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Abstract

We have recently proposed augmenting clauses in a Boolean
database with groups of permutations, the augmented clauses
then standing for the set of all clauses constructed by acting
on the original clause with a permutation in the group. This
approach has many attractive theoretical properties, includ-
ing representational generality and reductions from exponen-
tial to polynomial proof length in a variety of settings. In
this paper, we discuss the issues that arise in implementing
a group-based generalization of resolution, and give prelimi-
nary results describing this procedure’s effectiveness.

Introduction
We often say that real-world constraint satisfaction problems
containstructure. The term ‘structure’ is somewhat vague,
but generally means that a problem contains recognizable
patterns. Structured problems might best be described as
problems in which subproblems or symmetric variants of
subproblems recur throughout the search.

Usually, a problem is originally described using some
high level language in which problem structure is explicit. A
planning problem, for example, might be represented using
first order logic. The Boolean satisfiability methods gener-
ally used for solvingCSPs are variants of theDPLL “Davis-
Putnam” algorithm and are based on conjunctive normal
form (CNF) encodings. In practice, the high level encoding
is used to generate a much largerCNF or groundencoding
that unfortunately obscures the original problem structure,
making it impossible for solvers to exploit this extra infor-
mation in solving the problem.

A high price is paid for this approach, since many classes
of problems cannot be solved efficiently without appealing
to the problem structure in some way. As an example, the
pigeonhole problem occurs naturally in many planning and
scheduling domains, butDPLL is too weak to produce short
proofs of unsatisfiability for these instances. Traditional
methods usingCNF encodings thus suffer from exponential
scaling on these problems.

This roadblock for traditional methods has led some re-
searchers to adaptDPLL to use stronger representations
(Barth 1995; Chatalic & Simon 2000; Li 2000). When
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strong representations are combined with strong inference,
the structure of the problem can be leveraged to produce
shorter proofs. These lifted methods appear able to over-
come the drawbacks of weak encodings without sacrificing
the performance achieved byCNF-based methods. The dis-
advantage is that no single representation has proven suffi-
cient to capture the range of structures present in naturally
occurring problem instances.

We have shown (Dixonet al. 2004b) that permutation
groups provide a general and efficient way of representing
problem structure. Group-based axiomatizations general-
ize cardinality constraints, parity constraints and constraints
quantified over finite domains. Inference among different
constraint types becomes possible within this unified frame-
work, using a general inference rule calledaugmented res-
olution. Augmented resolution allows multiple resolutions
to be performed in parallel, leading to a powerful yet sim-
ple proof system that is still practical for automation. As we
will see, the computational issues that arise in this setting
can be solved by drawing on the large body of theoretical
and algorithmic work that already exists for groups.

Groups
The collection of permutations on a setL will be denoted
Sym(L). If the elements ofL can be labeled1, 2, . . . , n in
some obvious way, Sym(L) is often denoted simplySn. If
we takeL to be the integers from 1 ton, a particular permu-
tation can be denoted by a series of disjoint cycles, so that
the permutationω = (135)(26), for example, would map 1
to 3, then 3 to 5, then 5 back to 1. It would also exchange 2
and 6. The order in which the disjoint cycles are written is
irrelevant, as is the choice of first element within a particu-
lar cycle. Ifω1 andω2 are two permutations, it is obviously
possible to compose them; we will write the composition as
ω1ω2 where the order means that we operate first withω1

and then withω2.
While composition is associative, it is not necessarily

commutative. As an example,(123)(23) = (12) but
(23)(123) = (13). The composition operator also has an
inverse, since any permutation can obviously be inverted by
mappingx to thaty with ω(y) = x. In our example, it is
easy to see thatω−1 = (153)(26). If we have a setS ⊆ L
and a permutationω ∈ Sym(L), we will denote byω(S) the
set generated by applyingω to each element ofS. We call
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this set theimageof S underω.
We see, then, that the setSn is equipped with a binary op-

eration that is associative, and relative to which there is an
identity element and each element has an inverse. ThusSn is
a group. There are many excellent references for group the-
ory generally (Rotman 1994, and others) and computational
group theory specifically (Seress 2003).

Definition 1 A subsetS of a groupG is called asubgroupof
G, denotedS ≤ G, if S is closed under the group operations
of inversion and multiplication.

