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Figure 1:Shows an example of the kind of reasoning possible in STPs. The figure is about an
agent who should find a schedule for her day’s events that satisfies various constraints (indicated by
temporal bounds on the edges). Assuming thatX0 corresponds to 12:00 a.m., the agent is allowed
to sleep between 6 and 8 hours, have breakfast between 1 and 2 hours, travel to the market for an
hour, shop there between 2 and 5 hours, and have lunch between1 and 2 hours. Further, she should
finish having lunch before 4:00 p.m. and should wait for at least 5 hours between having breakfast
and having lunch.

Abstract

In this paper, we provide a polynomial-time algorithm for
solving an important class of metric temporal problems that
involve simple temporal constraints between various events
(variables) and piecewise constant preference functions over
variable domains. We are given a graphG = 〈X , E〉 where
X = {X0, X1 . . . Xn} is a set of events (X0 is the “begin-
ning of the world” node and is set to0 by convention) ande =
〈Xi, Xj〉 ∈ E , annotated with the bounds[LB(e), UB(e)],
is a simple temporal constraint betweenXi andXj indicat-
ing thatXj must be scheduled betweenLB(e) andUB(e)
seconds afterXi is scheduled (LB(e) ≤ UB(e)). A fam-
ily of stepwise constant preference functionsF = {fXi

(t) :
R → R} specifies the preference attached with scheduling
Xi at timet. The goal is to find a schedule for all the events
such that all the temporal constraints are satisfied and the
sum of the preferences is maximized. Our polynomial-time
algorithm for solving such problems (which we refer to as
extended simple temporal problems (ESTPs)) has important
consequences in dealing with limited forms of disjunctions
and preferences in metric temporal reasoning that would oth-
erwise require an exponential search space.

Introduction
Expressive and efficient temporal reasoning is central to
many areas of Artificial Intelligence (AI). Several tasks in
planning and scheduling for example, involve reasoning
about temporal constraints between actions and propositions
in partial plans (see (Nguyen and Kambhampati 2001) and
(Smith et al. 2000)). These tasks may include threat reso-
lution between actions in partial order planning, analyzing
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resource consumption envelopes to guide the search for a
good plan (see (Kumar 2003)) etc. Among the important
formalisms used for reasoning with metric time are simple
temporal problems (STPs) and disjunctive temporal prob-
lems (DTPs) (see (Stergiou and Koubarakis 1998) and (Oddi
and Cesta 2000)). Unlike DTPs, STPs can be solved in poly-
nomial time, but are not as expressive as DTPs.

An STP is characterized by a graphG = 〈X , E〉 where
X = {X0, X1 . . . Xn} is a set of events (X0 is the “be-
ginning of the world” node and is set to0 by conven-
tion) ande = 〈Xi, Xj〉 ∈ E , annotated with the bounds
[LB(e), UB(e)], is a simple temporal constraint between
Xi andXj indicating thatXj must be scheduled between
LB(e) andUB(e) seconds afterXi is scheduled (LB(e) ≤
UB(e)). Figure 1 shows an example of an STP which (like
all other instances of the class) can be solved in polynomial
time using shortest paths (see (Dechteret al. 1991)).

DTPs are significantly more expressive than STPs and
allow for disjunctive constraints. The general form of a
DTP is as follows. We are given a set of eventsX =
{X0, X1 . . .Xn} (X0 is the “beginning of the world” node
and is set to0 by convention) and a set of constraintsC. A
constraintc ∈ C is a disjunction of simple temporal con-
straints of the forms1 ∨ s2 . . . sk. Here,si (1 ≤ i ≤ k) is a
simple temporal constraint of the forml ≤ Xb−Xa ≤ u for
0 ≤ a, b ≤ n. Figure 2 shows an example of a DTP which
expresses disjunctive constraints.

