Implementing a Generalized Version of Resolution

Heidi E. Dixon Matthew L. Ginsberg David K. Hofer
CIRL/CIS On Time Systems, Inc. CIs CIS CIRL

1269 University of Oregon 1850 Millrace, Suite 1 University of Oregon University of Oregon 1269 University of Oregon

Eugene, OR 97403 USAEugene, OR 97403 USAEugene, OR 97403 USAEugene, OR 97403 USAEugene, OR 97403 USA

dixon@cirl.uoregon.edu ginsberg@otsys.com dhofer@cs.uoregon.edu luks@cs.uoregon.edu parkes@cirl.uoregon.edu

Eugene M. Luks Andrew J. Parkes

Abstract

We have recently proposed augmenting clauses in a Boolean
database with groups of permutations, the augmented clauses
then standing for the set of all clauses constructed by acting
on the original clause with a permutation in the group. This
approach has many attractive theoretical properties, includ-
ing representational generality and reductions from exponen-
tial to polynomial proof length in a variety of settings. In
this paper, we discuss the issues that arise in implementing
a group-based generalization of resolution, and give prelimi-
nary results describing this procedure’s effectiveness.

Introduction

We often say that real-world constraint satisfaction problems
containstructure The term ‘structure’ is somewhat vague,

strong representations are combined with strong inference,
the structure of the problem can be leveraged to produce
shorter proofs. These lifted methods appear able to over-
come the drawbacks of weak encodings without sacrificing
the performance achieved lpnF-based methods. The dis-
advantage is that no single representation has proven suffi-
cient to capture the range of structures present in naturally
occurring problem instances.

We have shown (Dixoret al. 2004b) that permutation
groups provide a general and efficient way of representing
problem structure. Group-based axiomatizations general-
ize cardinality constraints, parity constraints and constraints
guantified over finite domains. Inference among different
constraint types becomes possible within this unified frame-
work, using a general inference rule call@dgmented res-
olution. Augmented resolution allows multiple resolutions

but generally means that a problem contains recognizable to be performed in parallel, leading to a powerful yet sim-
patterns. Structured problems might best be described asple proof system that is still practical for automation. As we

problems in which subproblems or symmetric variants of
subproblems recur throughout the search.

Usually, a problem is originally described using some
high level language in which problem structure is explicit. A
planning problem, for example, might be represented using
first order logic. The Boolean satisfiability methods gener-
ally used for solvingcspes are variants of thepLL “Davis-
Putnam” algorithm and are based on conjunctive normal
form (CNF) encodings. In practice, the high level encoding
is used to generate a much largaeF or ground encoding
that unfortunately obscures the original problem structure,
making it impossible for solvers to exploit this extra infor-
mation in solving the problem.

A high price is paid for this approach, since many classes
of problems cannot be solved efficiently without appealing
to the problem structure in some way. As an example, the
pigeonhole problem occurs naturally in many planning and
scheduling domains, bmrPLL is too weak to produce short
proofs of unsatisfiability for these instances. Traditional
methods using@NF encodings thus suffer from exponential
scaling on these problems.

This roadblock for traditional methods has led some re-
searchers to adapgtPLL to use stronger representations
(Barth 1995; Chatalic & Simon 2000; Li 2000). When

Copyright © 2004, American Association for Atrtificial Intelli-
gence (www.aaai.org). All rights reserved.

will see, the computational issues that arise in this setting
can be solved by drawing on the large body of theoretical
and algorithmic work that already exists for groups.

Groups

The collection of permutations on a sktwill be denoted
Sym(L). If the elements of can be labeled, 2,...,n in
some obvious way, Syfi) is often denoted simply,,. If

we takeL to be the integers from 1 t@, a particular permu-
tation can be denoted by a series of disjoint cycles, so that
the permutationv = (135)(26), for example, would map 1

to 3, then 3 to 5, then 5 back to 1. It would also exchange 2
and 6. The order in which the disjoint cycles are written is
irrelevant, as is the choice of first element within a particu-
lar cycle. Ifw; andws are two permutations, it is obviously
possible to compose them; we will write the composition as
wiwo Where the order means that we operate first with
and then withos.

