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FlgU re 1:showsan example of the kind of reasoning possible in STRsfigihre is about an
agent who should find a schedule for her day’s events thafisativarious constraints (indicated by
temporal bounds on the edges). Assuming fKat corresponds to 12:00 a.m., the agent is allowed
to sleep between 6 and 8 hours, have breakfast between 1 eyt kravel to the market for an
hour, shop there between 2 and 5 hours, and have lunch befwasah?2 hours. Further, she should
finish having lunch before 4:00 p.m. and should wait for astéahours between having breakfast
and having lunch.

Abstract

In this paper, we provide a polynomial-time algorithm for
solving an important class of metric temporal problems that
involve simple temporal constraints between various event
(variables) and piecewise constant preference functiges o
variable domains. We are given a gragh= (X, ) where

X = {Xo,X:1...X,} is a set of eventsX, is the “begin-
ning of the world” node and is set foby convention) and =

(Xi, X;) € &€, annotated with the bound& B(e), UB(e)],

is a simple temporal constraint betwe&h and X; indicat-

ing that X; must be scheduled betweérB(e) andU B(e)
seconds afteX; is scheduled {B(e) < UB(e)). A fam-

ily of stepwise constant preference functigfis= { fx, (¢) :

R — R} specifies the preference attached with scheduling
X, at timet. The goal is to find a schedule for all the events
such that all the temporal constraints are satisfied and the
sum of the preferences is maximized. Our polynomial-time
algorithm for solving such problems (which we refer to as
extended simple temporal problems (ESTPs)) has important
consequences in dealing with limited forms of disjunctions
and preferences in metric temporal reasoning that would oth
erwise require an exponential search space.

Introduction

Expressive and efficient temporal reasoning is central to
many areas of Artificial Intelligence (Al). Several tasks in
planning and scheduling for example, involve reasoning
about temporal constraints between actions and propositio
in partial plans (see (Nguyen and Kambhampati 2001) and
(Smithet al. 2000)). These tasks may include threat reso-
lution between actions in partial order planning, analgzin

Copyright © 2004, American Association for Atrtificial Intelli-
gence (www.aaai.org). All rights reserved.

resource consumption envelopes to guide the search for a
good plan (see (Kumar 2003)) etc. Among the important
formalisms used for reasoning with metric time are simple
temporal problems (STPs) and disjunctive temporal prob-
lems (DTPs) (see (Stergiou and Koubarakis 1998) and (Oddi
and Cesta 2000)). Unlike DTPs, STPs can be solved in poly-
nomial time, but are not as expressive as DTPs.

An STP is characterized by a graph= (X, &) where
X = {Xo,X1...X,} is a set of eventsX, is the “be-
ginning of the world” node and is set 1 by conven-
tion) ande = (X;,X,) € &, annotated with the bounds
[LB(e),UB(e)], is a simple temporal constraint between
X; and X indicating thatX; must be scheduled between
LB(e) andU B(e) seconds afteX; is scheduled{ B(e) <
UB(e)). Figure 1 shows an example of an STP which (like
all other instances of the class) can be solved in polynomial
time using shortest paths (see (Declateal. 1991)).

DTPs are significantly more expressive than STPs and
allow for disjunctive constraints. The general form of a
DTP is as follows. We are given a set of everts =
{Xo, X1...X,} (Xo is the “beginning of the world” node
and is set td) by convention) and a set of constraiGtsA
constraintc € C is a disjunction of simple temporal con-
straints of the forny; V ss ... s,. Here,s; (1 <i < k)isa
simple temporal constraint of the forhx X, — X, < ufor
0 < a,b < n. Figure 2 shows an example of a DTP which
expresses disjunctive constraints.