Groups can be described without enumerating all of their
elements; consider the groupSn, which is of sizen!. We can
represent a groupG by giving only a setS of permutations
that generateG in that any element ofG can be expressed
as a product of elements ofS. If S is such a generating set
for G, we will write G = 〈S〉.

The number of generators required to describe any group
G ≤ Sn is easily shown to be at mostlog2 |G|. The reason
is that the size of a subgroup always divides the size of the
group and so, ifx 6∈ 〈S〉, then addingx to S at least doubles
the size of〈S〉. Thus the number of generators needed can
never exceedlog2 |G|; a more sophisticated analysis shows
that bn

2 c also serves as a bound for any subgroup ofSn if
n > 3 (McIver & Neumann 1987). Permutation represen-
tations of groups provide highly compact specifications of
large objects.

Axiom Structure as a Group
Cardinality Constraints Cardinality constraints have the
form

x1 + · · ·+ xm ≥ k (1)
asserting that at leastk of thexi’s must be true. The single
axiom (1) is equivalent to

(
m

k−1

)
conventional disjunctions.

The representational strength of cardinality constraints al-
lows polynomial length proofs of the pigeonhole problem
(Cook, Coullard, & Turan 1987) which is known to be ex-
ponentially difficult for any resolution-based method (Haken
1985). Consider the cardinality constraint

x1 + x2 + x3 + x4 + x5 ≥ 3 (2)

which can be encoded in conjunctive normal form as

x1 ∨ x2 ∨ x3 x1 ∨ x4 ∨ x5

x1 ∨ x2 ∨ x4 x2 ∨ x3 ∨ x4

x1 ∨ x2 ∨ x5 x2 ∨ x3 ∨ x5 (3)

x1 ∨ x3 ∨ x4 x2 ∨ x4 ∨ x5

x1 ∨ x3 ∨ x5 x3 ∨ x4 ∨ x5

The constraint (2) could also be encoded by the first ground
axiomx1 ∨ x2 ∨ x3, together with the set of permutations

Sym({x1, x2, x3, x4, x5}). (4)

The remaining ground axioms (3) can be generated by ap-
plying the set of permutations (4) to the first axiom. More
generally, a cardinality constraint of form (1) can be written
as a single clausex1 ∨ x2 ∨ · · · ∨ xm−k+1 together with the
groupG = Sym({xi}). Operating onx1∨x2∨· · ·∨xm−k+1

with elements ofG allows us to generate the full set ofCNF
clauses that is logically equivalent to (1).

Parity Constraints We now consider constraints that are
most naturally expressed using modular arithmetic or exclu-
sive or’s, such as

x1 ⊕ · · · ⊕ xk = 1 (5)

Axiom sets consisting of parity constraints in isolation can
be solved in polynomial time using Gaussian elimination,
but there are examples that are exponentially difficult for
resolution-based methods (Tseitin 1970).

As in the cardinality example, single axioms such as (5)
reveal structure that a Boolean axiomatization obscures. In
this case, (5) withk = 3 is equivalent to:

x1 ∨ x2 ∨ x3 x1 ∨ ¬x2 ∨ ¬x3 (6)

¬x1 ∨ x2 ∨ ¬x3 ¬x1 ∨ ¬x2 ∨ x3

These four axioms can be generated from the first using the
three permutations in the set

{(x1,¬x1)(x2,¬x2), (x1,¬x1)(x3,¬x3), (x2,¬x2)(x3,¬x3)}
Although literals are now being exchanged with their nega-
tions, this set, too, is closed under the group inverse and
composition operations. Since each element is a composi-
tion of disjoint transpositions, each element is its own in-
verse. The composition of the first two elements is the third.
In general, a constraint of the form (5) can be written as the
clausex1 ∨ x2 ∨ · · · ∨ xk together with the group

G = 〈(x1,¬x1)(x2,¬x2), . . . , (xk−1,¬xk−1)(xk,¬xk)〉.

