
An Analogy Ontology for Integrating Analogical Processing
 and First-principles Reasoning

Kenneth D. Forbus

Qualitative Reasoning Group
Northwestern University

1890 Maple Avenue
Evanston, IL, 60201, USA
forbus@northwestern.edu

Thomas Mostek

Qualitative Reasoning Group
Northwestern University

1890 Maple Avenue
Evanston, IL, 60201, USA
tmostek@naviant.com

Ron Ferguson

College of Computing
Georgia Institute of Technology

801 Atlantic Avenue
Atlanta GA 30332, USA

rwf@cc.gatech.edu

Abstract
This paper describes an analogy ontology, a formal
representation of some key ideas in analogical processing,
that supports the integration of analogical processing with
first-principles reasoners. The ontology is based on
Gentner’s structure-mapping theory, a psychological
account of analogy and similarity. The semantics of the
ontology are enforced via procedural attachment, using
cognitive simulations of structure-mapping to provide
analogical processing services. Queries that include
analogical operations can be formulated in the same way as
standard logical inference, and analogical processing
systems in turn can call on the services of first-principles
reasoners for creating cases and validating their conjectures.
We illustrate the utility of the analogy ontology by
demonstrating how it has been used in three systems: A
crisis management analogical reasoner that answers
questions about international incidents, a course of action
analogical critiquer that provides feedback about military
plans, and a comparison question-answering system for
knowledge capture. These systems rely on large, general-
purpose knowledge bases created by other research groups,
thus demonstrating the generality and utility of these ideas.

Introduction

There is mounting psychological evidence that human
cognition centrally involves similarity computations over
structured representations, in tasks ranging from high-level
visual perception to problem solving, learning, and
conceptual change [21]. Understanding how to integrate
analogical processing into AI systems seems crucial to
creating more human-like reasoning systems [12]. Yet
similarity plays at best a minor role in many AI systems.
Most AI systems operate on a first-principles basis, using
rules or axioms plus logical inference to do their work.
Those few reasoning systems that include analogy
(cf.[1,37]) tend to treat it as a method of last resort,
something to use only when other forms of inference have
failed. The exceptions are case-based reasoning systems
[27,28], which started out to provide computational
mechanisms similar to those that people seem to use to

solve everyday problems. Unfortunately, CBR systems
generally have the opposite problem, tending to use only
minimal first-principles reasoning. Moreover, most of
today’s CBR systems also tend to rely on feature-based
descriptions that cannot match the expressive power of
predicate calculus. Those relatively few CBR systems that
rely on more expressive representations tend to use
domain-specific and task-specific similarity metrics. This
can be fine for a specific application, but being able to
exploit similarity computations that are more like what
people do could make such systems even more useful,
since they will be more understandable to their human
partners.

While many useful application systems can be built with
purely first-principles reasoning and with today’s CBR
technologies, integrating analogical processing with first-
principles reasoning will bring us closer to the flexibility
and power of human reasoning. This paper describes a
method for doing this. The key idea is to use an analogy
ontology that provides a formal, declarative representation
of the contents and results of analogical reasoning. The
semantics of this ontology is defined by the underlying
theory of analogy and similarity, structure-mapping [18].
This semantics is enforced via procedural attachment,
using the analogy ontology to set up computations that are
solved by special-purpose analogical processing systems,
and reifying the results of these programs in a way that can
be used by first-principles reasoning systems.

We start by reviewing relevant aspects of structure-
mapping theory. Then we present the analogy ontology,
and outline its implementation. We then describe how
these ideas have been used in three systems: analogical
reasoning about historical precedents, critiquing military
course of action sketches via cases, and answering
comparison questions in knowledge capture systems. We
close by discussing related and future work.

Prelude: Structure-mapping, SME, and MAC/FAC

In structure-mapping theory [18], an analogy match takes
as input two structured representations (base and target)
and produces as output a set of mappings. Each mapping
consists of a set of correspondences that align base items

Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

878 IAAI-02

From: AAAI-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

with target items and a set of candidate inferences, which
are surmises about the target made on the basis of the base
representation plus the correspondences. The constraints
that govern mappings, while originally motivated by
psychological concerns [21], turn out to be equally
important for the use of analogy in case-based reasoning,
since they ensure that candidate inferences are well defined
and that stronger arguments are preferred [11].

Two simulations based on structure-mapping are
relevant to this paper. The first, the Structure-Mapping
Engine (SME) [1,7,11], is a cognitive simulation of
analogical matching. How SME works is described in
[6,7,11]. Two characteristics are key to the work described
here:
•

•

SME operates in polynomial time, using a greedy
merge algorithm to provide a small number of mappings
that best satisfy the constraints of structure-mapping.