While composition is associative, it is not necessarily
commutative. As an example123)(23) (12) but
(23)(123) = (13). The composition operator also has an
inverse, since any permutation can obviously be inverted by
mappingz to thaty with w(y) = «. In our example, it is
easy to see that~! = (153)(26). If we have a sef C L
and a permutatiow € Sym(L), we will denote byw(S) the
set generated by applyingto each element of. We call

AUTOMATED REASONING 55

this set themageof S underw.

We see, then, that the s&} is equipped with a binary op-
eration that is associative, and relative to which there is an
identity element and each element has an inverse. Fhis
agroup There are many excellent references for group the-
ory generally (Rotman 1994, and others) and computational
group theory specifically (Seress 2003).

Definition 1 A subsef of a groupG is called asubgroupof
G, denotedS < G, if S'is closed under the group operations
of inversion and multiplication.

Groups can be described without enumerating all of their
elements; consider the grodp, which is of sizen!. We can
represent a grou@ by giving only a setS of permutations
thatgenerateG in that any element of7 can be expressed
as a product of elements 6f If S is such a generating set
for G, we will write G = (S).

The number of generators required to describe any group
G < S, is easily shown to be at mokig, |G|. The reason
is that the size of a subgroup always divides the size of the
group and so, it: ¢ (S), then adding: to S at least doubles
the size of(S). Thus the number of generators needed can
never exceedbg, |G|; a more sophisticated analysis shows
that [5 | also serves as a bound for any subgrougs ofif
n > 3 (Mclver & Neumann 1987). Permutation represen-
tations of groups provide highly compact specifications of
large objects.

Axiom Structure as a Group
Cardinality Constraints Cardinality constraints have the
form

T+ x>k 1)

asserting that at leastof the x;'s must be true. The single
axiom (1) is equivalent tcﬁk’fl) conventional disjunctions.
The representational strength of cardinality constraints al-
lows polynomial length proofs of the pigeonhole problem
(Cook, Coullard, & Turan 1987) which is known to be ex-
ponentially difficult for any resolution-based method (Haken
1985). Consider the cardinality constraint

Ty + 22+ 23+ 24+ 25 >3 (2
which can be encoded in conjunctive normal form as

1 Ve Vs
1 Ve Vay
x1 Ve Vs
x1 Va3V ay
r1 VI3V

1 Vg Vs
o Va3V ay
xo Va3V s
xo VgV x5
r3 VgV T

®3)

Parity Constraints We now consider constraints that are
most naturally expressed using modular arithmetic or exclu-
sive or’s, such as
1P Bap=1 (5)

Axiom sets consisting of parity constraints in isolation can
be solved in polynomial time using Gaussian elimination,
but there are examples that are exponentially difficult for
resolution-based methods (Tseitin 1970).

As in the cardinality example, single axioms such as (5)
reveal structure that a Boolean axiomatization obscures. In
this case, (5) wittk = 3 is equivalent to:

r1V xeV oxg (6)

=z V zo Vs

x1 V X2 \/fﬂg
X \/IQ \/_|I3

These four axioms can be generated from the first using the
three permutations in the set

{(z1, ~21) (w2, ~22), (21, 7w1) (23, ~23), (T2, ~22) (73, ~T3)}
Although literals are now being exchanged with their nega-
tions, this set, too, is closed under the group inverse and
composition operations. Since each element is a composi-
tion of disjoint transpositions, each element is its own in-
verse. The composition of the first two elements is the third.
In general, a constraint of the form (5) can be written as the
clauser; vV zs V - - - V x, together with the group

G = <(.§C17 —|I1)(I2, _‘I2>7 ey (xk—lv _'Ik—l)(x/w _"Tk»'
First Order Structure Consider next a first-order con-
straint such as

P(z,y)VQ(y,2) V R(z, 2) 7
where each variable is universally quantified over a finite do-
main of sized, so that (7) corresponds & ground axioms.