First Order Structure Consider next a first-order con-
straint such as

P (x, y) ∨Q(y, z) ∨R(x, z) (7)

where each variable is universally quantified over a finite do-
main of sized, so that (7) corresponds tod3 ground axioms.
If x, y andz are all chosen from the two element domain
{a, b}, the single lifted axiom (7) corresponds to the set of
ground instances:

P (a, a) ∨Q(a, a) ∨R(a, a)
P (a, a) ∨Q(a, b) ∨R(a, b)
P (a, b) ∨Q(b, a) ∨R(a, a)
P (a, b) ∨Q(b, b) ∨R(a, b)
P (b, a) ∨Q(a, a) ∨R(b, a)
P (b, a) ∨Q(a, b) ∨R(b, b)
P (b, b) ∨Q(b, a) ∨R(b, a)
P (b, b) ∨Q(b, b) ∨R(b, b)

If we introduce ground literalsl1, l2, l3, l4 for the instances
of P (x, y) and so on, we get:

l1 ∨ l5 ∨ l9

l1 ∨ l6 ∨ l10
l2 ∨ l7 ∨ l9
l2 ∨ l8 ∨ l10 (8)

l3 ∨ l5 ∨ l11
l3 ∨ l6 ∨ l12
l4 ∨ l7 ∨ l11
l4 ∨ l8 ∨ l12
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at which point the structure implicit in (7) has apparently
been obscured.

But note that the set of axioms (8) is “generated” by a set
of transformations on the underlying variables. For example,
we are allowed to swap the values ofa andb for variablex,
and still have a sanctioned ground clause. Since the vari-
ablex appears as the first argument of bothP andR, the
permutation
(P(a,a), P(b,a))(P(a,b), P(b,b))(R(a,a), R(b,a))(R(a,b), R(b,b))
corresponds to a swap ofa and b as the first argument of
bothP andR, producing the correct action on the relevant
ground literals.

In terms of the literals in (8), this becomes
ωx = (l1l3)(l2l4)(l9l11)(l10l12)

In a similar way, swapping the two values fory corre-
sponds toωy = (l1l2)(l3l4)(l5l7)(l6l8) and z produces
ωz = (l5l6)(l7l8)(l9l10)(l11l12). Now consider the sub-
groupG = 〈ωx, ωy, ωz〉 of Sym({li}) generated byωx, ωy

andωz. As in our earlier examples, this group allows all
of the clauses in (8) to be generated from any such clause.
Thus operating on the first axiom in (8) withωx produces
l3 ∨ l5 ∨ l11. This is the fifth axiom, exactly as it should be,
since we have swappedP (a, a) with P (b, a) and R(a, a)
with R(b, a). Alternatively, a straightforward calculation
shows that

ωxωy = (l1l4)(l2l3)(l5l7)(l6l8)(l9l11)(l10l12)
mapping the first axiom in (8) to the next to last, and so on.

Augmented Clauses Before proceeding, note that any
“reasonable” permutation that maps a literall1 to another
literal l2 should respect the semantics of the axiomatization
and map¬l1 to¬l2 as well.
Definition 2 Given a set ofn variables, we will denote by
Wn that subgroup ofS2n that maps the literal¬l1 to ¬l2
whenever it mapsl1 to l2.

Definition 3 An augmented clausein an n-variable
Boolean satisfiability problem is a pair(c,G) wherec is a
Boolean clause andG ≤ Wn. A ground clausec′ is an in-
stanceof an augmented clause(c,G) if there is someg ∈ G
such thatc′ = g(c). Two augmented clauses(c1, G1) and
(c2, G2) will be calledequivalentif they have identical sets
of instances. This will be denoted(c1, G1) ≡ (c2, G2).
Proposition 4 Let (c,G) be an augmented clause. Then if
c′ is any instance of(c,G), (c,G) ≡ (c′, G).
Definition 5 If C is a set of augmented clauses, we will say
that C entailsan augmented clause(c,G), writing C |=
(c,G), if every instance of(c,G) is entailed by the set of
instances of the augmented clauses inC.

Augmented clauses provide highly compact descriptions
of structured clause sets. An augmented clause can be ex-
ponentially more concise than its equivalent set of ground
clauses.
Proposition 6 LetS be a set of ground clauses overn vari-
ables, and(c,G) an equivalent augmented clause. Then
a set of generators forG can be expressed inO(n2)
space.