Although DTPs are expressive enough to capture many
tasks in planning and scheduling (like threat resolution and
plan merging), they require an exponential search space.
The principal approach taken to solve DTPs has been to
convert the original problem to one of selecting one dis-
junct from each constraint and then checking that the set
of selected disjuncts forms a consistent STP. Checking the
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Figure 2:Shows an example of the kind of reasoning possible in DTPs. The scenario is very
similar to the that in Figure 1 except that it includes disjunctive constraints like having a travel time
between 4 and 5 hours (by walk) or exactly for one hour (by bus), shopping between 1 and 2 hours
or 3 and 4 hours, and restricting time spent on at least one of breakfast, lunch or travel time to within
an hour.
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Figure 3: Shows an example of the kind of reasoning allowed by ESTPs. The situation is
very similar to that in Figure 1, except that there are preferences attached with various events. If the
agent reaches the bus stop between 8:15 a.m. and 8:30 a.m. or between 9:15 a.m. and 9:30 a.m., the
buses are readily available and the preference for these intervals is high. Reaching the bus station
between 8:30 a.m. and 9:00 a.m. means that she has to wait for at least 15 minutes and therefore has
a low preference. Reaching between 9:00 a.m. and 9:15 a.m. means a lower waiting time, and has a
slightly higher preference. Similarly if the agent starts shopping early in the morning, the preference
is high, it is low during the peak period between 10:00 a.m. and 12:00 a.m. and high again during the
non-peak period 12:00 p.m. to 4:00 p.m. Again, for health reasons, starting to have lunch between
2:00 p.m. and 3:00 p.m. is the optimal for the agent and the later the worse beyond 3:00 p.m., and
the earlier the worse before 2:00 p.m.

consistency of and finding a solution to an STP can be per-
formed in polynomial time using shortest path algorithms
(see (Dechteret al. 1991)). The computational complex-
ity of solving a DTP comes from the fact that there are an
exponentially large number of disjunct combinations pos-
sible. The disjunct selection problem can also be cast as
a constraint satisfaction problem (CSP) (see (Stergiou and
Koubarakis 1998) and (Oddi and Cesta 2000)) or a satisfia-
bility problem (SAT) (see (Armandoet al. 2000)) and solved
using standard search techniques applicable for them. Epili-
tis is a systems that efficiently solves DTPs using CSP search
techniques like conflict-directed backjumping and nogood
recording (see (Tsamardinos and Pollack 2003)).

In this paper, we describe a middle ground between STPs
and DTPs (which we refer to as extended STPs (ESTPs))
that can deal with limited forms of disjunctions and pref-
erences, and can also be solved in polynomial time. The
expressive power of ESTPs along with their tractability
makes them a suitable model for many real-life applica-
tions. An ESTP is characterized by a graphG = 〈X , E〉
whereX = {X0, X1 . . . Xn} is a set of events (X0 is the
“beginning of the world” node and is set to0 by conven-
tion) ande = 〈Xi, Xj〉 ∈ E , annotated with the bounds
[LB(e), UB(e)], is a simple temporal constraint between
Xi andXj indicating thatXj must be scheduled between
LB(e) andUB(e) seconds afterXi is scheduled (LB(e) ≤
UB(e)). A family of stepwise constant preference functions
F = {fXi

(t) : R → R} specifies the preference attached
with schedulingXi at time t. The goal is to find a sched-
ule for all the events such that all the temporal constraints
are satisfied and the sum of the preferences is maximized.
Figure 3 shows an example of an ESTP.

We present a polynomial-time algorithm for solving
ESTPs by reducing a given ESTP to the problem of com-
puting the largest weighted anti-chain in a POSET (partially
ordered set) which in turn can be solved usingmaxflowtech-
niques. Our algorithm has important consequences in the
context of metric temporal reasoning and dealing with lim-
ited forms of disjunctions and preferences that would other-
wise require an exponential search space. We note again that
the disjunctions and preferences are associated only with
scheduling individual events at timet, and not with the rela-
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Figure 4:Illustrates how an ESTP (as shown in Figure 3) can be converted to the computation
of the largest weighted anti-chain in a POSET. The figure shows the distance graph associated with
the temporal constraints to the top-left, and the POSET associated with the size-2 conflicts between
various intervals to the bottom-left. The weights on the nodes of the POSET correspond to the
preference attached with the respective intervals, the size-2 conflicts are represented by arrows and
the size-1 conflicts are represented by dark circles. The top-right figure shows the STP resulting out
of replacing the domain preferences with the simple temporal constraints corresponding to the largest
weighted anti-chain, and the bottom-right figure shows the corresponding distance graph which is
assured of not containing any negative cycle.

tive time difference between two events. The latter problem
has been shown to be tractable when one wants to maximize
the minimum preference value, and all the preference func-
tions are known to be concave (see (Khatibet al. 2001)).1

In general, the fact that the disjunctions and/or preference
functions allow only one argument does not allow encoding
of a general DTP as an ESTP.

