How such functions are 

 
1 Hence the name: Many Are Called/Few Are Chosen 
2 ist-Information is drawn from the Cyc upper ontology. 

implemented is described in [30], and their integration into 
reasoning systems described below) Here are some 
functions that we have found useful in several tasks: 
• (minimal-case-fn ?thing) denotes all of the 
statements in the KB that directly mention ?thing, where 
?thing can be any term.  This is rarely used in isolation, 
instead providing a convenient starting point for defining 
other case functions. 
• (case-fn ?thing) is the union of (minimal-case-fn
?thing) and attribute information about all of the ground 
terms occurring in (minimal-case-fn ?thing), e.g., in the 
case of Cyc,  the attribute information consists of the isa
statements involving the ground terms.  When ?thing is an 
event, all causal links between the terms are included in 
addition to attribute information.  When ?thing is an 
agent, all facts whose ground terms are those in (minimal-
case-fn ?thing) are included.  This is useful when a 
quick comparison is required, to see if the match is worth 
pursuing further. 
• (recursive-case-fn ?thing) denotes the union of 
case-fn applied to ?thing and to all of its subparts, 
recursively.   What constitutes a subpart depends on the 
KB’s ontology.  For instance, if ?thing is an event, its 
subparts are subevents. 
• (in-context-case-fn ?thing ?case) denotes the 
subset of (case-fn ?thing) that intersects the case ?case.  
This is used for more focused queries, e.g., Alabama in the 
context of the US Civil War. 
• (no-postlude-case-fn ?thing) denotes (case-fn

?thing) with all causal consequences of ?thing removed.  
This is useful in reasoning about alternative outcomes of a 
situation, since it suppresses knowledge of the actual 
outcomes. 

The particular definitions for agent, event, causal 
consequences, and subparts depend on the KB used.  In the 
KB’s we have worked with to date (Cyc, SAIC, and KM) it 
has sufficed to enumerate short lists of predicates used to 
identify these concepts.  For instance, in using Cyc, 
members of the collections Event and Agent are treated as 
events and agents respectively, and short lists of 
relationships were identified as expressing causal and 
mereological consequences.  We expect that this technique 
will work for any knowledge base that includes some 
version of these concepts. 

Matches: Matches represent a comparison between a 
base and target.  They consist of a set of correspondences 
and mappings, which are described shortly.  The relation 
(match-between ?base ?target ?match) indicates that 
?match is the result of SME comparing  the cases ?base 
and ?target.  There are two variations that are like match-
between, except that the process they specify is slightly 
different.  recursive-match-between dynamically 
expands the cases to resolve competing entity matches.  
This is useful in dealing with large, complex cases.  
seeking-match-between only considers matches that 
reflect required or excluded correspondences derived from 
task constraints.  The procedural semantics of recursive-
match-between and seeking-match-between are detailed 
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in  [30]. 
Mappings:  In structure-mapping, a mapping consists of 

three things: A structurally consistent set of 
correspondences, a set of candidate inferences, and a 
structural evaluation score [6,7,11].  How correspondences 
and candidate inferences are represented in this ontology is 
described below.   The structural evaluation score is an 
estimate of match quality.  The function structural-
evaluation-score denotes the score computed by SME 
for the mapping.  The relation (mapping-of ?mapping

?match) indicates that mapping ?mapping  is part of match 
?match, i.e., that it is one of the solutions SME found to the 
comparison.  The relation (best-mapping ?match

?mapping) indicates that ?mapping  has the highest 
structural evaluation score of  ?match’s mappings.  
Typically this is the mapping that is preferred, so it is 
worth being able to specify it concisely. 

Correspondences: A correspondence relates an item in 
the base to an item in the target.  Items can be entities, 
expressions, or functors.    Correspondences have a 
structural evaluation score3.  The relation 
(correspondence-between ?c ?b ?t)  indicates that item 
?b corresponds to item ?t according to correspondence ?c.  
(has-correspondence ?m ?c)  indicates that mapping ?m 
contains the correspondence ?c.   (Not all correspondences 
participate in mappings, and only do so under specific 
constraints: See [6,7] for details.)   