Generalizing Resolution
Of course, presenting a more compact representation is not
progress in and of itself; it must also be possible toreason
with the representation. Augmented clauses possess a natu-
ral generalization of the classical Boolean idea of resolution;
the essential idea is that the “resolvent” of two augmented
clauses(c1, G1) and(c2, G2) should be, as nearly as possi-
ble, the set of all resolvents that can be obtained by resolving
an instance of(c1, G1) with an instance of(c2, G2).

Definition 7 Let (c,G) be an augmented clause. ByG(c)
we will mean the union of all instancesg(c) of the aug-
mented clause(c,G). For a permutationp and setS with
p(S) = S, by p|S we will mean the restriction ofp to the
given set, and we will say thatp is a pullbackof p|S back to
the original set on whichp acts.

Note that it is not possible to restrict a group to an arbi-
trary set; one cannot restrict the permutation(xy) to the set
{x} because you need to addy as well.

Definition 8 Let (c1, G1) and (c2, G2) be two augmented
clauses. A permutationp is called anextension of(c1, G1)
and (c2, G2) if there aregi ∈ Gi such that fori = 1, 2,
p|ci

= gi|ci
. We will denote the set of extensions of(c1, G1)

and(c2, G2) byextn (ci, Gi).
An extension will be calledstableif there aregi ∈ Gi

such that fori = 1, 2, p|Gi(ci) = gi|Gi(ci). We will de-
note the set of stable extensions of(c1, G1) and(c2, G2) by
stab (ci, Gi).

Note that the only difference between an extension and
a stable extension is the domain for which the permutation
p is required to match elements of the groupsGi. For an
extension, the match must be only on the given clausec;
stability requires that the match be on the entire image ofc
under theGi.

If (c1, G1) and(c2, G2) are augmented clauses such that
the Boolean clausesc1 andc2 resolve to give resolve(c1, c2),
the set of all clauses of the formp(resolve(c1, c2)) where
p ∈ extn (ci, Gi) is analogous to the set of all resolvents
that can be obtained by resolving an instance of(c1, G1) and
one of(c2, G2). Unfortunately, the set of extensionsp is not
closed under composition and is not a group; it is only for
groups that the representational and other efficiencies of the
augmented approach can be realized. But the set of stable
extensionsis a group, leading to:

Definition 9 Let (c1, G1) and (c2, G2) be augmented
clauses. Then theresolventof (c1, G1) and (c2, G2), to
be denoted byresolve((c1, G1), (c2, G2)), is the augmented
clause(resolve(c1, c2), stab (ci, Gi)).

The above definition resolves many of the instances of
(c1, G1) and of (c2, G2) in “parallel”, allowing us to con-
clude at a stroke many of the clauses that would have
been obtained had we resolved the individual instances of
(c1, G1) with the instances of(c2, G2).

Proposition 10 Augmented resolution is sound, in that if
(c,G) = resolve((c1, G1), (c2, G2)) and c′ is an instance
of (c,G), then(c1, G1) ∧ (c2, G2) |= c′.

AUTOMATED REASONING   57  



Proposition 11 Augmented resolution is complete, in that if
(c1, G1) and(c2, G2) are augmented clauses with instances
c′1 andc′2 respectively andc′ = resolve(c′1, c

′
2), thenc′ is an

instance ofresolve((c′1, G1), (c′2, G2)).

Recall that(c′1, G1) ≡ (c1, G1) by virtue of Proposition 4,
and similarly forc′2.

In some cases, computing the group of stable extensions
is easy:

Lemma 12 If (c1, G) and (c2, G) are augmented clauses
and G(c1) = G(c2), then resolve((c1, G), (c2, G)) ≡
(resolve(c1, c2), G).

But what can be said about the more general case? We now
address this difficulty.

Augmented resolution
The essence of the augmented resolution computation in-
volves computing the group of stable extensions of the
groups in the resolvents. Specifically, we have augmented
clauses(c1, G1) and(c2, G2) and need to compute the group
G of stable extensions ofG1 andG2. Recalling Definition 8,
this is the group of all permutationsω with the property that
there is someg1 ∈ G1 such thatω|

c
G1
1

= g1|cG1
1

and simi-
larly for g2 ∈ G2 andc2. We have adjusted notation here, re-
placing theGi(ci) in the original Definition 8 withcGi

i . The
reason for the notational shift is that the composition of two
group elementsfg acts withf first and then withg. By re-
placingg(f(x)) with xfg, the original definition of function
compositiong(f(x)) = (fg)(x) (note the awkward variable
order) becomes the more naturalxfg = (xf )g. As remarked
in Definition 7, cGi

i is the union of the images ofci under
permutations inGi.