Solving ESTPs: Reduction to Largest
Weighted Anti-Chain Computation

We will present a polynomial-time algorithm for solving
ESTPs by reducing a given ESTP to the problem of com-
puting the largest weighted anti-chain in a POSET. We will
use the following notation.
Notation. Let the landmarks in the domain ofXi, for
which the piecewise constant functionfXi

(t) is defined,
bedi,1, di,2 . . . di,T (i). Let Ii,1, Ii,2 . . . Ii,T (i)+1 be intervals
defined as follows:Ii,1 = (−∞, di,1], Ii,k = (di,k−1, di,k]
for 2 ≤ k ≤ T (i) and Ii,T (i)+1 = (di,T (i), +∞]. Let
L((a, b]) = a andR((a, b]) = b. Let the preference as-
sociated with scheduling variableXi at any timet ∈ Ii,k be
denoted byfXi

(Ii,k).

Solving Zero-One ESTPs
We will first deal with the case wherefXi

(Ii,k) is restricted
to be either0 or 1 (referred to as zero-one ESTPs). Figure 5
shows the procedure for solving zero-one ESTPs. We note
that disjunctions limited only to the domains of variables
can be encoded using zero-one ESTPs, and can therefore be
solved in polynomial time.
Lemma 1: A consistent schedule exists forX0, X1 . . . Xn

(disregarding the preference functions) inG = 〈X , E〉 if and
only if the distance graphD(G) does not contain any nega-
tive cycles (see Figure 5).
Proof: see (Dechteret al. 1991).

1Optimizing the sum of preference values (with the preference
functions still remaining concave) is an open problem.
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ALGORITHM: SOLVE-ZERO-ONE-ESTP
INPUT: An instanceG = 〈X , E〉 of the ESTP with
fXi

(Ii,k) = 0 or 1.
OUTPUT: A flexible consistent schedules with only sim-
ple temporal constraints that solvesG.

(1) Construct the distance graphD(G) onX0, X1 . . . Xn

with every edgee = 〈Xi, Xj〉 in E compiled to two
edges:〈Xi, Xj〉 annotated withUB(e), and〈Xj , Xi〉
annotated with−LB(e).
(2) Letdist(Xa, Xb) denote the shortest distance from
Xa to Xb in D(G).
(3) For every pair of intervalsIi,k1

andIj,k2
:

(a) Construct a (directed) size-2 conflict fromIi,k1
to

Ij,k2
(denotedIi,k1

→ Ij,k2
) if and only if

R(Ii,k1
) + dist(Xi, Xj) − L(Ij,k2

) < 0.
(4) Construct a node-weighted directed graphP (G) as
follows:

(a) The nodes ofP (G) correspond to the intervals.
(b) Remove all nodes that correspond to size-1 conflicts
i.e. removeIi,k from P (G) if dist(Xi, X0) + R(Ii,k)
< 0 or dist(X0, Xi) − L(Ii,k) < 0.
(c) The weight on a node corresponding to intervalIi,k

is equal tofXi
(Ii,k).

(d) A directed edge〈Ii,k1
, Ij,k2

〉 in P (G) encodes a
size-2 conflictIi,k1

→ Ij,k2
.

(5) ComputeQ = {Iq1
, Iq2

. . . Iqk
} as the largest

weighted anti-chain inP (G).
(6) RETURN:

(a) ‘inconsistency’ if|Q| < n.
(b) s = D(G)∪{〈X0, Xi〉 annotated withR(Ii,k1

) and
〈Xi, X0〉 annotated with−L(Ii,k1

)|Ii,k1
∈ Q}.

END ALGORITHM

Figure 5: A polynomial-time algorithm for solving zero-one
ESTPs.

Lemma 2: Ensuring that variableXi takes a value in the
intervalIi,k requires the addition of the edges〈X0, Xi〉 an-
notated withR(Ii,k) and〈Xi, X0〉 annotated with−L(Ii,k)
to the distance graph without creating a negative cycle.
Proof: If we have to ensure that the variableXi is in the
intervalIi,k—i.e. betweenL(Ii,k) andR(Ii,k), we have to
make sure thatXi −X0 ≤ R(Ii,k) andXi −X0 ≥ L(Ii,k).
Retaining the semantics of the distance graph (where the
constraintXj − Xi ≤ w is specified by the edge〈Xi, Xj〉
annotated withw), this corresponds to the addition of the
edges〈X0, Xi〉 annotated withR(Ii,k) and〈Xi, X0〉 anno-
tated with−L(Ii,k) to the distance graph without creating
an inconsistency (which by the previous Lemma is charac-
terized by the presence of a negative cycle).
Definition 1: We say that an intervalIi,k is active if we en-
sure that the variableXi takes a value in the intervalIi,k

by successfully adding the edges〈X0, Xi〉 annotated with
R(Ii,k) and 〈Xi, X0〉 annotated with−L(Ii,k) to the dis-
tance graph.
Lemma 3: At most one interval can be activated for every
variable.
Proof: Consider any variableXi and two of its intervals
Ii,k1

and Ii,k2
, assuming without loss of generality that

R(Ii,k1
) ≤ L(Ii,k2

). Activating both these intervals would
require the addition of the following edges to the distance
graph: 〈X0, Xi〉 annotated withR(Ii,k1