If 2, y andz are all chosen from the two element domain
{a, b}, the single lifted axiom (7) corresponds to the set of
ground instances:

P(a,a) vV Q(a,a) V R(a,a)
P(a,a) vV Q(a,b) V R(a,b)
P(a,b) vV Q(b,a) V R(a,a)
P(a,b) VvV Q(b,b) V R(a,b)
P(b,a) vV Q(a,a) vV R(b,a)
P(b,a) V Q(a,b) V R(b,b)
P(b,b)VQ(b,a) vV R(b,a)

(

P(b,b) v Q(b,b) v R(b, b

If we introduce ground literalg , -, I3, I4 for the instances
of P(z,y) and so on, we get:

=

The constraint (2) could also be encoded by the first ground
axiomz; V xs V x3, together with the set of permutations

Syn‘({l’la$27$371’4,$5})~ (4)
The remaining ground axioms (3) can be generated by ap-
plying the set of permutations (4) to the first axiom. More
generally, a cardinality constraint of form (1) can be written
as asingle clause, V z2 V - - - V 2, — 141 together with the
groupG = Sym({z;}). Operating or:qVaaV- - -V &y, —kt1
with elements of allows us to generate the full setokF
clauses that is logically equivalent to (1).

56 AUTOMATED REASONING

1 Vis Vg
l1 ViVl
loViIrVig
o ViIg Vi
IlsVis Vi
I3 Vi Viig
LV IV iy
LV s VI

(®)

at which point the structure implicit in (7) has apparently
been obscured.

But note that the set of axioms (8) is “generated” by a set
of transformations on the underlying variables. For example,
we are allowed to swap the valuesawéndb for variablez,
and still have a sanctioned ground clause. Since the vari-
ablex appears as the first argument of bdthand R, the
permutation

(Pa,a)s Piv,a)) (Pla,p), Po,o)) (Ria,a)s Bv,a)) (Ra,), Biv,p))
corresponds to a swap afandb as the first argument of
both P and R, producing the correct action on the relevant
ground literals.

In terms of the literals in (8), this becomes

we = (l1l3)(l2l4) (lol11) (l10l12)
In a similar way, swapping the two values fgr corre-
sponds tow, = (l1l2)(lsl4)(l5l7)(lgls) and z produces
W, = (1516)(1718)(19110)(111112)- Now consider the sub-
groupG = (wy,wy,w-) of Sym({;}) generated by, w,
andw,. As in our earlier examples, this group allows all
of the clauses in (8) to be generated from any such clause.
Thus operating on the first axiom in (8) with, produces
I3 V15 V l11. This is the fifth axiom, exactly as it should be,
since we have swappeli(a,a) with P(b,a) and R(a, a)
with R(b,a). Alternatively, a straightforward calculation
shows that

wewy = (l1la)(lals)(Isl7) (l6ls) (lol11) (lol12)
mapping the first axiom in (8) to the next to last, and so on.

Augmented Clauses Before proceeding, note that any
“reasonable” permutation that maps a litetalto another
literal [, should respect the semantics of the axiomatization
and map-l; to -y as well.

Definition 2 Given a set of, variables, we will denote by
W,, that subgroup ofS,,, that maps the literakl; to -l
whenever it mapj to ls.

Definition 3 An augmented clausein an n-variable
Boolean satisfiability problem is a paie, G) wherec is a
Boolean clause and? < W,,. A ground clause’ is anin-
stanceof an augmented clause, G) if there is somg € G
such that? = g(c). Two augmented clausés;, G;) and
(c2, G2) will be calledequivalentf they have identical sets
of instances. This will be denotéd, G1) = (co, G2).
Proposition 4 Let (¢, G) be an augmented clause. Then if
¢ is any instance ofc, G), (¢, G) = (¢, G). [|

Definition 5 If C'is a set of augmented clauses, we will say
that C' entailsan augmented clausg:, G), writing C' =

(¢, @), if every instance ofc, G) is entailed by the set of
instances of the augmented clause€’in

Augmented clauses provide highly compact descriptions

of structured clause sets. An augmented clause can be ex-

ponentially more concise than its equivalent set of ground
clauses.