Although DTPs are expressive enough to capture many
tasks in planning and scheduling (like threat resolutioth an
plan merging), they require an exponential search space.
The principal approach taken to solve DTPs has been to
convert the original problem to one of selecting one dis-
junct from each constraint and then checking that the set
of selected disjuncts forms a consistent STP. Checking the
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Flgure 2:shows an example of the kind of reasoning possible in DTPs.sEenario is very
similar to the that in Figure 1 except that it includes disjtive constraints like having a travel time
between 4 and 5 hours (by walk) or exactly for one hour (by ka&)pping between 1 and 2 hours
or 3 and 4 hours, and restricting time spent on at least oneeakfast, lunch or travel time to within
an hour.
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Flgure 3: shows an example of the kind of reasoning allowed by ESTP sfthation is
very similar to that in Figure 1, except that there are pesiees attached with various events. If the
agent reaches the bus stop between 8:15 a.m. and 8:30 a.stwarelm 9:15 a.m. and 9:30 a.m., the
buses are readily available and the preference for thesevats is high. Reaching the bus station
between 8:30 a.m. and 9:00 a.m. means that she has to waiiéasa15 minutes and therefore has
a low preference. Reaching between 9:00 a.m. and 9:15 a.amswelower waiting time, and has a
slightly higher preference. Similarly if the agent stattegping early in the morning, the preference
is high, itis low during the peak period between 10:00 a.ndl #2100 a.m. and high again during the
non-peak period 12:00 p.m. to 4:00 p.m. Again, for healtlsoea, starting to have lunch between
2:00 p.m. and 3:00 p.m. is the optimal for the agent and ttee the worse beyond 3:00 p.m., and
the earlier the worse before 2:00 p.m.

consistency of and finding a solution to an STP can be per-
formed in polynomial time using shortest path algorithms
(see (Dechteet al. 1991)). The computational complex-
ity of solving a DTP comes from the fact that there are an
exponentially large number of disjunct combinations pos-
sible. The disjunct selection problem can also be cast as
a constraint satisfaction problem (CSP) (see (Stergiou and
Koubarakis 1998) and (Oddi and Cesta 2000)) or a satisfia-
bility problem (SAT) (see (Armandet al. 2000)) and solved
using standard search techniques applicable for themi- Epil
tis is a systems that efficiently solves DTPs using CSP search
techniques like conflict-directed backjumping and nogood
recording (see (Tsamardinos and Pollack 2003)).

In this paper, we describe a middle ground between STPs
and DTPs (which we refer to as extended STPs (ESTPs))
that can deal with limited forms of disjunctions and pref-
erences, and can also be solved in polynomial time. The
expressive power of ESTPs along with their tractability
makes them a suitable model for many real-life applica-
tions. An ESTP is characterized by a graph= (X,&)
whereX = {Xy, X1...X,} is a set of eventsXj is the
“beginning of the world” node and is set tbby conven-
tion) ande = (X;,X,) € &, annotated with the bounds
[LB(e),UB(e)], is a simple temporal constraint between
X; and X indicating thatX; must be scheduled between
LB(e) andU B(e) seconds aftekX; is scheduled{ B(e) <
UB(e)). A family of stepwise constant preference functions
F ={fx, () : R — R} specifies the preference attached
with schedulingX; at time¢. The goal is to find a sched-
ule for all the events such that all the temporal constraints
are satisfied and the sum of the preferences is maximized.
Figure 3 shows an example of an ESTP.

We present a polynomial-time algorithm for solving
ESTPs by reducing a given ESTP to the problem of com-
puting the largest weighted anti-chain in a POSET (patiall
ordered set) which in turn can be solved usimgxflowtech-
nigues. Our algorithm has important consequences in the
context of metric temporal reasoning and dealing with lim-
ited forms of disjunctions and preferences that would ether

wise require an exponential search space. We note again that

the disjunctions and preferences are associated only with
scheduling individual events at timeand not with the rela-
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Flg ure 4:iiustrates how an ESTP (as shown in Figure 3) can be corvestthe computation

of the largest weighted anti-chain in a POSET. The figure st distance graph associated with
the temporal constraints to the top-left, and the POSETczssal with the size-2 conflicts between

various intervals to the bottom-left. The weights on thee®df the POSET correspond to the

preference attached with the respective intervals, the3ieonflicts are represented by arrows and
the size-1 conflicts are represented by dark circles. Theighp figure shows the STP resulting out

of replacing the domain preferences with the simple temporsstraints corresponding to the largest
weighted anti-chain, and the bottom-right figure shows threesponding distance graph which is

assured of not containing any negative cycle.

tive time difference between two events. The latter problem
has been shown to be tractable when one wants to maximize
the minimum preference value, and all the preference func-
tions are known to be concave (see (Khatttal. 2001))*

In general, the fact that the disjunctions and/or prefezenc
functions allow only one argument does not allow encoding
of a general DTP as an ESTP.