), 〈Xi, X0〉 anno-
tated with−L(Ii,k1

), 〈X0, Xi〉 annotated withR(Ii,k2
) and

〈Xi, X0〉 annotated with−L(Ii,k2
). This creates the neg-

ative cycle〈X0, Xi〉 annotated withR(Ii,k1
) and〈Xi, X0〉

annotated with−L(Ii,k2
), hence establishing the truth of the

Lemma.
Lemma 4: An ESTPG is consistent if and only if exactly
one interval for all variables can be made active simultane-
ously.
Proof: Suppose exactly one interval for each variable can
be made active simultaneously. This means that there is no
negative cycle in the resulting distance graph and by Lemma
1, a consistent schedule forG can be found. Conversely, let
s = {X1 = x1, X2 = x2 . . . Xn = xn} be a consistent
schedule forG. By definition, this means that the distance
graph resulting out of adding the edges〈X0, Xi〉 annotated
with xi and〈Xi, X0〉 annotated with−xi (for all 1 ≤ i ≤ n)
does not contain any negative cycles. LetIi,ki

be the inter-
val containingxi for variableXi. Clearly,L(Ii,ki

) ≤ xi and
xi ≤ R(Ii,ki

). This means that the addition of the edges
〈X0, Xi〉 annotated withR(Ii,ki

) and 〈Xi, X0〉 annotated
with −L(Ii,ki

) (for all 1 ≤ i ≤ n) instead ofxi and−xi

respectively also does not contain any negative cost cycles
(since the weights of edges are only increased). The truth
of the Lemma then follows from the fact that the addition of
these edges corresponds to the activation of these intervals
(Lemma 2) and that at most one interval can be activated for
any variable (Lemma 3).
Definition 2: A conflict is a set of intervals all of which can-
not be made simultaneously active. A minimal conflict is a
conflict no proper subset of which is also a conflict.
Lemma 5: A set of intervals can be made simultaneously
active if and only if there is no subset of them that consti-
tutes a minimal conflict.
Proof: By the definition of a conflict, a set of intervals can
be made simultaneously active if and only if there is no sub-
set of them that constitutes a conflict. Further, the truth of
the Lemma follows from the fact that there exists a subset of
actions that constitutes a conflict if and only if there exists a
subset of intervals that constitutes a minimal conflict.
Lemma 6: The size of a minimal conflict is≤ 2.
Proof: Suppose we try to activate the set of intervals
Ii1,k1

, Ii2,k2
. . . Iih,kh

. This would involve the addition of
the following edges to the distance graph without creating
a negative cycle:〈X0, Xip

〉 annotated withR(Iip,kp
) and

〈Xip
, X0〉 annotated with−L(Iip,kp

) for all 1 ≤ p ≤ h. We
refer to these edges as “special” edges. If a negative cycle is
created in our attempt to activate these intervals, it must in-
volve one of the “special” edges. Further, since all “special”
edges haveX0 as an end point, the negative cycle must con-
tain X0. This also means that the cycle can involve at most
2 “special” edges. Since these “special” edges correspond
to the activation of intervals, the size of a minimal conflictis
≤ 2.
Lemma 7: An interval Ii,k constitutes a size-1 conflict if
−L(Ii,k) + dist(X0, Xi) < 0 or R(Ii,k) + dist(Xi, X0) <
0.
Proof: Continuing the arguments of the previous Lemma,
a size-1 conflict contains exactly one “special” edge. In
the case that this edge is “incoming” toX0 (say 〈Xi, X0〉
annotated with−L(Ii,k) for the intervalIi,k), the negative
cycle must be−L(Ii,k) + dist(X0, Xi). In the case that
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this edge is “outgoing” fromX0 (say 〈X0, Xi〉 annotated
with R(Ii,k) for the intervalIi,k), the negative cycle must
beR(Ii,k) + dist(Xi, X0).
Lemma 8: The two intervalsIi,k1

and Ij,k2
constitute

a directed size-2 conflict (denotedIi,k1
→ Ij,k2

) when
R(Ii,k1

) + dist(Xi, Xj) − L(Ij,k2
) < 0.