The parallel connectivity constraint of structure-
mapping states that if a correspondence involving two 
expressions is in a mapping then so must correspondences 
involving its aligned arguments [19].  This constraint 
induces a structural dependency relationship between 
correspondences which is reified in our ontology.  The 
relation (structurally-supported-by ?c1 ?c2) 
indicates that correspondence ?c2 links a pair of arguments 
in the statements linked by correspondence ?c1.  This 
information is used in constructing dependency networks 
during first-principles reasoning, so that explanations (and 
backtracking) will take account of analogical processing 
results.  For example, correspondences implicated in a 
contradiction can be identified by a TMS, and used to 
formulate constraints (described next) which push SME 
into seeking an alternate solution. 

Pragmatic constraints: Some task constraints can be 
expressed in terms of restrictions on the kinds of 
correspondences that are created during the matching 
process.  Such statements can be inserted into the 
knowledge base or used in queries.  The analogy ontology 
incorporates three kinds of constraints:  
1. (required-correspondence ?Bitem ?Titem) 
indicates that its arguments must be placed in 
correspondence within any valid mapping.  This is useful 
when the task itself implies correspondences whose 
consequences are to be explored (e.g., “If Saddam Hussein 
is Hitler, then who is Churchill?”) 
                                                           
3 The structural evaluation score of the mapping is the sum of the 
structural evaluation score for its correspondences.  See [7] for details. 

2. (Excluded-correspondence ?Bitem ?Titem)

indicates that its arguments may not be placed in 
correspondence within any valid mapping.  This is useful 
when a mapping has been ruled out due to task constraints, 
and alternate solutions are sought.  Excluding an otherwise 
attractive correspondence will cause SME to look for other 
solutions. 
3. (required-target-correspondence ?Titem) 
indicates that there must be a correspondence for target 
item ?Titem, but does not specify what that must be.  
(required-base-correspondence is the equivalent in the 
other direction.)  This is useful when seeking an analogy 
that sheds light on a particular individual or relationship, 
because being placed in correspondence with something is 
a necessary (but not sufficient) requirement for generating 
candidate inferences about it.  

Candidate inferences:  A candidate inference is a 
statement in the base that, based on the correspondences in 
a mapping, might be brought over into the target as a 
consequence of the analogy [7].  Candidate inferences have 
the following properties: 
• Propositional Content.  The statement about the target 
that has been imported from the base by substituting the 
correspondences from the mapping into the base statement.  
• Support.  The base statement it was derived from. 
• Support score.  The degree of structural support derived 
from the correspondences in the mapping. 
• Extrapolation score.  The degree of novelty of the 
candidate inference, derived from the fraction of it that is 
not in the mapping. 
The support and extrapolation scores are defined in [13]. 
The binary relationships candidate-inference-content, 
candidate-inference-support, candidate-inference-

support-score, and candidate-inference-

extrapolation-score express the relationships between a 
candidate inference and these properties.  Candidate 
inferences can postulate new entities in the target, due to 
the existence of unmapped entities in the support 
statement.   Such terms are denoted using the function 
analogy-skolem, whose argument is the base entity that 
led to the suggestion.   

Similarities and differences: Summarizing similarities 
and differences is an important part of many analogy tasks 
[21].  The main source of information about similarity is of 
course the set of correspondences that comprise a mapping.  
However, it is often useful to extract a subset of  
similarities and differences relevant to a particular 
correspondence of interest.  (similarities ?mh ?m

?exact ?dim ?other) states that the structural support for 
correspondence ?mh of mapping ?m consists of three sets: 
?exact, representing exact matches differing only in ?mh, 
?dim, correspondences where the entities involved vary 
along some dimension (e.g., different in color), and ?other, 
correspondences that are neither of the other two.  (The set 
bound to ?other are candidates for rerepresentation, to 
improve the alignment.)  Similarly, (differences ?mh ?m

?1only ?2only)  indicates that with respect to 
correspondence ?mh of mapping ?m, ?1only are statements 

880    IAAI-02 



only holding in the base and ?2only are statements only 
holding in the target. 