Solving ESTPs: Reduction to Largest
Weighted Anti-Chain Computation

We will present a polynomial-time algorithm for solving
ESTPs by reducing a given ESTP to the problem of com-
puting the largest weighted anti-chain in a POSET. We will
use the following notation.

Notation. Let the landmarks in the domain of;, for
which the piecewise constant functighix, (¢) is defined,
bed;1,d;2... din(i). Letl;1,1;2... Ii_’T(i)+1 be intervals
defined as fO"OWSL',l = (—OO, di,l]a Ii,k = (d/i,k—lad/i,k]

for 2 < k < T(i) and I; p(i)41 = (dip@y, +o0]. Let
L((a,b]) = a andR((a,b]) = b. Let the preference as-
sociated with scheduling variablé; at any timet € I, 5, be
denoted byfx, (Z; r)-

Solving Zero-One ESTPs

We will first deal with the case wherg;, (1; i) is restricted

to be eithel or 1 (referred to as zero-one ESTPSs). Figure 5
shows the procedure for solving zero-one ESTPs. We note
that disjunctions limited only to the domains of variables
can be encoded using zero-one ESTPs, and can therefore be
solved in polynomial time.

Lemma 1: A consistent schedule exists fafy, X; ... X,
(disregarding the preference functionsyir= (X, &) if and

only if the distance grapiv(G) does not contain any nega-
tive cycles (see Figure 5).

Proof: see (Dechteet al. 1991).

1Optimizing the sum of preference values (with the prefesenc
functions still remaining concave) is an open problem.



ALGORITHM: SOLVE-ZERO-ONE-ESTP
INPUT: An instanceg (X,€&) of the ESTP with
in (Iz,k) =0orl.
OUTPUT: A flexible consistent schedukewith only sim-
ple temporal constraints that solv@s
(1) Construct the distance graphG) on Xo, X1 . ..
with every edge: = (X;, X;) in £ compiled to two
edges(X;, X;) annotated WItI’UB(e) and(X;, X;)
annotated with-L B(e).
(2) Letdist(X,, Xp) denote the shortest distance from
X, to Xy in D(G).
(3) For every pair of intervalg; ,,, andl; ,:
(&) Construct a (directed) size-2 conflict frdp., to
I; 1, (denoted; ., — I;1,) if and only if
R(Iq7k1) -+ diSt(qu, XJ) — L(Ij7kz) < 0.
(4) Construct a node-weighted directed grdp(ly/) as
follows:
(a) The nodes of?(G) correspond to the intervals.
(b) Remove all nodes that correspond to size-1 conf
i.e. removel; ;, from P(G) if dist(X,;, Xo) + R(L; k)
< 0ordist(Xo,X;) — L(I; 1) < O.
(c) The weight on a node corresponding to intedval
is equal tof x, (L; k)
(d) A directed edg@/; i, , I; 1,) in P(G) encodes a
size-2 conflictl; ., — I k..
(5) Compute = {1,,, 1, - .- 1,4, } as the largest
weighted anti-chain i (G).
(6) RETURN:
(&) ‘inconsistency’ iflQ| < n.
(b) s = D(G)U{(Xo, X;) annotated with(/; 1, ) and
(X, Xo) annotated with-L(Z1; , )|1; x, € Q}.
END ALGORITHM

X’n

Figure 5: A polynomial-time algorithm for solving zero-one
ESTPs.

Lemma 2: Ensuring that variableX; takes a value in the
interval I, 1, requires the addition of the edgéX, X;) an-
notated withR(I; 1) and(X;, X,) annotated with-L(Z; 1)

to the distance graph without creating a negative cycle.
Proof: If we have to ensure that the variablg is in the
interval I; ,—i.e. betweerL(I; ;) andR(I; ), we have to
make sure thak;, — Xy < R(I; ) andX; — Xo > L(I; ).
Retaining the semantics of the distance graph (where the
constraintX; — X; < w is specified by the edgg€X;, X;)
annotated withw), this corresponds to the addition of the
edges(Xy, X;) annotated withR(Z; ;) and(X;, X,) anno-
tated with—L(I; ;) to the distance graph without creating
an inconsistency (which by the previous Lemma is charac-
terized by the presence of a negative cycle).