Proof: Continuing the arguments in the proof of the pre-
vious two Lemmas, a size-2 conflict involves exactly one
incoming “special” edge (say〈Xj , X0〉 annotated with
−L(Ij,k2

) and exactly one outgoing “special” edge (say
〈X0, Xi〉 annotated withR(Ii,k1

). The weight of the nega-
tive cycle created is thenR(Ii,k1

)+dist(Xi, Xj)−L(Ij,k2
)

as required.
Lemma 9: The size-2 conflicts are transitive.
Proof: Suppose we have the two directed conflictsIi,k1

→
Ij,k2

andIj,k2
→ Il,k3

. We have to show thatIi,k1
→ Il,k3

is also true. From the previous Lemma we know that
R(Ii,k1

) + dist(Xi, Xj) − L(Ij,k2
) < 0 and R(Ij,k2

) +
dist(Xj , Xl) − L(Il,k3

) < 0. Adding the two inequal-
ities and noting thatdist(Xi, Xl) ≤ dist(Xi, Xj) +
dist(Xj , Xl), we have thatR(Ii,k1

) + dist(Xi, Xl) −
L(Ij,k2

) + R(Ij,k2
) − L(Il,k3

) < 0. Further, since
R(Ij,k2

) ≥ L(Ij,k2
), we have thatR(Ii,k1

)+dist(Xi, Xl)−
L(Il,k3

) < 0. This establishes thatIi,k1
→ Il,k3

as required.
Lemma 10: The size-2 conflicts are acyclic.
Proof: Suppose there was a cycle in the directed size-2 con-
flicts. By the previous Lemma, this would mean that there
is some intervalIi,k which conflicts with itself—i.e.Ii,k →
Ii,k. This would then mean thatR(Ii,k) + dist(Xi, Xi) −
L(Ii,k) < 0. This is clearly false sincedist(Xi, Xi) = 0
andR(Iik

) ≥ L(Iik
). By contradiction, therefore, the truth

of the Lemma is established.
Lemma 11: The relation� defined as follows forms a
POSET—Ii,k1

� Ij,k2
if and only if Ii,k1

= Ij,k2
or there is

a size-2 conflictIi,k1
→ Ij,k2

.
Proof: We have to show that the relation� is reflexive, anti-
symmetricandtransitive. By definition,� is reflexive since
Ii,k1

� Ii,k1
. The transitive and anti-symmetric properties

follow from the previous two Lemmas.
Lemma 12: An ESTPG is consistent if and only if the size
of the largest anti-chain inP (G) is = n (see Figure 5).
Proof: From the previous Lemmas, we know that the only
minimal conflicts are of size 1 or size 2.P (G) incorporates
the deletion of all the size-1 conflicts and any anti-chain init
incorporates the deletion of all size-2 conflicts. The largest
anti-chain targets the maximum number of variables that can
be assigned a consistent value together, and since exactly
one interval must be active for each variable (Lemma 4), the
size of the largest anti-chain must be= n for the ESTP to be
consistent.

Solving General ESTPs

In this subsection, we will deal with the most general ver-
sion of ESTPs wherefXi

(Ii,k) is allowed to be an arbitrary
positive real number.
Lemma 13: A general ESTPG is consistent if and only if
the largest weighted anti-chain inP (G) (see Figure 5) using
the modified weightsf ′

Xi
(Ii,k) = fXi

(Ii,k) + M is≥ Mn.
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Figure 6: Illustrates the working of Lemmas 13 and 14. The POSET on the left is such that
the largest weighted anti-chain in it (9 forXi and 9 forXj ) is not feasible—i.e. it does not choose
exactly one node (interval) for each of the variablesXi, Xj andXk . The POSET on the right is
obtained by adding a factor of 22 to the weights of all the nodes. The largest weighted anti-chain in
this POSET (31 forXi, 25 forXj , and 26 forXk ) indeed chooses exactly one element from each
variable’s domain and upon subtracting back the factor 22 from each element in this anti-chain, we
get the largest weighted feasible anti-chain for the original POSET (9 forXi, 3 for Xj , and 4 for
Xk). The factor 22 is obtained by summing up the maximum weightsin each variable’s domain.

Here,M =
∑n

i=1 max{fXi
(Ii,k) : 1 ≤ k ≤ T (i) + 1}.