Proposition 6 LetS be a set of ground clauses ovewari-
ables, and(c, G) an equivalent augmented clause. Then
a set of generators foilG can be expressed i®(n?)
space. H

Generalizing Resolution

Of course, presenting a more compact representation is not
progress in and of itself; it must also be possiblegason

with the representation. Augmented clauses possess a natu-
ral generalization of the classical Boolean idea of resolution;
the essential idea is that the “resolvent” of two augmented
clauseqc;, G1) and(c2, G2) should be, as nearly as possi-
ble, the set of all resolvents that can be obtained by resolving
an instance ofc;, G1) with an instance ofcq, G2).

Definition 7 Let (¢, G) be an augmented clause. Bi(c)
we will mean the union of all instancegc) of the aug-
mented clauséc, G). For a permutatiorp and setS with
p(S) = S, by p|s we will mean the restriction g to the
given set, and we will say thatis a pullbackof p|s back to
the original set on whiclp acts.

Note that it is not possible to restrict a group to an arbi-
trary set; one cannot restrict the permutatien) to the set
{z} because you need to agds well.

Definition 8 Let (¢1,G1) and (c2, G2) be two augmented
clauses. A permutationis called anextension of(c;, G1)
and (cz, Go) if there areg; € G; such that fori 1,2,
Dle; = gile;- We will denote the set of extensiongaf, G1)
and(ce, G3) byextn (¢;, G;).

An extension will be calledtableif there areg;, € G;
such that fori = 1,2, plg,(c,) = %ilgi(e,)- We will de-
note the set of stable extensiongaf, G;) and (c2, G2) by
stab (Ci,Gi).

Note that the only difference between an extension and
a stable extension is the domain for which the permutation
p is required to match elements of the groups For an
extension, the match must be only on the given clatjse
stability requires that the match be on the entire image of
under the;.

If (¢1,G1) and(ca, G2) are augmented clauses such that
the Boolean clauses andc, resolve to give resol\e;, cz),
the set of all clauses of the forp(resolvéc,, cs)) where
p € extn (¢;, G;) is analogous to the set of all resolvents
that can be obtained by resolving an instancé-ofG;) and
one of(cq, G2). Unfortunately, the set of extensiopgs not
closed under composition and is not a group; it is only for
groups that the representational and other efficiencies of the
augmented approach can be realized. But the set of stable
extensionss a group, leading to:

Definition 9 Let (¢1,G1) and (c2,G2) be augmented
clauses. Then theesolventof (¢;,G1) and (cq, G2), tO
be denoted byesolvé(c;, G1), (c2, G2)), is the augmented
clause(resolvecy, co),stab (¢;, G;)).

The above definition resolves many of the instances of
(c1,G1) and of (¢, G2) in “parallel”, allowing us to con-
clude at a stroke many of the clauses that would have
been obtained had we resolved the individual instances of
(c1, G1) with the instances dfcs, G2).

Proposition 10 Augmented resolution is sound, in that if
(¢, G) = resolvé(ci,G1), (c2,G2)) and ¢ is an instance
of (¢, G), then(e1, G1) A (c2,G2) = . [|

AUTOMATED REASONING 57

Proposition 11 Augmented resolution is complete, in that if
(c1,G1) and(c2, Go) are augmented clauses with instances
¢y andd, respectively and’ = resolvéc], ¢), thenc’ is an
instance ofesolvé(c}, G1), (ch, G2)). [|

Recall that(¢}, G1) = (¢1,G1) by virtue of Proposition 4,
and similarly forc,.

Definition 13 Given a group acting on a sef., thepoint-

wise stabilizerof L, denotedGy, is the subgroup of all
g € G such thatly = [for everyl € L. Theset stabi-
lizer of L, denoted’,;, is that subgroup of alf € G such

that L9 = L.