SME’s results are consistent with a large and growing
body of psychological results on analogy and similarity
[9], making its answers and explanations more likely to be
accepted by human collaborators.

The second simulation, MAC/FAC, is a two-stage model
of similarity-based retrieval that is consistent with
psychological constraints [14] and has been used in a
fielded application [16]. The key insight of MAC/FAC is
that memory contents should be filtered by an extremely
cheap match that filters a potentially huge set of
candidates, followed by a structural match (i.e., SME) to
select the best from the handful of candidates found by the
first stage1. The extremely cheap match is based on
content vectors, a representation computed from structured
descriptions. Content vectors are useful because the dot
product of two content vectors provides an estimate of the
quality of match between the corresponding structural
descriptions (see [14] for details).

The Analogy Ontology

The analogy ontology defines the types of entities and
relationships used in analogical processing. The ontology
can be grouped into cases, matches, pragmatic constraints,
mappings, correspondences, candidate inferences and
similarities and differences. We discuss each in turn.

Cases: Cases are collections of statements, treated as a
unit. We use the relation (ist-Information ?case

?fact) to indicate that statement ?fact is in the case
?case.2 Cases can be explicitly named in the KB, via the
function explicit-case-fn, whose single argument is a
term naming the case.

One important way of encoding task constraints in
analogical reasoning is by specifying different collections
of information about a term to be gathered from a
knowledge base. In the ontology these are represented
simply as additional functions. (How such functions are

1 Hence the name: Many Are Called/Few Are Chosen
2 ist-Information is drawn from the Cyc upper ontology.

implemented is described in [30], and their integration into
reasoning systems described below) Here are some
functions that we have found useful in several tasks:
• (minimal-case-fn ?thing) denotes all of the
statements in the KB that directly mention ?thing, where
?thing can be any term. This is rarely used in isolation,
instead providing a convenient starting point for defining
other case functions.
• (case-fn ?thing) is the union of (minimal-case-fn
?thing) and attribute information about all of the ground
terms occurring in (minimal-case-fn ?thing), e.g., in the
case of Cyc, the attribute information consists of the isa
statements involving the ground terms. When ?thing is an
event, all causal links between the terms are included in
addition to attribute information. When ?thing is an
agent, all facts whose ground terms are those in (minimal-
case-fn ?thing) are included. This is useful when a
quick comparison is required, to see if the match is worth
pursuing further.
• (recursive-case-fn ?thing) denotes the union of
case-fn applied to ?thing and to all of its subparts,
recursively. What constitutes a subpart depends on the
KB’s ontology. For instance, if ?thing is an event, its
subparts are subevents.
• (in-context-case-fn ?thing ?case) denotes the
subset of (case-fn ?thing) that intersects the case ?case.
This is used for more focused queries, e.g., Alabama in the
context of the US Civil War.
• (no-postlude-case-fn ?thing) denotes (case-fn

?thing) with all causal consequences of ?thing removed.
This is useful in reasoning about alternative outcomes of a
situation, since it suppresses knowledge of the actual
outcomes.

The particular definitions for agent, event, causal
consequences, and subparts depend on the KB used. In the
KB’s we have worked with to date (Cyc, SAIC, and KM) it
has sufficed to enumerate short lists of predicates used to
identify these concepts. For instance, in using Cyc,
members of the collections Event and Agent are treated as
events and agents respectively, and short lists of
relationships were identified as expressing causal and
mereological consequences. We expect that this technique
will work for any knowledge base that includes some
version of these concepts.

Matches: Matches represent a comparison between a
base and target. They consist of a set of correspondences
and mappings, which are described shortly. The relation
(match-between ?base ?target ?match) indicates that
?match is the result of SME comparing the cases ?base
and ?target. There are two variations that are like match-
between, except that the process they specify is slightly
different. recursive-match-between dynamically
expands the cases to resolve competing entity matches.
This is useful in dealing with large, complex cases.
seeking-match-between only considers matches that
reflect required or excluded correspondences derived from
task constraints. The procedural semantics of recursive-
match-between and seeking-match-between are detailed

IAAI-02 879

in [30].
Mappings: In structure-mapping, a mapping consists of

three things: A structurally consistent set of
correspondences, a set of candidate inferences, and a
structural evaluation score [6,7,11]. How correspondences
and candidate inferences are represented in this ontology is
described below. The structural evaluation score is an
estimate of match quality. The function structural-
evaluation-score denotes the score computed by SME
for the mapping. The relation (mapping-of ?mapping

?match) indicates that mapping ?mapping is part of match
?match, i.e., that it is one of the solutions SME found to the
comparison. The relation (best-mapping ?match

?mapping) indicates that ?mapping has the highest
structural evaluation score of ?match’s mappings.
Typically this is the mapping that is preferred, so it is
worth being able to specify it concisely.