As an example, consider the two clauses

(c1, G1) = (a ∨ b, 〈(ad), (be), (bf), (xy)〉)
(c2, G2) = (c ∨ b, 〈(be), (bg)〉)

The image ofc1 under G1 is {a, b, d, e, f} (the x and
y appearing in the group are irrelevant), andcG2

2 =
{b, c, e, g}. We therefore need to find those permutations
ω such thatω restricted to{a, b, d, e, f} is an element of
〈(ad), (be), (bf), (xy)〉, andω restricted to{b, c, e, g} is an
element of〈(be), (bg)〉.

From the second condition, we know thatc cannot be
moved byω, and any permutation ofb, e andg is accept-
able because(be) and (bg) generate the symmetric group
Sym{b, e, g}. This second restriction does not impact the
image ofa, d or f underω.

From the first condition, we know thata and d can be
swapped or left unchanged, and any permutation ofb, e and
f is acceptable. But recall from the second condition that
we must also permuteb, e andg. These conditions combine
to imply that we cannot movef or g, since to move either
would break the condition on the other. We can swapb ande
or not, so the group of stable extensions is〈(ad), (be)〉, and
that is what our construction should return.

As a preliminary, we need the following:

Definition 13 Given a groupG acting on a setL, thepoint-
wise stabilizerof L, denotedGL, is the subgroup of all
g ∈ G such thatlg = l for every l ∈ L. Theset stabi-
lizer of L, denotedG{L}, is that subgroup of allg ∈ G such
thatLg = L.

Point stabilizers can be computed in polynomial time. There
is no known polynomial algorithm for set stabilizers in gen-
eral (see (Luks 1993) for a discussion of the complexity of
this and related problems), although set stabilizer is not NP-
hard unless the polynomial hierarchy collapses toΣp

2 (Babai
& Moran 1988).

Procedure 14 Given augmented clauses(c1, G1) and
(c2, G2), to computestab (ci, Gi):

1 c image i ← cGi
i for i = 1, 2

2 g restrict i ← Gi|c image i
for i = 1, 2

3 C∩ ← c image 1 ∩ c image 2

4 g stab i ← g restrict i{C∩} for i = 1, 2
5 g int ← g stab 1|C∩ ∩ g stab 2|C∩
6 {gj} ← {generators ofg int }
7 {lij} ← {gj , pulled back tog stab i} for i = 1, 2
8 {l′2j} ← {l2j |c image 2−C∩

}
9 return 〈g restrict 1C∩ , g restrict 2C∩ , {l1j · l′2j}〉

Proposition 15 Procedure 14 returnsstab (ci, Gi).
Space prohibits our both proving this result and providing

an example of the procedure in action; we work through our
example and remark that the proof follows it closely.
1. c image i ← cGi

i . As described earlier, we have
c image 1 = {a, b, d, e, f} andc image 2 = {b, c, e, g}.
2. g restrict i ← Gi|c image i

. We restrict each group
to the correspondingc image i. We getg restrict 2 =
G2 butg restrict 1 = 〈(ad), (be), (bf)〉 as the irrelevant
pointsx andy are removed.
3. C∩ ← c image 1 ∩ c image 2. The construction con-
siders three separate sets – the intersection of the images of
the original clauses (where the computation is interesting be-
cause the variousgi must agree), and the points in only the
image ofc1 or only the image ofc2. The analysis on these
latter sets is straightforward; we just needω to agree with
any element ofG1 or G2 on the set in question. Here we
compute the intersection regionC∩ = {b, e}.
4. g stab i ← g restrict i{C∩}. We find the sub-
group of g restrict i that set stabilizesC∩ = {b, e}.
Forg restrict 1 = 〈(ad), (be), (bf)〉, this is〈(ad), (be)〉
because we can no longer swapb and f , while for
g restrict 2 = 〈(be), (bg)〉, we getg stab 2 = 〈(be)〉.
5. g int ← g stab 1|C∩ ∩ g stab 2|C∩ . Sinceω must
simultaneously agree with bothG1 andG2 when restricted
to C∩ (and thus withg restrict 1 andg restrict 2 as
well), the restriction ofω to C∩ must lie within this intersec-
tion. In our example,g int = 〈(be)〉.
6. {gi} ← {generators ofg int }. Any element of
g int will lead to an element of the group of stable ex-
tensions provided that we extend it appropriately fromC∩
back to the full setcG1