Proof: It suffices to show that any anti-chain that chooses
an interval for each variable (feasible) has a greater weight
than any anti-chain that does not (infeasible). By the pre-
vious Lemma, we know that at most one interval for ev-
ery variable can be in any anti-chain. This means that the
largest value of any infeasible anti-chain isM(n − 1) +∑n

i=1 max{fXi
(Ii,k) : 1 ≤ k ≤ T (i) + 1} and the

smallest value for any feasible anti-chain isMn. Setting
M =

∑n

i=1 max{fXi
(Ii,k) : 1 ≤ k ≤ T (i) + 1} therefore

ensures the truth of the Lemma.
Lemma 14: The largest weighted anti-chain with the mod-
ified weightsf ′

Xi
(Ii,k) = fXi

(Ii,k) + M is the required
feasible anti-chain when it is≥ Mn.
Proof: Continuing the arguments in the proof of the pre-
vious Lemma, the largest anti-chain is guaranteed to pick
exactly one interval for each variable with the modified
weights. Since any other feasible anti-chain also chooses
exactly one interval for each variable, the number of nodes
in any feasible anti-chain is equal ton. Further, since
the weights of all intervals are increased by the same
additive factor, the largest feasible anti-chain using the
weightsf ′

Xi
(Ii,k) is also the largest feasible anti-chain us-

ing the weightsfXi
(Ii,k), hence establishing the truth of the

Lemma.
Figure 6 shows an example of a possible POSET arising

in the context of solving an ESTP (unrelated to the example
in Figure 3 and Figure 4) and the weight conversions that
must be used to find the largest weighted feasible anti-chain
in it. In the example in Figure 4, the largest weighted fea-
sible anti-chain is constituted by the “bottom-most” nodes
(intervals) for the variablesX2 andX3, and the “middle”
node (interval) for the variableX4. This means that the
agent should replace the domain preference functions with
the set of simple temporal constraints of having to reach the
bus stop between 8:15 a.m. and 8:30 a.m., start shopping be-
tween 8:00 a.m. and 10:00 a.m. and having lunch between
2:00 p.m. and 3:00 p.m. With such a replacement, the re-
sulting STP can be solved in polynomial time using shortest
paths (see (Dechteret al. 1991)).

Largest Weighted Anti-Chain Computation
Figure 7 presents the algorithm for computing the largest
weighted anti-chain in a POSET usingmaxflowtechniques.
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ALGORITHM: ANTI-CHAIN-WITH-WTS
INPUT: A POSETP = 〈Y1, Y2 . . . YN 〉 under the relation
� and with weights on nodes respectively〈w1, w2 . . . wN 〉.
OUTPUT: The set of nodesQ constituting the largest
weighted anti-chain inP .

(1) Construct a bi-partite graphB = 〈U, V, E〉 where
U = {Y1, Y2 . . . YN}, V = {Y ′

1 , Y ′
2 . . . Y ′

N} and(Yi, Y
′
j )

is an undirected edge inE iff Yj � Yi in P andYj 6= Yi.
(2) Construct a directed graphD from B as follows:

(a) Add two special nodesS andT .
(b) Add directed edges〈S, Yi〉 with capacitywi.
(c) Add directed edges〈Y ′

j , T 〉 with capacitywj .
(d) Impose a direction on all edges(Yi, Y

′
j ) in B

to get〈Yi, Y
′
j 〉 and let them be of infinite capacity.

(3) Compute an integral maximum flowF from S to T
in D. Let the residual graph beRF .
(4) ComputeC = {〈S, u〉|u is unreachable fromS in
RF } ∪ {〈v, T 〉|v is reachable fromS in RF }.
(5) ComputeV = {u|〈S, u〉 ∈ C} ∪ {v|〈v, T 〉 ∈ C}.
(6) ComputeS = {Yi|Yi ∈ V ∨ Y ′

i ∈ V }.
(7) ComputeQ = {Y1, Y2 . . . YN}\S.
(8) RETURNQ.

END ALGORITHM

Figure 7: Illustrates the computation of the largest weighted
anti-chain in a POSET usingmaxflowtechniques.

To keep the proof of its correctness simple, we reiterate a se-
ries of Lemmas (see (Cormenet al. 1990)) that first establish
its correctness for unit weights (imagine setting allwi = 1
in Figure 7). We then prove a single concluding Lemma
that generalizes the proof for arbitrary positive weights.We
make use of the standard result that when edges have in-
tegral capacities in an instance of themaxflowproblem, a
maximum flow with integral amount of flow on all edges
can be efficiently computed (hence justifying step 3 in Fig-
ure 7) (Cormenet al. 1990).
Definition 3: A matchingM in a graphG is a set of edges
that do not share a common end-point. The size of a match-
ing (denoted|M |) is the number of edges in it, and a maxi-
mum matching (denotedM∗) is a matching with maximum
size. The vertex coverV for a graphG is defined as a set
of nodes inG such that all the edges are covered—i.e. for
every edge, at least one end point is inV . The size of a ver-
tex cover (denoted|V |) is the number of nodes in it and a
minimum vertex cover (denotedV ∗) is a vertex cover with
minimum size.
Lemma 15: If M∗ is the maximum matching inB, then
|M∗| = F .
Proof: For an integral flow, there cannot exist two edges of
the form 〈Yi, Y

′
j1
〉 and 〈Yi, Y

′
j2
〉 both with non-zero flows.