Correspondences: A correspondence relates an item in
the base to an item in the target. Items can be entities,
expressions, or functors. Correspondences have a
structural evaluation score3. The relation
(correspondence-between ?c ?b ?t) indicates that item
?b corresponds to item ?t according to correspondence ?c.
(has-correspondence ?m ?c) indicates that mapping ?m
contains the correspondence ?c. (Not all correspondences
participate in mappings, and only do so under specific
constraints: See [6,7] for details.)

The parallel connectivity constraint of structure-
mapping states that if a correspondence involving two
expressions is in a mapping then so must correspondences
involving its aligned arguments [19]. This constraint
induces a structural dependency relationship between
correspondences which is reified in our ontology. The
relation (structurally-supported-by ?c1 ?c2)
indicates that correspondence ?c2 links a pair of arguments
in the statements linked by correspondence ?c1. This
information is used in constructing dependency networks
during first-principles reasoning, so that explanations (and
backtracking) will take account of analogical processing
results. For example, correspondences implicated in a
contradiction can be identified by a TMS, and used to
formulate constraints (described next) which push SME
into seeking an alternate solution.

Pragmatic constraints: Some task constraints can be
expressed in terms of restrictions on the kinds of
correspondences that are created during the matching
process. Such statements can be inserted into the
knowledge base or used in queries. The analogy ontology
incorporates three kinds of constraints:
1. (required-correspondence ?Bitem ?Titem)
indicates that its arguments must be placed in
correspondence within any valid mapping. This is useful
when the task itself implies correspondences whose
consequences are to be explored (e.g., “If Saddam Hussein
is Hitler, then who is Churchill?”)

3 The structural evaluation score of the mapping is the sum of the
structural evaluation score for its correspondences. See [7] for details.

2. (Excluded-correspondence ?Bitem ?Titem)

indicates that its arguments may not be placed in
correspondence within any valid mapping. This is useful
when a mapping has been ruled out due to task constraints,
and alternate solutions are sought. Excluding an otherwise
attractive correspondence will cause SME to look for other
solutions.
3. (required-target-correspondence ?Titem)
indicates that there must be a correspondence for target
item ?Titem, but does not specify what that must be.
(required-base-correspondence is the equivalent in the
other direction.) This is useful when seeking an analogy
that sheds light on a particular individual or relationship,
because being placed in correspondence with something is
a necessary (but not sufficient) requirement for generating
candidate inferences about it.

Candidate inferences: A candidate inference is a
statement in the base that, based on the correspondences in
a mapping, might be brought over into the target as a
consequence of the analogy [7]. Candidate inferences have
the following properties:
• Propositional Content. The statement about the target
that has been imported from the base by substituting the
correspondences from the mapping into the base statement.
• Support. The base statement it was derived from.
• Support score. The degree of structural support derived
from the correspondences in the mapping.
• Extrapolation score. The degree of novelty of the
candidate inference, derived from the fraction of it that is
not in the mapping.
The support and extrapolation scores are defined in [13].
The binary relationships candidate-inference-content,
candidate-inference-support, candidate-inference-

support-score, and candidate-inference-

extrapolation-score express the relationships between a
candidate inference and these properties. Candidate
inferences can postulate new entities in the target, due to
the existence of unmapped entities in the support
statement. Such terms are denoted using the function
analogy-skolem, whose argument is the base entity that
led to the suggestion.

Similarities and differences: Summarizing similarities
and differences is an important part of many analogy tasks
[21]. The main source of information about similarity is of
course the set of correspondences that comprise a mapping.
However, it is often useful to extract a subset of
similarities and differences relevant to a particular
correspondence of interest. (similarities ?mh ?m

?exact ?dim ?other) states that the structural support for
correspondence ?mh of mapping ?m consists of three sets:
?exact, representing exact matches differing only in ?mh,
?dim, correspondences where the entities involved vary
along some dimension (e.g., different in color), and ?other,
correspondences that are neither of the other two. (The set
bound to ?other are candidates for rerepresentation, to
improve the alignment.) Similarly, (differences ?mh ?m

?1only ?2only) indicates that with respect to
correspondence ?mh of mapping ?m, ?1only are statements

880 IAAI-02

only holding in the base and ?2only are statements only
holding in the target.