Integrating 1st principles and analogical reasoning 

The analogy ontology provides the glue between 1st 
principles reasoning and analogical processing.  It provides 
a language for the entities and relationships of structure-
mapping, so that they can be used along with other theories 
in logic-based reasoning systems.   The intended semantics 
of the analogy ontology is that of structure-mapping.  Just 
as predicates involving arithmetic typically have their 
semantics enforced via code, we use procedural attachment 
[22,38] to enforce the semantics of the analogy ontology.  
This is crucial because special-purpose software is needed 
for efficient large-scale analogical processing, where 
descriptions involving hundreds to thousands of relational 
propositions are matched.   These procedural attachments 
provide the means for analogical processing software to be 
seamlessly used during first-principles reasoning.  Matches 
and retrievals are carried out via queries, whose result 
bindings include entities such as matches, mappings, and 
correspondences, as defined above.  Subsequent queries 
involving these entities, using other relationships from the 
analogy ontology, provide access to the results of 
analogical processing.   Next we outline how this works. 

Procedural attachment requires two-way communication 
between the reasoning system and the attached software. 
The reasoning system must have some means for 
recognizing predicates with procedural attachments and 
carrying out the appropriate procedures when queries 
involving them are made.  For instance, in our FIRE 
reasoning system4, reasoning sources provide a registration 
mechanism that ties procedures to particular signatures of 
predicate/argument combinations.  For instance, (match-
between :known :known :unknown) invokes SME, 
binding the result variable (third argument) to a term which 
can be used in subsequent queries to access the 
consequences of the match.  The reasoning source 
maintains a table that translates between terms added to the 
reasoning system and the internal datastructures of the 
analogical processing system.  Thus to the reasoning 
system, a standard unification-based query mechanism 
provides transparent access to analogical processing 
facilities.   

Communication in the other direction, from analogy 
software to reasoning system, is handled by using the 
reasoner’s query software from within the analogy 
subsystem.  There are three kinds of information needed 
from 1st principles reasoning during an analogical query.   
First, SME needs basic information about the functors used 
in statements (e.g., are they relations, attributes, functions, 
or logical connectives?).  This information is gathered by 
queries to the KB, e.g., in Cyc such questions reduce to 
membership in specific collections.  Second, the terms 
                                                           

                                                          

4 FIRE = Integrated Reasoning Engine.  The F is either Flexible or Fast, 
and we hope both. 

denoting cases must be evaluated to gather the statements 
that comprise the case.  This is implemented via a method 
dispatch, based on the case function (e.g., case-fn) using 
the techniques described in [30].  Third, the cases that 
comprise a case library must be collected.  This is handled 
by querying the KB for the members of the case library. 

Let us step through the process with a simple (albeit 
abstract) example, to see how these mechanisms work 
together.  Consider a goal of the form (match-between
?base ?target ?match).  When ?base and ?target are 
bound, this goal invokes SME to match the value of ?base 
against the value of ?target.   When ?base is unbound, 
this goal invokes MAC/FAC, with the value of ?target as 
the probe and the current case library as the memory.    If 
?target is unbound, the query is considered to be an error, 
and the goal fails.  The values of ?base and ?target 
determine how the case information fed to the software is 
derived.    If the value is a non-atomic term whose functor 
is one of the case-defining functions, further reasoning is 
invoked to derive the contents of the case [30].  Otherwise, 
the value is construed as the name of a case and the 
appropriate facts are retrieved using queries involving 
case-description. 

A successful match-between query results in the 
creation of a new term in the reasoning system to represent 
the match.  ?match is bound to this new term as part of the 
bindings produced by the goal, and the new term is linked 
the analogical processing data structure to support future 
queries.  In addition, the mappings associated with the 
match are reified as new terms in the reasoning system, 
with the appropriate mapping-of, best-mapping, and 
structural evaluation score information asserted.   