Definition 1: We say that an intervd}, ;, is active if we en-
sure that the variablé&(; takes a value in the intervdl ;

by successfully adding the edgéeX,, X;) annotated with
R(I; ) and (X;, Xo) annotated with—L(I; ;) to the dis-
tance graph.

Lemma 3: At most one interval can be activated for every
variable.

Proof: Consider any variabl&; and two of its intervals

I; 1, and I; ;,, assuming without loss of generality that
R(I;1,) < L(I; ,). Activating both these intervals would
require the addition of the following edges to the distance
graph: (Xo, X;) annotated withR(I; x, ), (X;, Xo) anno-
tated with—L(; ), (Xo, X;) annotated withR(1; 1, ) and
(X, Xo) annotated with-L(I; x,). This creates the neg-

ative cycle(Xy, X;) annotated withR(Z; 1, ) and (X, Xo)
annotated with- L.(I; 1, ), hence establishing the truth of the
Lemma.

Lemma 4: An ESTPG is consistent if and only if exactly
one interval for all variables can be made active simultane-
ously.

Proof: Suppose exactly one interval for each variable can
be made active simultaneously. This means that there is no
negative cycle in the resulting distance graph and by Lemma
1, a consistent schedule fgrcan be found. Conversely, let

s ={X; = 21,X2 = z5...X,, = z,} be a consistent
schedule foiG. By definition, this means that the distance
graph resulting out of adding the edge%,, X;) annotated
with z; and(X;, X,) annotated with-z; (forall 1 < i < n)

licts does not contain any negative cycles. Lgt, be the inter-

val containinge; for variableX;. Clearly,L(I; x,) < x; and

z; < R(I; k). This means that the addition of the edges
(Xo, X;) annotated withR(1; ,) and (X;, X,) annotated
with —L(I; x,) (forall 1 <4 < n) instead ofz; and —x;
respectlvely ‘also does not contain any negative cost cycles
(since the weights of edges are only increased). The truth
of the Lemma then follows from the fact that the addition of
these edges corresponds to the activation of these ingerval
(Lemma 2) and that at most one interval can be activated for
any variable (Lemma 3).

Definition 2: A conflict is a set of intervals all of which can-
not be made simultaneously active. A minimal conflict is a
conflict no proper subset of which is also a conflict.

Lemma 5: A set of intervals can be made simultaneously
active if and only if there is no subset of them that consti-
tutes a minimal conflict.

Proof: By the definition of a conflict, a set of intervals can
be made simultaneously active if and only if there is no sub-
set of them that constitutes a conflict. Further, the truth of
the Lemma follows from the fact that there exists a subset of
actions that constitutes a conflict if and only if there exast
subset of intervals that constitutes a minimal conflict.
Lemma 6: The size of a minimal conflict is’ 2.

Proof: Suppose we try to activate the set of intervals
Ly kv Lig ks - - - iy, 1, - This would involve the addition of
the following edges to the distance graph without creating
a negative cycle(Xy, X; ) annotated withR(I;, »,) and
(Xi,, Xo) annotated W|th—L( inky) forall 1 <p g "n. We
refer to these edges as speual edges. If a negative cycle i
created in our attempt to activate these intervals, it must i
volve one of the “special” edges. Further, since all “spiécia
edges haveX as an end point, the negative cycle must con-
tain Xy. This also means that the cycle can involve at most
2 “special” edges. Since these “special” edges correspond
to the activation of intervals, the size of a minimal configct
<2.

Lemma 7: An interval I; ;, constitutes a size-1 conflict if
—L(Iiyk) + dlSt(Xo, XZ) < 0or R(Ilk) + dlSt(Xl, Xo) <

0.

Proof: Continuing the arguments of the previous Lemma,
a size-1 conflict contains exactly one “special” edge. In
the case that this edge is “incoming” #&, (say (X;, Xo)
annotated with-L(1; ) for the intervall; ), the negative
cycle must be-L(7; ;) + dist(Xo, X;). In the case that
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this edge is “outgoing” fromX, (say (X,, X;) annotated
with R(I; ;) for the intervall; 1), the negative cycle must
beR(Iiyk) + d’LSt(XZ, Xo)

Lemma 8: The two intervalsl; ;, and I;;, constitute

a directed size-2 conflict (denoteld,, — I;x,) when
R(Ii,kl) + diSt(Xi,Xj) — L(Ij7k2) < 0.