Integrating 1st principles and analogical reasoning

The analogy ontology provides the glue between 1st
principles reasoning and analogical processing. It provides
a language for the entities and relationships of structure-
mapping, so that they can be used along with other theories
in logic-based reasoning systems. The intended semantics
of the analogy ontology is that of structure-mapping. Just
as predicates involving arithmetic typically have their
semantics enforced via code, we use procedural attachment
[22,38] to enforce the semantics of the analogy ontology.
This is crucial because special-purpose software is needed
for efficient large-scale analogical processing, where
descriptions involving hundreds to thousands of relational
propositions are matched. These procedural attachments
provide the means for analogical processing software to be
seamlessly used during first-principles reasoning. Matches
and retrievals are carried out via queries, whose result
bindings include entities such as matches, mappings, and
correspondences, as defined above. Subsequent queries
involving these entities, using other relationships from the
analogy ontology, provide access to the results of
analogical processing. Next we outline how this works.

Procedural attachment requires two-way communication
between the reasoning system and the attached software.
The reasoning system must have some means for
recognizing predicates with procedural attachments and
carrying out the appropriate procedures when queries
involving them are made. For instance, in our FIRE
reasoning system4, reasoning sources provide a registration
mechanism that ties procedures to particular signatures of
predicate/argument combinations. For instance, (match-
between :known :known :unknown) invokes SME,
binding the result variable (third argument) to a term which
can be used in subsequent queries to access the
consequences of the match. The reasoning source
maintains a table that translates between terms added to the
reasoning system and the internal datastructures of the
analogical processing system. Thus to the reasoning
system, a standard unification-based query mechanism
provides transparent access to analogical processing
facilities.

Communication in the other direction, from analogy
software to reasoning system, is handled by using the
reasoner’s query software from within the analogy
subsystem. There are three kinds of information needed
from 1st principles reasoning during an analogical query.
First, SME needs basic information about the functors used
in statements (e.g., are they relations, attributes, functions,
or logical connectives?). This information is gathered by
queries to the KB, e.g., in Cyc such questions reduce to
membership in specific collections. Second, the terms

4 FIRE = Integrated Reasoning Engine. The F is either Flexible or Fast,
and we hope both.

denoting cases must be evaluated to gather the statements
that comprise the case. This is implemented via a method
dispatch, based on the case function (e.g., case-fn) using
the techniques described in [30]. Third, the cases that
comprise a case library must be collected. This is handled
by querying the KB for the members of the case library.

Let us step through the process with a simple (albeit
abstract) example, to see how these mechanisms work
together. Consider a goal of the form (match-between
?base ?target ?match). When ?base and ?target are
bound, this goal invokes SME to match the value of ?base
against the value of ?target. When ?base is unbound,
this goal invokes MAC/FAC, with the value of ?target as
the probe and the current case library as the memory. If
?target is unbound, the query is considered to be an error,
and the goal fails. The values of ?base and ?target
determine how the case information fed to the software is
derived. If the value is a non-atomic term whose functor
is one of the case-defining functions, further reasoning is
invoked to derive the contents of the case [30]. Otherwise,
the value is construed as the name of a case and the
appropriate facts are retrieved using queries involving
case-description.

A successful match-between query results in the
creation of a new term in the reasoning system to represent
the match. ?match is bound to this new term as part of the
bindings produced by the goal, and the new term is linked
the analogical processing data structure to support future
queries. In addition, the mappings associated with the
match are reified as new terms in the reasoning system,
with the appropriate mapping-of, best-mapping, and
structural evaluation score information asserted.

Analogical matches and retrievals involving large
descriptions can result in hundreds to tens of thousands
internal data structures, any of which is potentially
relevant, depending on the task. Blind reification can
easily bog down a reasoning session. Consequently, we
use a lazy reification strategy. Because of the designs of
SME and MAC/FAC, there can at most be only a handful
of mappings created by any query5, reifying mappings
always makes sense. Correspondences and candidate
inferences are reified on demand, in response to goals
involving them (e.g., correspondence-of, candidate-

inference-of).
We have implemented these ideas in two reasoning

systems, DTE6 and FIRE. DTE used ODBC-compliant
databases to store its knowledge base, a logic-based TMS
reasoning engine [10] as its working memory, a general-
purpose mechanism for procedural attachments (including
hooks for GIS systems and a diagrammatic reasoner) and a
prolog-style query system which provides access to all of
these facilities for application systems. FIRE is the

5 SME’s greedy merge algorithm with its usual parameter settings only
produces the top interpretation plus at most two more close
interpretations. MAC/FAC’s default settings allow it to return at most
three candidates from the MAC stage, which means there can be at most
nine mappings created in the FAC stage.
6 DTE = Domain Theory Environment.

IAAI-02 881

successor to DTE, using a higher-performance knowledge
base created in collaboration with Xerox PARC, and with a
streamlined mechanism for integrating other reasoning
sources.