Point stabilizers can be computed in polynomial time. There

In some cases, computing the group of stable extensions is no known polynomial algorithm for set stabilizers in gen-

is easy:

Lemma 12 If (¢1,G) and (c2, G) are augmented clauses
and G(c1) = G(c2), thenresolvé(ci,G), (c2,G)) =
(resolvécy, cz), G). [|

eral (see (Luks 1993) for a discussion of the complexity of
this and related problems), although set stabilizer is not NP-
hard unless the polynomial hierarchy collapses}qBabai

& Moran 1988).

Procedure 14 Given augmented clauseéc;,G;) and

But what can be said about the more general case? We now (c2, G2), to computestab (c;, G;):

address this difficulty.

Augmented resolution

The essence of the augmented resolution computation in-
volves computing the group of stable extensions of the
groups in the resolvents. Specifically, we have augmented
clausegc;, G1) and(cq, G2) and need to compute the group
G of stable extensions @f, andG-. Recalling Definition 8,
this is the group of all permutationswith the property that
there is somg; € G, such tha'f.u|pc;1 = gl|pG1 and simi-
larly for go € G5 andc,. We have aclijusted notation here, re-
placing theG;(¢;) in the original Definition 8 Wi'[h:iGi. The
reason for the notational shift is that the composition of two
group elementgg acts with f first and then withy. By re-
placingg(f(x)) with 279, the original definition of function
compositiorny(f(z)) = (fg)(x) (note the awkward variable
order) becomes the more naturdl = (z7)9. As remarked
in Definition 7, ¢ is the union of the images @f under
permutations irG;.

As an example, consider the two clauses

(Cla Gl) (a Vb, <(ad)> (be)a (bf)7 (xy)>)
(c2,Go) (¢ vV b,{(be), (bg)))

The image ofc; under Gy is {a,b,d,e, f} (the z and

y appearing in the group are irrelevant), aﬁz =
{b,¢c,e,g}. We therefore need to find those permutations
w such thatw restricted to{a,b,d, e, f} is an element of
{(ad), (be), (bf), (zy)), andw restricted to{b, c, e, g} is an
element of{(be), (bg)).

From the second condition, we know thatannot be
moved byw, and any permutation df, ¢ and g is accept-
able becausébe) and (bg) generate the symmetric group
Sym{b, e, g}. This second restriction does not impact the
image ofa, d or f underw.

From the first condition, we know that andd can be
swapped or left unchanged, and any permutatiol) efand
f is acceptable. But recall from the second condition that
we must also permutie e andg. These conditions combine
to imply that we cannot mové or g, since to move either
would break the condition on the other. We can swapde
or not, so the group of stable extensiong(i&d), (be)), and
that is what our construction should return.

As a preliminary, we need the following:

58 AUTOMATED REASONING

c_image ; « ¢ fori=1,2

g_restrict i — Gilc.image , fori =1,2
Cr « c_image ; Nc_image ,

g-stab ; < g.restrict ;o fori=1,2
g.int «—g.stab {|c, Ng-stab ,|c,

{g;} < {generators of_int }

{li;} < {g;,pulled back tay_stab ,} fori =1,2
{l5;} — {l2jlc_image ,—c.}

return (g-restrict ;o ,g-restrict

GO WNPF

9 20> 1l 155 })

Proposition 15 Procedure 14 returnstab (c;, G;).

Space prohibits our both proving this result and providing
an example of the procedure in action; we work through our
example and remark that the proof follows it closely.

1. c.image; « cf As described earlier, we have
c.image ; = {a,b,d, e, f} andc_image , = {b, ¢, e, g}.

2. g.restrict i < Gilcimage ,- We restrict each group
to the corresponding_image ;. We getg_restrict 5 =
Gq butg_restrict | = ((ad), (be), (bf)) as the irrelevant
pointsz andy are removed.