Proof: Continuing the arguments in the proof of the pre-
vious two Lemmas, a size-2 conflict involves exactly one
incoming “special” edge (sayX;, X,) annotated with
—L(I;,) and exactly one outgoing “special” edge (say
(X0, X;) annotated withR(I; ,). The weight of the nega-
tive cycle created is theR(1; , ) + dist(X;, X;) — L(IL; 1,)

as required.

Lemma 9: The size-2 conflicts are transitive.

Proof: Suppose we have the two directed confliGts, —
Lk, andl; x, — I; 1,. We have to show that ,, — I; 1,

is also true. From the previous Lemma we know that
R(Ii,kl) + dist(Xi,Xj) — L(ij/w) < 0 and R(Ij,]w) +
dist(X;,X;) — L(I;x,) < 0. Adding the two inequal-
ittes and noting thatdist(X;, X;) < dist(X;,X;) +
dist(X;,X;), we have thatR(I;x,) + dist(X;, X;) —
L(I,) + R(Ijx,) — L(I1k,) < 0. Further, since
R(Ij,kz) > L(Ij7k2), we have thaR(Iml )+dist(X;, Xl)—
L(Ix,) < 0. This establishes thdt ,, — I 1, as required.
Lemma 10: The size-2 conflicts are acyclic.

Proof: Suppose there was a cycle in the directed size-2 con-
flicts. By the previous Lemma, this would mean that there
is some interval; ;, which conflicts with itself—i.e; , —

I; ;. This would then mean tha (I, 1) + dist(X;, X;) —
L(I; ;) < 0. This is clearly false sincéist(X;, X;) = 0
andR(I;,) > L(I;,). By contradiction, therefore, the truth
of the Lemma is established.

Lemma 11: The relation>> defined as follows forms a
POSET, 1, = I;, ifand onlyif I; x, = I; 1, or there is

a size-2 conflictl; , — I; k,.

Proof: We have to show that the relatiénis reflexive anti-
symmetricandtransitive By definition,> is reflexive since
Ik, = I k,. The transitive and anti-symmetric properties
follow from the previous two Lemmas.

Lemma 12: An ESTPG is consistent if and only if the size
of the largest anti-chain i?(G) is = n (see Figure 5).

Proof: From the previous Lemmas, we know that the only
minimal conflicts are of size 1 or size Z(G) incorporates
the deletion of all the size-1 conflicts and any anti-chaiit in
incorporates the deletion of all size-2 conflicts. The latge
anti-chain targets the maximum number of variables that can

Flgure 6 lustrates the working of Lemmas 13 and 14. The POSET onéfiéd such that
the largest weighted anti-chain in it (9 fof ; and 9 forX ;) is not feasible—i.e. it does not choose
exactly one node (interval) for each of the variahs, X ; and X ;.. The POSET on the right is
obtained by adding a factor of 22 to the weights of all the sodde largest weighted anti-chain in
this POSET (31 forX ;, 25 for X ;, and 26 forX;, ) indeed chooses exactly one element from each
variable’s domain and upon subtracting back the factor @ feach element in this anti-chain, we
get the largest weighted feasible anti-chain for the oaRPOSET (9 forX;, 3 for X ;, and 4 for
X). The factor 22 is obtained by summing up the maximum weighésich variable's domain.

Here,M = >""  max{fx, (L) : 1 <k <T(i) +1}.

Proof: It suffices to show that any anti-chain that chooses
an interval for each variable (feasible) has a greater weigh
than any anti-chain that does not (infeasible). By the pre-
vious Lemma, we know that at most one interval for ev-
ery variable can be in any anti-chain. This means that the
largest value of any infeasible anti-chainfig(n — 1) +
SramaXfx,(Lig) : 1 < k < T(i) + 1} and the
smallest value for any feasible anti-chainfign. Setting

M =" max{fx, (L) : 1 < k <T(i)+ 1} therefore
ensures the truth of the Lemma.

Lemma 14: The largest weighted anti-chain with the mod-
ified weights f (I; x) = fx,(lix) + M is the required
feasible anti-chain when it is Mn.