Examples

We have used the analogy ontology in a variety of systems.
For concreteness, we briefly summarize how it is being
used in three of them: A crisis management analogical
reasoner, an analogical critiquer for military courses of
action, and answering comparison questions in a
knowledge capture system. We focus on showing how the
analogy ontology enabled the smooth integration of
analogical and first-principles reasoning in these systems.

Crisis management analogical reasoner. When
reasoning about international crises, analysts commonly
rely on analogy (cf. [24,32,33]). In the DARPA HPKB
Crisis Management challenge problems, parameterized
questions were introduced to express some typical types of
queries [4]. Seeing how the analogy ontology enables such
queries to be expressed and answered is a good illustration
of its utility. We use two examples for illustration.

PQ226 Who/what is <SituationItem> in

{<EventSpec1> <ContextSpec1>, <SituationSpec1>}

similar to in {<EventSpec2> <ContextSpec2>,

<SituationSpec2>}? How so, and how are they

different?

The terms in a parameterized question are specified
according to the knowledge base used. Treating the first
event as the base and the second as the target, this
parameterized question is answered by using the following
template:
(and (required-target-correspondence

<SituationItem>)
(recursive-match-between ?base ?target

?match)
(best-mapping ?match ?mapping)
(has-correspondence ?mh ?mapping)
(correspondence-between ?mh ?x

<SituationItem>)
(similarities ?mh ?mapping ?exact

?dimensional ?other)
(differences ?mh ?mapping ?other

?obj1-only ?obj2-only))

For example, using the Cyc KB, the question
SQ226: Who/what is IRAN in Y2-SCENARIO-CONFLICT

similar to in PERSIAN-GULF-WAR?

yields the answer
IRAN in The Facts concerning Y2-SCENARIO-CONFLICT

case corresponds to IRAQ in the PERSIAN-GULF-WAR

case.

where the supporting structural justifications include that
both were involved in hostile actions, both were in conflict
with other nation states in hostile-social-actions, and so on.

Our second example:
PQ228 How does the analogy between

{<SituationSpec1>, <PropositionConj1>

<ContextSpec1>} and {<SituationSpec2>,

<PropositionConj2> <ContextSpec2>} [where

<AnalogyMappingSpecConj>] suggest that the latter

will turn out, and how do differences between

them affect the answer?

Assuming that ?bstart and ?tstart are the starting
points for the base and target, the initial query uses the
template
(and (required-correspondence ?bstart ?tstart)

(seeking-match-between
(case-fn ?bstart)
(no-postlude-case-fn ?tstart)
?match)

(best-mapping ?match ?mapping)
(has-correspondence ?mh ?mapping)
(correspondence-between ?mh ?bstart ?tstart)
(similarities ?mh ?mapping ?exact

?dimensional ?other)
(differences ?mh ?mapping ?other

?obj1-only ?obj2-only))

The follow-up query finds what candidate inferences of
the mapping make predictions about what might happen
after ?tstart based on its analogy with ?bstart:

(and (candidate-inference-of ?ci ?mapping)

(candidate-inference-content ?ci
(<CausalConnective> ?tstart

(analogy-skolem ?prediction)))

Notice the use of the analogy-skolem function, whose
argument is bound to the base event being projected. The
set <CausalConnective> varies with the particular
structure of the knowledge base; for instance, there were 9
such relations in the Cycorp KB and 5 in the SAIC KB.

For example, using the SAIC KB, the question
TQF228b: How does the analogy between Iran oppose

Saudi Arabia's influence in OPEC in the Y1

Scenario and Iran oppose Saudi Aramco influence

in the Azerbaijan International Operating Company

in the Y2 Scenario suggest that the latter will

turn out, and how do differences between them

affect the answer?

yields four predictions, based on Iran’s responses to a
relevant Saudi action in the base case: An attack on an
embassy, injury of Saudi citizens in a terrorist attack,
student protest marches, and demanding an explanation of
the Saudi ambassador.

Our Crisis Management Analogical Reasoner was used
by both teams in the HPKB program. For SAIC, we used
an automatic translator to load their KB files into a DTE
knowledge base. We formulated queries, and our system’s
explanatory hypertext was used as the team’s answer on
the questions we tackled. For Cycorp, we supplied them
with a server version of our system, which could either
interact with the Cyc IKB directly, or could be used with
DTE assimilating the Cyc IKB knowledge base. The
details of the evaluation process and results can be found
elsewhere [34]; suffice it to say that we got a “B” which,
given the difficulty of the problems, we view as a success.