3. Cn « c_image ; Nc_image ,. The construction con-
siders three separate sets — the intersection of the images of
the original clauses (where the computation is interesting be-
cause the varioug; must agree), and the points in only the
image ofc; or only the image of,. The analysis on these
latter sets is straightforward; we just needo agree with
any element of7; or G, on the set in question. Here we
compute the intersection regi@i, = {b, e}.

4. gstab ; < grestrict o ;. We find the sub-
group ofg_restrict ; that set stabilize€n = {b,e}.
Forg.restrict | = ((ad), (be), (bf)), thisis{(ad), (be))
because we can no longer swapand f, while for
g-restrict 5, = ((be), (bg)), we getg_stab , = ((be)).

5. g.nt « gstab ;|¢, Ng.-stab ,|c,. Sincew must
simultaneously agree with both; andG> when restricted

to C (and thus withg _restrict ~ ; andg_restrict 5 as
well), the restriction ofv to C must lie within this intersec-
tion. In our exampleg_int = ((be)).

6. {9:} < {generatorsof.int }. Any element of
g-int will lead to an element of the group of stable ex-
tensions provided that we extend it appropriately frof
back to the full set{"* U ¢5?; this step begins the process
of building up these extensions. It suffices to work with just
the generators aj_int , and we construct those generators
here. We havég;} = {(be)}.

7. {lx;} < {g:,pulled back tag_stab ,}. Our goal is 1000 T a— : : : : : ,
now to build up a permutation on_.image ; U c_image 5 5300654
that, when restricted t6', matches the generatgy. We
do this by pullingg; separately back to_image ; and to 100 p]
c_image 5. Any such pullback suffices, so we can take (for s

example)l;; = (be)(ad) andly; = (be). In the first case,
the inclusion of the swap af andd is neither precluded nor
required; we could just as well have uded = (be).

8. {l5} « {l2z‘\c,image 2700}. We cannot simply a |
composel;; and ly; to get the desired permutation on
c_image ; U c_image , because the part of the permuta-
tions acting on the intersectianimage ; Nc_image , will o1 1
have acted twice. In this case, we would et I, = (ad)
which no longer captures our freedom to exchalhgade.

We deal with this by restricting,; awayfrom C and O T & 10 12 1z 1 18 2 2 2
only then combining with;;. Here, restrictingbe) away pigeans
from Cr = {b, e} produces the trivial permutatidfy, = ().

9. Return (g_restrict o ,grestrict o0, {l1; -
15,}). We compute the final answer from three sources: The
combined!y; - I3, that we have been working to construct,
along with elements of _restrict ;| andg_restrict o

that fix every point inch. These latter two sets consist of
stable extensions, since an elemerg akstrict ;| point-
wise stabilizes the image of if and only if it pointwise sta-

10 b2 B

secs

Figure 1: CPU time for a pigeonhole resolution

5. g.nt <« gstab {|c,Ng_stab ,|c,,. Group intersec-
tion is also not known to be in polynomial time (and is in fact
polynomial time equivalent to set stabilizer (Luks 1993));
once again, practical and efficient implementations exist.

bilizes the points that are in both the imagecof{to which 6. {g;} < {generators ofint }. Groups are typically
g.restrict , has been restricted) and the image-gfin represented in terms of their generators, so reconstructing a
other words, if and only if it pointwise stabiliz€-. list of those generators is trivial.
In our example, we have 7. {l} < {gi,pullc'ad back tag_stab ,}. Suppose that
we have a group: acting on a sef, a subsef” C S and a
g-restrict 1o, = ((ad)) permutation, acting onT such that we know that is the
g_restrict o0 1 restriction to7" of someg € G. Finding such a pullback is
LT N be)(ad polynomial in the number of variables acted on@®y
{hi-lziy = {(be)(ad)} 8. {ly} < {l2ilc image ,—c,,}- Restriction is still easy.
The group of stable extensions {§ad), (be)(ad)), iden- 9. Return (g-restrict ;o ,grestrict o0, {li; -

tical to the “obvious”((ad), (be)). We can swap either 7.1). Since groups are represented by their generators, we
the (a, d) pair or the(b,e) pair, as we see fit. The first need simply take the union of the generators for the three ar-
swap(ad) is sanctioned for the first “resolventt;, G1) = guments. The pointwise stabilizers needed for the first two