Proof: Continuing the arguments in the proof of the pre-
vious Lemma, the largest anti-chain is guaranteed to pick
exactly one interval for each variable with the modified
weights. Since any other feasible anti-chain also chooses
exactly one interval for each variable, the number of nodes
in any feasible anti-chain is equal to. Further, since
the weights of all intervals are increased by the same
additive factor, the largest feasible anti-chain using the
weights f% (I; x) is also the largest feasible anti-chain us-
ing the weightsfx, (1; 1), hence establishing the truth of the
Lemma.

Figure 6 shows an example of a possible POSET arising
in the context of solving an ESTP (unrelated to the example
in Figure 3 and Figure 4) and the weight conversions that
must be used to find the largest weighted feasible anti-chain
in it. In the example in Figure 4, the largest weighted fea-
sible anti-chain is constituted by the “bottom-most” nodes

be assigned a consistent value together, and since exactly(intervals) for the variables(; and X3, and the “middle”
one interval must be active for each variable (Lemma 4), the nede (interval) for the variablel,. This means that the

size of the largest anti-chain mustsen for the ESTP to be
consistent.

Solving General ESTPs

In this subsection, we will deal with the most general ver-
sion of ESTPs whergx, (I; i) is allowed to be an arbitrary
positive real number.

Lemma 13: A general ESTR is consistent if and only if
the largest weighted anti-chain I G) (see Figure 5) using
the modified Weightgﬁgﬁ (Iix) = fx,(Ii ;) + M is> Mn.

70 AUTOMATED REASONING

agent should replace the domain preference functions with
the set of simple temporal constraints of having to reach the
bus stop between 8:15 a.m. and 8:30 a.m., start shopping be-
tween 8:00 a.m. and 10:00 a.m. and having lunch between
2:00 p.m. and 3:00 p.m. With such a replacement, the re-
sulting STP can be solved in polynomial time using shortest
paths (see (Dechtet al. 1991)).

Largest Weighted Anti-Chain Computation

Figure 7 presents the algorithm for computing the largest
weighted anti-chain in a POSET usintaxflowtechniques.



ALGORITHM: ANTI-CHAIN-WITH-WTS
INPUT: A POSETP = (Y1, Y>2...Yn) under the relation
= and with weights on nodes respectivély, , w> . .. wn ).
OUTPUT: The set of nodes) constituting the largest
weighted anti-chain .
(1) Construct a bi-partite grapB = (U, V, E) where
U={¥1,Y>.. Y}, V ={Y/Y{ . Y{}and(¥; Y
is an undirected edge iR iff Y; > Y; in P andY; # Y.
(2) Construct a directed gragh from B as follows:
(a) Add two special nodes and?".
(b) Add directed edge&S, Y;) with capacityw;.
(c) Add directed edge&’/, T') with capacityw;.
(d) Impose a direction on all edgés;, Y/) in B
to get(Y;, Y;) and let them be of infinite capacity.
(3) Compute an integral maximum flow from S to 7"
in D. Let the residual graph b&p.
(4) ComputeC = {{S, u)|u is unreachable fron§ in
Rp} U {{(v, T)|vis reachable fron$ in Ry}.
(5) ComputeV' = {u|(S,u)y € C} U{v|(v,T) € C}.
(6) ComputeS = {Y;|Y; e V VY € V}
(7) Compute) = {Y1,Y2... YN }\S.
(8) RETURNQ.
END ALGORITHM

Figure 7: lllustrates the computation of the largest wesght
anti-chain in a POSET usingaxflowtechniques.

To keep the proof of its correctness simple, we reiterate a se

ries of Lemmas (see (Cormenal. 1990)) that first establish
its correctness for unit weights (imagine settingwajl= 1

in Figure 7). We then prove a single concluding Lemma
that generalizes the proof for arbitrary positive weight&e

)} ) 3)

QCP'W

-

@ (5)

Flgure 8: lustrates the working of the algorithm in Figure 7. GiveP®SET under the
relation > as in (1), the idea is to first draw all the implicit edges (giéime relationships) to get
(2), and split each node into two halves to get (3). Every ednye connects the upper half of some
node with the lower half of another and is therefore bi-partA maxflow(between two auxiliary
variablesS and T') is staged as in (4) to compute a maximum matching on thisatitp graph.
After the maximum matching is computed, the two halves ofyewede are merged back to get a
chain decomposition of the POSET as in (5). Further, themmini chain decomposition is related
to the maximum anti-chain as in Lemmas 19 to 25.

must be inV*. Also, since no two edges in/* share a
common end point, they cannot be covered by the same ele-
mentinV*. This means thal’*| > |M*|.