Battlespace Analogical Critiquer: Military courses of
action (COAs) are plans outlining how an operation is to

882 IAAI-02

Figure 1: Analogical critiques of a course of action

be carried out. The early part of generating a COA
concentrates on the COA sketch, a graphical depiction of
the plan expressed through a graphical symbology
representing military units, tasks and other relevant
entities. The other challenge problem in HPKB was aimed
at supporting military planners by critiquing COAs.
Critiquing a sketch involves looking for violations of
doctrine, ideas that might be unwise given prior
experiences with the opponent, or just plain violate
common sense, given that such plans are sometimes
drafted in the field by people who haven’t slept for days.

We created an analogical critiquer that provides
feedback, both positive and negative, about a COA sketch
based on critique cases authored by military personnel.
The KB used is from Cyc, augmented with domain theories
for spatial and geographic reasoning. Critique cases are
generated by first using the same sketching tool (nuSketch
COA Creator [8]) to generate a COA sketch, then using a
special interface to select subsets of that COA to be
encoded in cases. (A COA sketch can be used to create
multiple cases, if different points can be illustrated by
various aspects of it.) Each case must have a critique
point, a proposition that is the key idea that that aspect of
the case is making. Critique points are marked as positive
or negative, with explanatory text added to phrase the idea
in military terms. The author must also select (graphically)
a subset of the sketch’s propositions to be included in case.
This reminds-me subset is what drives retrieval. A subset
of that, in turn, is identified as the necessary conditions for
the critique to be valid. The authoring tool installs a

justification of the critique point based on the necessary
antecedents. This justification will provide the candidate
inference that raises the suggestion of the critique point on
retrieval.

The critiquer can be invoked by a planner as desired
when using the nuSketch COA Creator to create a COA
sketch. Internally the critiquer uses the current sketch as a
probe to retrieve critiques via the following query:
(and (match-between ?critique <current sketch>

?match)

(mapping-of ?mapping ?match)

(candidate-inference-of ?ci ?mapping)

(candidate-inference-content ?ci

(causes—prop-prop ?antecedents

?critique)))

This query retrieves all critiques that are potentially
relevant to the current sketch, since the only causes-prop-
prop statement in the case is inserted by the authoring
environment. The final relevance check (not shown)
evaluates ?antecedents, ensuring that they do not contain
any skolems (indicating a serious mismatch) and that they
are true in the current sketch. The results are presented
visually to the user, as shown in Figure 1.

While this critiquer was not completed in time to be
used in the official HPKB evaluations, reviews of a
preliminary version by military officers not involved in its
creation have led to its continued development as a
component in training systems and performance support
systems to be used by the US military [35].

IAAI-02 883

Comparison questions in knowledge capture
One of the bottlenecks in the creation of AI systems is the
difficulty of creating large knowledge bases. Research in
the DARPA Rapid Knowledge Formation program is
tackling this problem by creating systems that can be
“taught” interactively by domain experts, without AI
experts or knowledge engineers in the loop. Two end-to-
end systems have been constructed. Cycorp’s KRAKEN
system uses a combination of natural language and forms,
controlled via a dialogue manager, to interact with experts.
SRI’s SHAKEN system [3] uses concept maps. Our group
provides analogical processing services for both teams.
So far this has focused on providing answers to
comparison questions (e.g., “How is X similar to Y?” and
“How are X and Y different?), which are used both by users
to figure out what needs to be added and to assess the KB.

SHAKEN uses the KM representation system [3], which
is frame-based, and it is written in Common Lisp. These
factors, plus the fact that we were generating output for
users directly, led to the decision to implement a special-
purpose KM interface rather than using the analogy
ontology directly in the implementation. On the other
hand, for interfacing with KRAKEN we created an
Analogy Server, using our FIRE reasoning engine and a
simple KQML vocabulary of messages for controlling it.
The Analogy Server’s knowledge base was kept up to date
by routines in KRAKEN, and called by it when users
wanted to ask comparison questions.

While these systems are still very much in progress, in
Summer 2001 there was an independent evaluation carried
out where domain experts (biology graduate students) used
these systems to create knowledge bases for a chapter of a
biology textbook. The evaluation details can be found in
[35]. For this paper, the key thing to note is that the
analogy ontology successfully enabled KRAKEN to use
analogical processing facilities, as intended.

Related Work

There have been a number of systems that capture some
aspects of reasoning by analogy. Winston [39] describes a
system that extracts rules from precedents, but was only
tested with very small (10 or so propositions) examples.
Special-purpose matchers and retrievers have been used for
exploiting analogy in problem solving and planning (cf.
[1,37]), but such systems lack the flexibility to deal with
large knowledge bases and cover the range of phenomena
that SME and MAC/FAC handle. Other cognitive
simulations of analogical processing, including ACME and
ARCS [31], LISA[25], IAM [26], have only been tested
with small examples, and some are known to fail when
tested with descriptions even one-tenth the size of what
was needed to handle the problems described here. No
previous analogy systems have been successfully used with
multiple, large general-purpose knowledge bases created
by other research groups.