This is because the edge〈S, Yi〉 has unit capacity and the
flow has to be conserved atYi. Similarly, there cannot exist
two edges of the form〈Yi1 , Y

′
j 〉 and〈Yi2 , Y

′
j 〉 both with non-

zero flows (because〈Y ′
j , T 〉 is of unit capacity). Therefore,

an integral flow inD defines a matching inB of the same
size and hence a maximum flowF in D defines a maximum
matchingM∗ in B of the same size, making|M∗| = F .
Lemma 16: For any graphG, if M∗ is the maximum match-
ing in G andV ∗ is the minimum vertex cover inG, then
|V ∗| ≥ |M∗|.
Proof: For any edge inM∗, at least one of its end points
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Figure 8: Illustrates the working of the algorithm in Figure 7. Given aPOSET under the
relation� as in (1), the idea is to first draw all the implicit edges (transitive relationships) to get
(2), and split each node into two halves to get (3). Every edgenow connects the upper half of some
node with the lower half of another and is therefore bi-partite. A maxflow(between two auxiliary
variablesS andT ) is staged as in (4) to compute a maximum matching on this bi-partite graph.
After the maximum matching is computed, the two halves of every node are merged back to get a
chain decomposition of the POSET as in (5). Further, the minimum chain decomposition is related
to the maximum anti-chain as in Lemmas 19 to 25.

must be inV ∗. Also, since no two edges inM∗ share a
common end point, they cannot be covered by the same ele-
ment inV ∗. This means that|V ∗| ≥ |M∗|.
Lemma 17: V constructed in step 5 of Figure 7 is a vertex
cover forB and|V | = F .
Proof: From the construction ofV , u (belonging to the set
{Y1, Y2 . . . YN}) is in V if and only if 〈S, u〉 is in C andv
(belonging to the set{Y ′

1 , Y ′
2 . . . Y ′

N}) is in V if and only
if 〈v, T 〉 is in C. This means that|V | = |C|. SinceC is
formed out of all edges that have one end reachable fromS
and the other unreachable inRF , it forms a minimum cut
betweenS andT in D. From themaxflow-mincuttheorem,
|C| = F , and hence|V | = F as required.
Lemma 18: For the bi-partite graphB, if V ∗ is the mini-
mum vertex cover, then|V | = |V ∗| (whereV is the vertex
cover constructed forB in step 5 of Figure 7).
Proof: From the above Lemmas, we have that|V | = F ,
|V ∗| ≥ |M∗| and|M∗| = F . This implies|V | = |V ∗|.
Definition 4: A chain c in a POSETP is a set of nodes
Yi1 , Yi2 . . . Yik

such that there exists a total order among
these nodes under the relation�. Yi2 is said to coverYi1

in c (denoted〈Yi2 , Yi1〉) whenYi2 � Yi1 , Yi2 6= Yi1 and for
any distinct third elementYij

in c, Yij
� Yi1 ⇒ Yij

� Yi2 .
A chain-decompositionρ of P is a set of disjoint chains
such that all nodes inP are included in exactly one chain.
The size of a chain-decompositionρ (denoted|ρ|) is the
number of chains constituting it. The minimum chain-
decompositionρ∗ of P is a chain-decomposition ofP with
minimum size.
Lemma 19: If M is a matching inB, mergingYi andY ′

i in
M produces a chain-decompositionρ for P .
Proof: It suffices to prove that mergingYi and Y ′

i in
M does not produce cover relationships that share a com-
mon end point. Suppose such relationships were pro-
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duced. They must be of the form(〈Yi, Yj〉, 〈Yk, Yj〉) or
(〈Yj , Yi〉, 〈Yj , Yk〉). In the first case, this would mean the
existence of the edges〈Yi, Y