Lemma 17: V constructed in step 5 of Figure 7 is a vertex

make use of the standard result that when edges have in-coyer forB and|V| = F.

tegral capacities in an instance of thraxflowproblem, a
maximum flow with integral amount of flow on all edges
can be efficiently computed (hence justifying step 3 in Fig-
ure 7) (Cormeret al. 1990).

Definition 3: A matching) in a graphG is a set of edges

Proof: From the construction df, « (belonging to the set
{Y1,Y2...Yn})isinVifand only if (S, u) is in C andv
(belonging to the sefYy, Yy ... Y\ }) is in V if and only

if (v,T)isin C. This means thafl’| = |C|. SinceC is
formed out of all edges that have one end reachable fom

that do not share a common end-point. The size of a match- gnq the other unreachable iy, it forms a minimum cut

ing (denoted M) is the number of edges in it, and a maxi-
mum matching (denoted/ *) is a matching with maximum
size. The vertex cove¥” for a graphG is defined as a set
of nodes inG such that all the edges are covered—i.e. for
every edge, at least one end point idinThe size of a ver-
tex cover (denoted|) is the number of nodes in it and a
minimum vertex cover (denoted*) is a vertex cover with
minimum size.

Lemma 15: If M* is the maximum matching iiB, then
|M*| = F.

Proof: For an integral flow, there cannot exist two edges of
the form (Y;, Y/ ) and(Y;,Y,) both with non-zero flows.
This is because the edd#é,Y;) has unit capacity and the
flow has to be conserved &}. Similarly, there cannot exist
two edges of the formy;, , Y/) and(Y7,, Y;) both with non-
zero flows (becausg’/, T') is of unit capacity). Therefore,
an integral flow inD defines a matching if3 of the same
size and hence a maximum fld#in D defines a maximum
matchingM* in B of the same size, makirfg/*| = F.
Lemma 16: For any grapltz, if M* is the maximum match-
ing in G andV* is the minimum vertex cover id:, then
V] > (M) | | |
Proof: For any edge in\/*, at least one of its end points

betweenS andT in D. From themaxflow-mincutheorem,
|C| = F, and hencéV| = F as required.

Lemma 18: For the bi-partite grapl®, if V* is the mini-
mum vertex cover, thefi/| = |[V*| (whereV is the vertex
cover constructed faB in step 5 of Figure 7).

Proof: From the above Lemmas, we have thf = F,
|[V*| > |M*| and|M*| = F. This implies|V| = |V*|.
Definition 4: A chainc in a POSETP is a set of nodes
Y., Y, ...Y;, such that there exists a total order among
these nodes under the relation Y;, is said to covery;,

in ¢ (denotedY;, , Y;,)) whenY;, = V;,, Y;, #Y;, and for
any distinct third element;, inc,Y;, = Y, = Y;, = Y,,.

A chain-decompositiop of P is a set of disjoint chains
such that all nodes i are included in exactly one chain.
The size of a chain-decompositign(denoted|p|) is the
number of chains constituting it. The minimum chain-
decompositiorp* of P is a chain-decomposition @? with
minimum size.

Lemma 19: If M is a matching inB, mergingY; andY; in

M produces a chain-decompositipfior P.

Proof: It suffices to prove that merging; and Y; in

M does not produce cover relationships that share a com-
mon end point. Suppose such relationships were pro-
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duced. They must be of the forf{Y;,Y}), (Y, Y;)) or
((Y;,Y5),(Y;,Y%)). In the first case, this would mean the
existence of the edge¥’;, Y;) and (Y}, Y) in M, contra-
dicting the fact that no two edges ¥ share a common
point. Similarly, the second case also leads to a contradic-
tion, hence establishing the truth of the Lemma.

Lemma 20: If p is a chain-decomposition iR correspond-
ing to a matchingV/ in B, then|p| + |M| = N.