While the majority of today’s CBR systems have moved

to feature-vector representations, there are a number of
systems that still use relational information. Some
examples include [2,17,28,29]. We believe that the ideas
described here could be used in these systems, and that
using psychologically realistic matchers, retrievers, and
similarity metrics could add value to them.

Discussion

The analogy ontology provides a key advance in creating
general-purpose reasoning systems that are closer to
providing human-like flexibility. By providing formal
representations for concepts used in analogical reasoning,
first-principles reasoning systems can use analogical
matching and retrieval as resources for tackling complex
problems, and analogical processing systems can in turn
use first-principles reasoning to extract knowledge from
general knowledge bases to create cases and test the
validity of candidate inferences. We have shown that this
analogy ontology enables the creation of systems that
simply were not possible before, systems that can tackle
complex problems, involving cases that are literally an
order of magnitude larger than found in the rest of the
analogy literature (involving thousands of propositions per
case), and interoperating with general-purpose, large-scale
knowledge bases created by other research groups.

While the analogy ontology here relies on structure-
mapping theory, it does not depend at all on the details of
our current simulations of structure-mapping. Most
cognitive simulations of analogy today are consistent with
structure-mapping to the extent needed by this ontology
[20], so if more capable matchers or retrievers were
created, they could be used instead. There are a number of
limitations of the ontology as it stands, the most significant
being that it currently does not capture the ideas of
alignable and non-alignable differences [21] appropriately.
Formalizing these concepts has proven to be quite subtle,
but we continue to work on it.

Acknowledgements

This research was supported by the DARPA High
Performance Knowledge Bases and Rapid Knowledge
Formation programs, and by the Artificial Intelligence
program of the Office of Naval Research.

References

1. Blythe, J. and Veloso, M. (1997) Analogical replay for
efficient conditional planning, Proceedings of AAAI-97,
pages 668-673.
2. Branting, K. L. 1999. Reasoning with Rules and
Precedents – A Computational Model of Legal Analysis.
Kluwer.
3. P. Clark, J. Thompson, K. Barker, B. Porter, V.
Chaudhri, A. Rodriguez, J. Thomere, S. Mishra, Y. Gil, P.
Hayes, T. Reichherzer. Knowledge Entry as the Graphical

884 IAAI-02

Assembly of Components. First International Conference
on Knowledge Capture, October 21-23, 2001.
4. Cohen, P., Schrag, R., Jones, E., Pease, A., Lin, A.,
Starr, B., Gunning, D., and Burke, M. 1998. The DARPA
High Performance Knowledge Bases Project. AI
Magazine, Winter, 1998.
5. Cohn, A. (1996) Calculi for Qualitative Spatial
Reasoning. In Artificial Intelligence and Symbolic
Mathematical Computation, LNCS 1138, eds: J Calmet, J
A Campbell, J Pfalzgraf, Springer Verlag, 124-143, 1996.
6. Falkenhainer, B., Forbus, K., and Gentner, D. (1986,
August) The Structure-Mapping Engine. Proceedings of
AAAI-86, Philadelphia, PA
7. Falkenhainer, B., Forbus, K., Gentner, D. (1989) The
Structure-Mapping Engine: Algorithm and examples.
Artificial Intelligence, 41, pp 1-63.
8. Ferguson, R., Rasch, R., Turmel, B., and Forbus, K.
2000. Qualitative spatial interpretation of course-of-action
diagrams. Proceedings of QR-2000. Morelia, Mexico.
9. Forbus, K. 2001. Exploring analogy in the large. In
Gentner, D., Holyoak, K. and Kokinov, B. (Eds) Analogy:
Perspectives from Cognitive Science. Cambridge, MA:
MIT Press.
10. Forbus, K. and de Kleer, J., Building Problem Solvers,
MIT Press, 1993.
11. Forbus, K., Ferguson, R. and Gentner, D. (1994)
Incremental structure-mapping. Proceedings of the
Cognitive Science Society, August.
12. Forbus, K., & Gentner, D. (1997). Qualitative mental
models: Simulations or memories? Proceedings of the
Eleventh International Workshop on Qualitative
Reasoning, Cortona, Italy.
13. Forbus, K., Gentner, D., Everett, J. and Wu, M. 1997.
Towards a computational model of evaluating and using
analogical inferences. Proceedings of CogSci97.
14. Forbus, K., Gentner, D. and Law, K. (1995)
MAC/FAC: A model of Similarity-based Retrieval.
Cognitive Science, 19(2), April-June, pp 141-205.
15. Forbus, K. and Usher, J. 2002. Sketching for
knowledge capture: A progress report. Proceedings of
IUI-2002, ACM Publications, January, San Francisco.
16. Forbus, K.D., Whalley, P., Everett, J., Ureel, L.,
Brokowski, M., Baher, J. and Kuehne, S. (1999) CyclePad:
An articulate virtual laboratory for engineering
thermodynamics. Artificial Intelligence. 114, 297-347.
17. Friedrich Gebhardt, Angi Voß, Wolfgang Gräther,
Barbara Schmidt-Belz. 1997. Reasoning with complex
cases. Kluwer, Boston, 250 pages. March.
18. Gentner, D. (1983). Structure-mapping: A theoretical
framework for analogy. Cognitive Science, 7, 155-170.
19. Gentner, D. (1989). The mechanisms of analogical
learning. In S. Vosniadou & A. Ortony (Eds.), Similarity
and analogical reasoning (pp. 199-241). London:
Cambridge University Press. (Reprinted in Knowledge
acquisition and learning, 1993, 673-694.)
20. Gentner, D., & Holyoak, K. J. (1997). Reasoning and
learning by analogy: Introduction. American Psychologist,
52, 32-34.