1 ∪ cG2
2 ; this step begins the process

of building up these extensions. It suffices to work with just
the generators ofg int , and we construct those generators
here. We have{gi} = {(be)}.
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7. {lki} ← {gi, pulled back tog stab k}. Our goal is
now to build up a permutation onc image 1 ∪ c image 2

that, when restricted toC∩, matches the generatorgi. We
do this by pullinggi separately back toc image 1 and to
c image 2. Any such pullback suffices, so we can take (for
example)l11 = (be)(ad) andl21 = (be). In the first case,
the inclusion of the swap ofa andd is neither precluded nor
required; we could just as well have usedl11 = (be).
8. {l′2i} ← {l2i|c image 2−C∩

}. We cannot simply
composel11 and l21 to get the desired permutation on
c image 1 ∪ c image 2 because the part of the permuta-
tions acting on the intersectionc image 1∩c image 2 will
have acted twice. In this case, we would getl11 · l21 = (ad)
which no longer captures our freedom to exchangeb ande.

We deal with this by restrictingl21 away from C∩ and
only then combining withl11. Here, restricting(be) away
from C∩ = {b, e} produces the trivial permutationl′21 = ().
9. Return 〈g restrict 1C∩ , g restrict 2C∩ , {l1i ·
l′2i}〉. We compute the final answer from three sources: The
combinedl1i · l′2i that we have been working to construct,
along with elements ofg restrict 1 andg restrict 2

that fix every point inc∩. These latter two sets consist of
stable extensions, since an element ofg restrict 1 point-
wise stabilizes the image ofc2 if and only if it pointwise sta-
bilizes the points that are in both the image ofc1 (to which
g restrict 1 has been restricted) and the image ofc2; in
other words, if and only if it pointwise stabilizesC∩.

In our example, we have

g restrict 1C∩ = 〈(ad)〉
g restrict 2C∩ = 1

{l1i · l′2i} = {(be)(ad)}

The group of stable extensions is〈(ad), (be)(ad)〉, iden-
tical to the “obvious” 〈(ad), (be)〉. We can swap either
the (a, d) pair or the(b, e) pair, as we see fit. The first
swap(ad) is sanctioned for the first “resolvent”(c1, G1) =
(a∨ b, 〈(ad), (be), (bf)〉) and does not mention any relevant
variable in the second(c2, G2) = (c ∨ b, 〈(be), (bg)〉). The
second swap(be) is sanctioned in both cases.

Computational issues We conclude this section by dis-
cussing some of the computational issues that arise when
we implement Procedure 14, including the complexity of the
various operations required.

1. c image i ← cGi
i . Efficient algorithms exist for com-

puting the image of a set under a group. The basic method
is to use a flood-fill like approach, adding and marking the
result of acting on the set with a single group element, and
recurring until no new points are added.
2. g restrict i ← Gi|c image i

. A group can be re-
stricted to a set that it stabilizes by restricting the generating
permutations individually.
3. C∩ ← c image 1 ∩ c image 2. Set intersection is
straightforward.
4. g stab i ← g restrict i{C∩}. Although set stabi-
lizer is not known to be in P, implementations exist that are
efficient in practice.
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Figure 1: CPU time for a pigeonhole resolution

5. g int ← g stab 1|C∩∩g stab 2|C∩ . Group intersec-
tion is also not known to be in polynomial time (and is in fact
polynomial time equivalent to set stabilizer (Luks 1993));
once again, practical and efficient implementations exist.
6. {gi} ← {generators ofg int }. Groups are typically
represented in terms of their generators, so reconstructing a
list of those generators is trivial.
7. {lki} ← {gi, pulled back tog stab k}. Suppose that
we have a groupG acting on a setS, a subsetT ⊆ S and a
permutationh acting onT such that we know thath is the
restriction toT of someg ∈ G. Finding such a pullback is
polynomial in the number of variables acted on byG.
8. {l′2i} ← {l2i|c image 2−C∩

}. Restriction is still easy.