Proof: Let the chains irp becy, ¢z ... ¢/,. The number of
edges (cover relationships) in any chajris one less than
the number of nodes in it. Le¥/., denote the edges i/
that are present in;. We then haveéM,.,| = |¢;| — 1. Sum-
ming over all chaing; in p, we get|M| = N — |p| i.e.
[M] +[p| = N.

Lemma 21: If Q* is the largest anti-chaify*| > |Q*|.

Proof: By definition, no two nodes id)* are comparable
and hence must be in different chainsggf Hence by the
pigeonhole principle, we havg*| > |Q*|.

Lemma 22: If the minimum vertex cover foB is V*, then

S ={Y|Y; e V*VY/ € V*} is a vertex cover folP with

S| < F.

Proof: For everyY; in S, at least one o¥; or Y/ must be
presentin/*. Therefore|S| < |V*| = F. Also, S forms a
vertex cover forP, because if there existed an edgev) in

P not covered by5, then there must exist somé = « and

Y, = v such thatY;,Y/) is in B and is not covered by *.
This contradicts thalt* is a vertex cover foB3 and henceS
must be a vertex cover fdr.

Lemma 23: Q = P\S is an anti-chain anty| > N — F.
Proof: @ is an anti-chain because if there existed two nodes
uw andwv in @ that were comparable, then the edgev)
must have been uncovered Bycontradicting thatS is a
vertex cover forP. Also, sincelQ| + |S| = N and|S| < F,
Q> N~ F.

Lemma 24: @ (calculated in step 7 of Figure 7) is the re-
quired largest weighted anti-chain.

Proof: Suppos&)* was the optimal. By Lemma 23 we have
that|Q*| > |Q| > N — F. By Lemma 21 we also have that
lp*] > |Q*] > |Q|] > N — F. Again by Lemma 20 we
know that|p*| < N — |M*|. Since|M*| = F, we get
lp*| = 1Q*| = |Q| = N — F, hence makingy optimal as
required.

Lemma 25: The algorithm presented in Figure 7 works for
arbitrary positive weights); > 0.

Proof: From the foregoing Lemmas, we know that the algo-
rithm works for unit weights—i.eaw; = 1. Now suppose
that the weights were positive integers (still not the gen-
eral case). Conceptually, a new POSET can be constructed
where nod€&’; with weightw; is replicatedw; times—each

of unit weight and incomparable to each otherY}f> Y;
(short for sayingy; > Y; andY; # Yj}), then allw; copies

of ¥; are made to have & relation to allw; copies of
Y;. The stagednaxflowin D will have all w; copies ofY;
(denotedy;, , yi, - - - vi,,,) behaving identically. Also since
all edges of the form(y;,,y;,) have infinite capacity, we
can replace the group of edg&s yi, ), (S, ¥is) - - - (S, ¥i,,, )
(each of unit capacity) with a single eddé,Y;) of ca-
pacity w;. Similarly we can replace the group of edges
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Wi 1), (i, T) - .. <y§wi ,T) (each of unit capacity) with a
single edggY;, T') of capacityw;. All intermediate edges
are of infinite capacity and are defined (as previously) using
the- relation. Now consider the most general case where

is positive but need not be an integer. In such a case, the idea
is to conceptually scale all the weights by a uniform fadtor
such that all of them become integers. The more the preci-
sion of the numbers, the larger we can chobsebut since

this is only conceptuall, does not have a concrete role in
the algorithm. The algorithm can then find the largest anti-
chain using the scaled weights and since scaling the weights
uniformly in a POSET does not affect the largest anti-chain,
the same can be used after scaling down the weights. by
Computationally however, the idea of scaling is not reflécte
anywhere except in the fact that the weiglatscan be used

as they are to define capacities on the edg€3.in

Conclusions

We described a class of metric temporal problems (which
we referred to as extended STPs (ESTPSs)) that formed a
middle ground between STPs and DTPs. We showed that
ESTPs could be solved in polynomial time and were ex-
pressive enough to deal with limited forms of disjunctions
and preferences that would otherwise require an exporentia
search space. Our polynomial-time algorithm for solving
ESTPs was based on the idea of reducing a given ESTP to
the problem of computing the largest weighted anti-chain in
a POSET which in turn could be solved usimgxflowtech-
niques. The expressive power of ESTPs along with their
tractability makes them a suitable model for many real-life
applications that involve metric temporal reasoning.
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