21. Gentner, D., & Markman, A. B. (1997). Structure
mapping in analogy and similarity. American Psychologist,
52, 45-56. (To be reprinted in Mind readings: Introductory
selections on cognitive science, by P. Thagard, Ed., MIT
Press)
22. Greiner, R. and Lenat, D. 1980. A representation
language language. Proceedings of AAAI-80.
23. Gross, M. and Do, E. (1995) Drawing Analogies -
Supporting Creative Architectural Design with Visual
References. in 3d International Conference on
Computational Models of Creative Design, M-L Maher
and J. Gero (eds), Sydney: University of Sydney, 37-58.
24. Heuer, R. J. 1999. Psychology of Intelligence
Analysis. Center for the Study of Intelligence.
Government Printing Office, US Government.
25. Hummel, J. E., & Holyoak, K. J. (1997). LISA: A
computational model of analogical inference and schema
induction. Psychological Review.
26. Keane, M. T. (1990). Incremental analogising: Theory
& model. In K. J. Gilhooly, M. T. G. Keane, R. H. Logie,
& G. Erdos (Eds.), Lines of thinking (Vol. 1, pp. XX).
Chichester, England: Wiley.
27. Kolodner, J. L. (1994). Case-based reasoning. San
Mateo, CA: Morgan Kaufmann Publishers.
28. Leake, D. (Ed.) 1996. Case-Based Reasoning:
Experiences, Lessons, and Future Directions, MIT Press.
29. Lenz, M., Bartsch-Spörl, B., Burkhard, H.-D., Wess,
S. (Eds.), Case Based Reasoning Technology – from
Foundations to Applications. Lecture Notes in Artificial
Intelligence 1400, Springer, 1998
30. Mostek, T., Forbus, K. and Meverden, C. 2000.
Dynamic case creation and expansion for analogical
reasoning. Proceedings of AAAI-2000. Austin, Texas.
31. Thagard, P., Holyoak, K. J., Nelson, G., & Gochfeld,
D. (1990). Analog retrieval by constraint satisfaction.
Artificial Intelligence, 46, 259-310.
32. Neustad, R. and May, E. 1988. Thinking in time: The
uses of History for Decision Makers. Free Press.
33. IET, Inc. and PSR Corp. 1999. HPKB Year 2 Crisis
Management End-to-end Challenge Problem Specification.
http://www.iet.com/Projects/HPKB/Y2/Y2-CM-CP.doc
34. http://www.iet.com/Projects/HPKB/
35. Rasch, R., Kott, A. and Forbus, K. 2002. AI on the
battlefield: An experimental exploration. Proceedings of
IAAI 2002.
36. Schrag, Robert. http://www.iet.com/Projects/RKF/
37. VanLehn, K., & Jones, R. M. (1993). Integration of
analogical search control and explanation-based learning of
correctness. In S. Minton (Ed.), Machine learning methods
for planning (pp. 273-315). San Mateo, CA: Morgan
Kaufman.
38. Weyhrauch, R. 1978. Prolegomena to a theory of
formal reasoning. Stanford CS Department CS-TR-78-
687, December, 1978
39. Winston, P. 1982. Learning New Principles from
Precedents and Exercises," Artificial Intelligence 19, 321-
350

IAAI-02 885

http://www.iet.com/Projects/HPKB/Y2/Y2-CM-CP.doc
http://www.iet.com/Projects/RKF/