Analogical matches and retrievals involving large 
descriptions can result in hundreds to tens of thousands 
internal data structures, any of which is potentially 
relevant, depending on the task.  Blind reification can 
easily bog down a reasoning session.  Consequently, we 
use a lazy reification strategy.  Because of the designs of 
SME and MAC/FAC, there can at most be only a handful 
of mappings created by any query5, reifying mappings 
always makes sense.  Correspondences and candidate 
inferences are reified on demand, in response to goals 
involving them (e.g., correspondence-of, candidate-

inference-of).   
We have implemented these ideas in two reasoning 

systems, DTE6 and FIRE.  DTE used ODBC-compliant 
databases to store its knowledge base, a logic-based TMS 
reasoning engine [10] as its working memory, a general-
purpose mechanism for procedural attachments (including 
hooks for GIS systems and a diagrammatic reasoner) and a 
prolog-style query system which provides access to all of 
these facilities for application systems.  FIRE is the 

 
5 SME’s greedy merge algorithm with its usual parameter settings only 
produces the top interpretation plus at most two more close 
interpretations.  MAC/FAC’s default settings allow it to return at most 
three candidates from the MAC stage, which means there can be at most 
nine mappings created in the FAC stage. 
6 DTE = Domain Theory Environment.  
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successor to DTE, using a higher-performance knowledge 
base created in collaboration with Xerox PARC, and with a 
streamlined mechanism for integrating other reasoning 
sources.   

Examples 

We have used the analogy ontology in a variety of systems.  
For concreteness, we briefly summarize how it is being 
used in three of them: A crisis management analogical 
reasoner, an analogical critiquer for military courses of 
action, and answering comparison questions in a 
knowledge capture system.  We focus on showing how the 
analogy ontology enabled the smooth integration of 
analogical and first-principles reasoning in these systems. 

Crisis management analogical reasoner.   When 
reasoning about international crises, analysts commonly 
rely on analogy (cf. [24,32,33]).  In the DARPA HPKB 
Crisis Management challenge problems, parameterized 
questions were introduced to express some typical types of 
queries [4].  Seeing how the analogy ontology enables such 
queries to be expressed and answered is a good illustration 
of its utility.  We use two examples for illustration.  

 
PQ226 Who/what is <SituationItem> in

{<EventSpec1> <ContextSpec1>, <SituationSpec1>}

similar to in {<EventSpec2> <ContextSpec2>,

<SituationSpec2>}? How so, and how are they

different?

The terms in a parameterized question are specified 
according to the knowledge base used.  Treating the first 
event as the base and the second as the target, this 
parameterized question is answered by using the following 
template: 
(and (required-target-correspondence

<SituationItem>)
(recursive-match-between ?base ?target

?match)
(best-mapping ?match ?mapping)
(has-correspondence ?mh ?mapping)
(correspondence-between ?mh ?x

<SituationItem>)
(similarities ?mh ?mapping ?exact

?dimensional ?other)
(differences ?mh ?mapping ?other

?obj1-only ?obj2-only))

For example, using the Cyc KB, the question  
SQ226: Who/what is IRAN in Y2-SCENARIO-CONFLICT

similar to in PERSIAN-GULF-WAR?

yields the answer 
IRAN in The Facts concerning Y2-SCENARIO-CONFLICT

case corresponds to IRAQ in the PERSIAN-GULF-WAR

case.

where the supporting structural justifications include that 
both were involved in hostile actions, both were in conflict 
with other nation states in hostile-social-actions, and so on. 

Our second example:  
PQ228 How does the analogy between

{<SituationSpec1>, <PropositionConj1>

<ContextSpec1>} and {<SituationSpec2>,

<PropositionConj2> <ContextSpec2>} [where

<AnalogyMappingSpecConj>] suggest that the latter

will turn out, and how do differences between

them affect the answer?

Assuming that ?bstart and ?tstart are the starting 
points for the base and target, the initial query uses the 
template 
(and (required-correspondence ?bstart ?tstart)

(seeking-match-between
(case-fn ?bstart)
(no-postlude-case-fn ?tstart)
?match)

(best-mapping ?match ?mapping)
(has-correspondence ?mh ?mapping)
(correspondence-between ?mh ?bstart ?tstart)
(similarities ?mh ?mapping ?exact

?dimensional ?other)
(differences ?mh ?mapping ?other

?obj1-only ?obj2-only))

The follow-up query finds what candidate inferences of 
the mapping make predictions about what might happen 
after ?tstart based on its analogy with ?bstart:   
 
(and (candidate-inference-of ?ci ?mapping)

(candidate-inference-content ?ci
(<CausalConnective> ?tstart

(analogy-skolem ?prediction)))

Notice the use of the analogy-skolem function, whose 
argument is bound to the base event being projected.  The 
set <CausalConnective> varies with the particular 
structure of the knowledge base; for instance, there were 9 
such relations in the Cycorp KB and 5 in the SAIC KB. 