′
j 〉 and〈Yk, Y ′

j 〉 in M , contra-
dicting the fact that no two edges inM share a common
point. Similarly, the second case also leads to a contradic-
tion, hence establishing the truth of the Lemma.
Lemma 20: If ρ is a chain-decomposition inP correspond-
ing to a matchingM in B, then|ρ| + |M | = N .
Proof: Let the chains inρ bec1, c2 . . . c|ρ|. The number of
edges (cover relationships) in any chainci is one less than
the number of nodes in it. LetMci

denote the edges inM
that are present inci. We then have|Mci

| = |ci| − 1. Sum-
ming over all chainsci in ρ, we get|M | = N − |ρ| i.e.
|M | + |ρ| = N .
Lemma 21: If Q∗ is the largest anti-chain,|ρ∗| ≥ |Q∗|.
Proof: By definition, no two nodes inQ∗ are comparable
and hence must be in different chains ofρ∗. Hence by the
pigeonhole principle, we have|ρ∗| ≥ |Q∗|.
Lemma 22: If the minimum vertex cover forB is V ∗, then
S = {Yi|Yi ∈ V ∗ ∨ Y ′

i ∈ V ∗} is a vertex cover forP with
|S| ≤ F .
Proof: For everyYi in S, at least one ofYi or Y ′

i must be
present inV ∗. Therefore,|S| ≤ |V ∗| = F . Also,S forms a
vertex cover forP , because if there existed an edge〈u, v〉 in
P not covered byS, then there must exist someYj = u and
Y ′

k = v such that〈Yj , Y
′
k〉 is in B and is not covered byV ∗.

This contradicts thatV ∗ is a vertex cover forB and henceS
must be a vertex cover forP .
Lemma 23: Q = P\S is an anti-chain and|Q| ≥ N − F .
Proof: Q is an anti-chain because if there existed two nodes
u and v in Q that were comparable, then the edge〈u, v〉
must have been uncovered byS contradicting thatS is a
vertex cover forP . Also, since|Q|+ |S| = N and|S| ≤ F ,
|Q| ≥ N − F .
Lemma 24: Q (calculated in step 7 of Figure 7) is the re-
quired largest weighted anti-chain.
Proof: SupposeQ∗ was the optimal. By Lemma 23 we have
that|Q∗| ≥ |Q| ≥ N − F . By Lemma 21 we also have that
|ρ∗| ≥ |Q∗| ≥ |Q| ≥ N − F . Again by Lemma 20 we
know that |ρ∗| ≤ N − |M∗|. Since|M∗| = F , we get
|ρ∗| = |Q∗| = |Q| = N − F , hence makingQ optimal as
required.
Lemma 25: The algorithm presented in Figure 7 works for
arbitrary positive weightswi > 0.
Proof: From the foregoing Lemmas, we know that the algo-
rithm works for unit weights—i.e.wi = 1. Now suppose
that the weights were positive integers (still not the gen-
eral case). Conceptually, a new POSET can be constructed
where nodeYi with weightwi is replicatedwi times—each
of unit weight and incomparable to each other. IfYi � Yj

(short for sayingYi � Yj andYi 6= Yj), then allwi copies
of Yi are made to have a� relation to allwj copies of
Yj . The stagedmaxflowin D will have all wi copies ofYi

(denotedyi1 , yi2 . . . yiwi
) behaving identically. Also since

all edges of the form〈yij
, y′

kl
〉 have infinite capacity, we

can replace the group of edges〈S, yi1〉, 〈S, yi2〉 . . . 〈S, yiwi
〉

(each of unit capacity) with a single edge〈S, Yi〉 of ca-
pacity wi. Similarly we can replace the group of edges

〈y′
i1

, T 〉, 〈y′
i2

, T 〉 . . . 〈y′
iwi

, T 〉 (each of unit capacity) with a
single edge〈Y ′

i , T 〉 of capacitywi. All intermediate edges
are of infinite capacity and are defined (as previously) using
the� relation. Now consider the most general case wherewi

is positive but need not be an integer. In such a case, the idea
is to conceptually scale all the weights by a uniform factorL,
such that all of them become integers. The more the preci-
sion of the numbers, the larger we can chooseL—but since
this is only conceptual,L does not have a concrete role in
the algorithm. The algorithm can then find the largest anti-
chain using the scaled weights and since scaling the weights
uniformly in a POSET does not affect the largest anti-chain,
the same can be used after scaling down the weights byL.
Computationally however, the idea of scaling is not reflected
anywhere except in the fact that the weightswi can be used
as they are to define capacities on the edges inD.

Conclusions
We described a class of metric temporal problems (which
we referred to as extended STPs (ESTPs)) that formed a
middle ground between STPs and DTPs. We showed that
ESTPs could be solved in polynomial time and were ex-
pressive enough to deal with limited forms of disjunctions
and preferences that would otherwise require an exponential
search space. Our polynomial-time algorithm for solving
ESTPs was based on the idea of reducing a given ESTP to
the problem of computing the largest weighted anti-chain in
a POSET which in turn could be solved usingmaxflowtech-
niques. The expressive power of ESTPs along with their
tractability makes them a suitable model for many real-life
applications that involve metric temporal reasoning.
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