(aVb,((ad), (be),(bf))) and does not mention any relevant arguments can be computed in polynomial time.

variable in the seconfty, Go) = (¢ V b, {(be), (bg))). The

second swaybe) is sanctioned in both cases. Experimental results

We have implemented the procedure described in the last
Computational issues We conclude this section by dis- section as one of the necessary first steps to building a theo-
cussing some of the computational issues that arise whenrem prover for an augmented resolution system.
we implement Procedure 14, including the complexity of the The results for the pigeonhole problem are shown in Fig-
various operations required. ure 1. This particular example involves resolving the two
1. c.image; « % . Efficient algorithms exist for com- ~ Pasic axioms in a pigeonhole problem containingigeons
puting the image of a set under a group. The basic method andn — 1 holes. (The axioms state th.at every pigeon IS in
is to use a flood-fill like approach, adding and marking the SCMe hole and no hole contains two pigeons.) We produced

result of acting on the set with a single group element, and the results in the figure by encoding the axioms in a way that
recurring until no new points are added. obscured the fact that the groups were identical and by also

. disabling the check to see if the groups were the same.
2. gresfrict ; « Gi|.°:imagez" A group can be re- The solid line gives the observed time (in seconds) for the
stricted to a set that it stabilizes by restricting the generating oqq|ytion as a function of the number of pigeons involved,
permutations individually. _ o plotted on a log scale. The experiments were performed on
3. Cn « c.mage, N c.image,. Set intersection is a1.7GHz Pentium-M with 1GB of main memory, although
straightforward. the implementation used only 5MB. Interestingly, the CPU
4. gstab ;, < grestrict ;3. Although set stabi- usage wasiot dominated by the non-polynomial steps in
lizer is not known to be in P, implementations exist that are Lines 4 and 5 of Procedure 14, but instead by the need to
efficient in practice.

AUTOMATED REASONING 59

compute “stabilizer chains” in support of the algorithm gen-
erally. Stabilizer chains (Sims 1970) are data structures that
support a variety of computational manipulations on groups,
and can be constructed in tindyn°) if n is the number of
variables being manipulated by the group in question (Knuth
1991). The solid curve in the figure is the best fit between the
data and a CPU utilization afr?, which occurs fob = 5.4.

The pigeonhole problem was chosen for our experiments
because, although the groups involved are very simple (the
direct product of a symmetry over pigeons and one over
n — 1 holes), the standard stabilizer chain construction gen-
erally works poorly on full symmetry groups or products
thereof. For this reason, we expect that the computational
needs of Procedure 14 in a pigeonhole setting are in fact
greater than those that will be encountered in other aug-
mented problems. The running time can be reduced to
O(n?) by using stabilizer chain algorithms designed to work
well on full symmetry groups (and only slightly worse than
the standard algorithms in the general case). The running
time can be reduced t0(1) by recognizing that all of the
groups involved are identical and applying Lemma 12 to
produce the resolvent group directly.

We have shown elsewhere (Dixet al. 2004b) that ac-
tually solvingthe pigeonhole problem in this framework in-
volves a total ofO(n?) resolutions and a similar number
of unit propagations. The unit propagations require a sin-
gle stabilizer chain computation costirig(n?) (Dixon et
al. 2004a) but potentially shared among all of the propa-
gations required, since the group is unchanged throughout
the problem’ The overall scaling on this problem instance
can therefore be expected to ©én?), which compares fa-
vorably with theO(n®) scaling obtained by exploiting the
symmetry directly using symmetry-breaking axioms (Craw-
ford et al. 1996), or with the exponential scaling needed by
conventional methods. The augmented approach is also far
more flexible, since it can deal with theories where no global
symmetry is present, or with structure in other forms.