9. Return 〈g restrict 1C∩ , g restrict 2C∩ , {l1i ·
l′2i}〉. Since groups are represented by their generators, we
need simply take the union of the generators for the three ar-
guments. The pointwise stabilizers needed for the first two
arguments can be computed in polynomial time.

Experimental results
We have implemented the procedure described in the last
section as one of the necessary first steps to building a theo-
rem prover for an augmented resolution system.

The results for the pigeonhole problem are shown in Fig-
ure 1. This particular example involves resolving the two
basic axioms in a pigeonhole problem containingn pigeons
andn − 1 holes. (The axioms state that every pigeon is in
some hole and no hole contains two pigeons.) We produced
the results in the figure by encoding the axioms in a way that
obscured the fact that the groups were identical and by also
disabling the check to see if the groups were the same.

The solid line gives the observed time (in seconds) for the
resolution as a function of the number of pigeons involved,
plotted on a log scale. The experiments were performed on
a 1.7GHz Pentium-M with 1GB of main memory, although
the implementation used only 5MB. Interestingly, the CPU
usage wasnot dominated by the non-polynomial steps in
Lines 4 and 5 of Procedure 14, but instead by the need to
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compute “stabilizer chains” in support of the algorithm gen-
erally. Stabilizer chains (Sims 1970) are data structures that
support a variety of computational manipulations on groups,
and can be constructed in timeO(n5) if n is the number of
variables being manipulated by the group in question (Knuth
1991). The solid curve in the figure is the best fit between the
data and a CPU utilization ofaxb, which occurs forb = 5.4.

The pigeonhole problem was chosen for our experiments
because, although the groups involved are very simple (the
direct product of a symmetry overn pigeons and one over
n− 1 holes), the standard stabilizer chain construction gen-
erally works poorly on full symmetry groups or products
thereof. For this reason, we expect that the computational
needs of Procedure 14 in a pigeonhole setting are in fact
greater than those that will be encountered in other aug-
mented problems. The running time can be reduced to
O(n3) by using stabilizer chain algorithms designed to work
well on full symmetry groups (and only slightly worse than
the standard algorithms in the general case). The running
time can be reduced toO(1) by recognizing that all of the
groups involved are identical and applying Lemma 12 to
produce the resolvent group directly.

We have shown elsewhere (Dixonet al. 2004b) that ac-
tually solvingthe pigeonhole problem in this framework in-
volves a total ofO(n2) resolutions and a similar number
of unit propagations. The unit propagations require a sin-
gle stabilizer chain computation costingO(n3) (Dixon et
al. 2004a) but potentially shared among all of the propa-
gations required, since the group is unchanged throughout
the problem.1 The overall scaling on this problem instance
can therefore be expected to beO(n3), which compares fa-
vorably with theO(n5) scaling obtained by exploiting the
symmetry directly using symmetry-breaking axioms (Craw-
ford et al. 1996), or with the exponential scaling needed by
conventional methods. The augmented approach is also far
more flexible, since it can deal with theories where no global
symmetry is present, or with structure in other forms.

Conclusion
Augmented resolution is a completely new mechanism for
solving satisfiability problems, and has extremely attrac-
tive theoretical properties including exponential reductions
in both the space needed to store a clausal database and the
number of inference steps needed to derive conclusions from
it. In this paper, we have begun to investigate the computa-
tional properties of this new approach, presenting an algo-
rithm for computing augmented resolution and describing
the results of experiments that appear likely to measure that
algorithm’s worst case performance. The result of those ex-
periments indicate that the time needed for a single reso-
lution remains polynomial in the numbern of domain el-
ements being considered, although the time does grow as
O(n5) if full symmetry groups are involved. In practice, it
should be possible to reduce the resolution time substantially
by exploiting the specific structure of the groups in question.

1As with resolution, there are non-polynomial elements to the
unit propagation procedure (Dixonet al. 2004a) but the evidence
is that the stabilizer chain construction dominates.
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