For example, using the SAIC KB, the question  
TQF228b: How does the analogy between Iran oppose

Saudi Arabia's influence in OPEC in the Y1

Scenario and Iran oppose Saudi Aramco influence

in the Azerbaijan International Operating Company

in the Y2 Scenario suggest that the latter will

turn out, and how do differences between them

affect the answer?

yields four predictions, based on Iran’s responses to a 
relevant Saudi action in the base case: An attack on an 
embassy, injury of Saudi citizens in a terrorist attack, 
student protest marches, and demanding an explanation of 
the Saudi ambassador. 

Our Crisis Management Analogical Reasoner was used 
by both teams in the HPKB program.   For SAIC, we used 
an automatic translator to load their KB files into a DTE 
knowledge base. We formulated queries, and our system’s 
explanatory hypertext was used as the team’s answer on 
the questions we tackled.  For Cycorp, we supplied them 
with a server version of our system, which could either 
interact with the Cyc IKB directly, or could be used with 
DTE assimilating the Cyc IKB knowledge base. The 
details of the evaluation process and results can be found 
elsewhere [34]; suffice it to say that we got a “B” which, 
given the difficulty of the problems, we view as a success.   

Battlespace Analogical Critiquer:  Military courses of 
action (COAs) are plans outlining how an operation is to 
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Figure 1: Analogical critiques of a course of action 

be carried out.  The early part of generating a COA 
concentrates on the COA sketch, a graphical depiction of 
the plan expressed through a graphical symbology 
representing military units, tasks and other relevant 
entities.  The other challenge problem in HPKB was aimed 
at supporting military planners by critiquing COAs.  
Critiquing a sketch involves looking for violations of 
doctrine, ideas that might be unwise given prior 
experiences with the opponent, or just plain violate 
common sense, given that such plans are sometimes 
drafted in the field by people who haven’t slept for days.   

We created an analogical critiquer that provides 
feedback, both positive and negative, about a COA sketch 
based on critique cases authored by military personnel.  
The KB used is from Cyc, augmented with domain theories 
for spatial and geographic reasoning.  Critique cases are 
generated by first using the same sketching tool (nuSketch 
COA Creator [8]) to generate a COA sketch, then using a 
special interface to select subsets of that COA to be 
encoded in cases.  (A COA sketch can be used to create 
multiple cases, if different points can be illustrated by 
various aspects of it.)  Each case must have a critique 
point, a proposition that is the key idea that that aspect of 
the case is making.  Critique points are marked as positive 
or negative, with explanatory text added to phrase the idea 
in military terms.  The author must also select (graphically) 
a subset of the sketch’s propositions to be included in case.  
This reminds-me subset is what drives retrieval.  A subset 
of that, in turn, is identified as the necessary conditions for 
the critique to be valid.  The authoring tool installs a 

justification of the critique point based on the necessary 
antecedents.  This justification will provide the candidate 
inference that raises the suggestion of the critique point on 
retrieval. 

The critiquer can be invoked by a planner as desired 
when using the nuSketch COA Creator to create a COA 
sketch.  Internally the critiquer uses the current sketch as a 
probe to retrieve critiques via the following query: 
(and (match-between ?critique <current sketch>

?match)

(mapping-of ?mapping ?match)

(candidate-inference-of ?ci ?mapping)

(candidate-inference-content ?ci

(causes—prop-prop ?antecedents

?critique)))

 
This query retrieves all critiques that are potentially 
relevant to the current sketch, since the only causes-prop-
prop statement in the case is inserted by the authoring 
environment.  The final relevance check (not shown) 
evaluates ?antecedents, ensuring that they do not contain 
any skolems (indicating a serious mismatch) and that they 
are true in the current sketch.  The results are presented 
visually to the user, as shown in Figure 1. 