Conclusion

Augmented resolution is a completely new mechanism for
solving satisfiability problems, and has extremely attrac-
tive theoretical properties including exponential reductions

in both the space needed to store a clausal database and the

number of inference steps needed to derive conclusions from
it. In this paper, we have begun to investigate the computa-
tional properties of this new approach, presenting an algo-
rithm for computing augmented resolution and describing
the results of experiments that appear likely to measure that
algorithm’s worst case performance. The result of those ex-
periments indicate that the time needed for a single reso-
lution remains polynomial in the number of domain el-
ements being considered, although the time does grow as
O(n®) if full symmetry groups are involved. In practice, it
should be possible to reduce the resolution time substantially
by exploiting the specific structure of the groups in question.

As with resolution, there are non-polynomial elements to the

unit propagation procedure (Dixat al. 2004a) but the evidence
is that the stabilizer chain construction dominates.

60 AUTOMATED REASONING

References

Babai, L., and Moran, S. 1988. Arthur-Merlin games: A
randomized proof system, and a hierarchy of complexity
classesJ. Comput. System S86:254-276.

Barth, P. 1995. A Davis-Putnam based enumeration al-
gorithm for linear pseudo-boolean optimization. Techni-
cal Report MPI-1-95-2-003, Max Planck InstituirfInfor-
matik, Saarhiicken, Germany.

Chatalic, P., and Simon, L. 2000. Zres: the old Davis-
Putnam meets ZBDDs. In McAllester, D., ed7th Inter-
national Confernece on Automated Deduction (CADE’17)
number 1831 in Lecture Notes in Artificial Intelligence
(LNAI), 449-454,

Cook, W.; Coullard, C.; and Turan, G. 1987. On the com-
plexity of cutting-plane proofs.Discrete Applied Mathe-
matics18:25-38.

Crawford, J. M.; Ginsberg, M. L.; Luks, E.; and Roy, A.
1996. Symmetry breaking predicates for search problems.
In Proceedings of the Fifth International Conference on
Principles of Knowledge Representation and Reasoning

Dixon, H. E.; Ginsberg, M. L.; Hofer, D.; Luks, E. M.; and
Parkes, A. J. 2004a. Generalizing Boolean satisfiability I11:
Implementation. Technical report, CIRL, Eugene, Oregon.

Dixon, H. E.; Ginsberg, M. L.; Luks, E. M.; and Parkes,
A. J. 2004b. Generalizing Boolean satisfiability 1l: Theory.
Technical report, CIRL, Eugene, Oregon.

Haken, A. 1985. The intractability of resolutiomheoret-
ical Computer Scienc&9:297-308.

Knuth, D. E. 1991. Notes on efficient representation of
permutation groupsCombinatorical1:57—68.

Li, C. M. 2000. Integrating equivalency reasoning into
Davis-Putnam procedure. IRroceedings of the Seven-
teenth National Conference on Artificial Intelligen@91—
296.

Luks, E. M. 1993.Permutation Groups and Polynomial-
Time Computationvolume 11 ofDIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science
Amer. Math. Soc. 139-175.

Mclver, A., and Neumann, P. 1987. Enumerating finite
groups.Quart. J. Math.38(2):473-488.

Rotman, J. J. 1994.An Introduction to the Theory of
Groups Springer.

Seress, A. 2003Permutation Group Algorithms/olume
152 of Cambridge Tracts in Mathematic€ambridge, UK:
Cambridge University Press.

Sims, C. C. 1970. Computational methods in the study
of permutation groups. In Leech, J., e@omputational
Problems in Abstract Algebra, Proc. Conf. Oxford, 1967
Pergamon Press.

Tseitin, G. 1970. On the complexity of derivation in propo-
sitional calculus. In Slisenko, A., edstudies in Construc-
tive Mathematics and Mathematical Logic, Partonsul-
tants Bureau. 466—483.