While this critiquer was not completed in time to be 
used in the official HPKB evaluations, reviews of a 
preliminary version by military officers not involved in its 
creation have led to its continued development as a 
component in training systems and performance support 
systems to be used by the US military [35]. 
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Comparison questions in knowledge capture 
One of the bottlenecks in the creation of AI systems is the 
difficulty of creating large knowledge bases.  Research in 
the DARPA Rapid Knowledge Formation program is 
tackling this problem by creating systems that can be 
“taught” interactively by domain experts, without AI 
experts or knowledge engineers in the loop.  Two end-to-
end systems have been constructed. Cycorp’s KRAKEN 
system uses a combination of natural language and forms, 
controlled via a dialogue manager, to interact with experts.  
SRI’s SHAKEN system [3] uses concept maps.  Our group 
provides analogical processing services for both teams.   
So far this has focused on providing answers to 
comparison questions (e.g., “How is X similar to Y?” and 
“How are X and Y different?), which are used both by users 
to figure out what needs to be added and to assess the KB. 

SHAKEN uses the KM representation system [3], which 
is frame-based, and it is written in Common Lisp.  These 
factors, plus the fact that we were generating output for 
users directly, led to the decision to implement a special-
purpose KM interface rather than using the analogy 
ontology directly in the implementation.  On the other 
hand, for interfacing with KRAKEN we created an 
Analogy Server, using our FIRE reasoning engine and a 
simple KQML vocabulary of messages for controlling it.  
The Analogy Server’s knowledge base was kept up to date 
by routines in KRAKEN, and called by it when users 
wanted to ask comparison questions.   

While these systems are still very much in progress, in 
Summer 2001 there was an independent evaluation carried 
out where domain experts (biology graduate students) used 
these systems to create knowledge bases for a chapter of a 
biology textbook.  The evaluation details can be found in 
[35].  For this paper, the key thing to note is that the 
analogy ontology successfully enabled KRAKEN to use 
analogical processing facilities, as intended. 

Related Work 

There have been a number of systems that capture some 
aspects of reasoning by analogy.  Winston [39] describes a 
system that extracts rules from precedents, but was only 
tested with very small (10 or so propositions) examples.  
Special-purpose matchers and retrievers have been used for 
exploiting analogy in problem solving and planning (cf. 
[1,37]), but such systems lack the flexibility to deal with 
large knowledge bases and cover the range of phenomena 
that SME and MAC/FAC handle.  Other cognitive 
simulations of analogical processing, including ACME and 
ARCS [31], LISA[25], IAM [26], have only been tested 
with small examples, and some are known to fail when 
tested with descriptions even one-tenth the size of what 
was needed to handle the problems described here.   No 
previous analogy systems have been successfully used with 
multiple, large general-purpose knowledge bases created 
by other research groups. 

While the majority of today’s CBR systems have moved 

to feature-vector representations, there are a number of 
systems that still use relational information.  Some 
examples include [2,17,28,29].  We believe that the ideas 
described here could be used in these systems, and that 
using psychologically realistic matchers, retrievers, and 
similarity metrics could add value to them.   

Discussion 

The analogy ontology provides a key advance in creating 
general-purpose reasoning systems that are closer to 
providing human-like flexibility.  By providing formal 
representations for concepts used in analogical reasoning, 
first-principles reasoning systems can use analogical 
matching and retrieval as resources for tackling complex 
problems, and analogical processing systems can in turn 
use first-principles reasoning to extract knowledge from 
general knowledge bases to create cases and test the 
validity of candidate inferences.   We have shown that this 
analogy ontology enables the creation of systems that 
simply were not possible before, systems that can tackle 
complex problems, involving cases that are literally an 
order of magnitude larger than found in the rest of the 
analogy literature (involving thousands of propositions per 
case), and interoperating with general-purpose, large-scale 
knowledge bases created by other research groups. 

While the analogy ontology here relies on structure-
mapping theory, it does not depend at all on the details of 
our current simulations of structure-mapping.  Most 
cognitive simulations of analogy today are consistent with 
structure-mapping to the extent needed by this ontology 
[20], so if more capable matchers or retrievers were 
created, they could be used instead.   There are a number of 
limitations of the ontology as it stands, the most significant 
being that it currently does not capture the ideas of 
alignable and non-alignable differences [21] appropriately.  
Formalizing these concepts has proven to be quite subtle, 
but we continue to work on it.  
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