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Abstract

Model checking is a promising approach to automatic verifi-
cation, which has concentrated on specification expressed in
temporal logic. Comparatively little attention has been given
to temporal logics of knowledge, although such logics have
been proven to be very useful in the specifications of proto-
cols for distributed systems. In this paper, we address our-
selves to the model checking problem for a temporal logic of
knowledge (Halpern and Vardi’s logic of CKLn). Based on
the semantics of interpreted systems with local propositions,
we develop an approach to symbolic CKLn model checking
via OBDDs. In our approach to model checking specifications
involving agents’ knowledge, the knowledge modalities are
eliminated via quantifiers over agents’ non-observable vari-
ables.

Introduction
Model checking is most widely understood as a technique
for automatically verifying that finite state systems satisfy
formal specifications. The success of model checking in
mainstream computer science has led to a recent growth of
interest in the use of the technology in fields of AI such
as planning and multiagent systems. However, the formal
specifications for finite state systems are most commonly
expressed as formulae of temporal logics such as LTL (lin-
ear temporal logic) in the case of SPIN (Holzmann 1997)
and FORSPEC (Vardi 2001) and CTL in the case of SMV
(McMillan 1993), while the specifications for multiagent
systems involve agents’ knowledge, belief and other no-
tions of agents’ mental states. In this paper, we address our-
selves to the model checking problem for a temporal logic
of knowledge (Halpern and Vardi’s logic of CKLn).

The application of model checking within the context of
the logic of knowledge was first mooted by (Halpern & Vardi
1991). A number of algorithms for model checking epis-
temic specifications and the computational complexity of the
related problems were studied in (van der Meyden 1998).
However, they did not investigate “practical” model check-
ing for knowledge and time.

(Rao & Georgeff 1993) investigated the model checking
problem for situated reasoning systems, but they did not con-
sider S5 logics of knowledge and they did not implement any
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of the techniques they developed. (Benerecetti, Giunchiglia,
& Serafini 1999; Benerecetti & Giunchiglia 2000) devel-
oped techniques for some temporal modal logics, but these
logics have an unusual (non-Kripke) semantics.

(van der Meyden & Su 2004) took a promising first step
towards model checking of anonymity properties in formu-
las involving knowledge. Nevertheless, they took the as-
sumptions that agents are of perfect recall and considered
only a small class of epistemic formulas without any nest of
epistemic modalities.

(Hoek & Wooldridge 2002) developed an approach to re-
duceCKLn model checking to linear temporal logic (LTL)
(Pnueli 1977) model checking. However, the verification
process of their approach still requires an input from a hu-
man verifier (to obtain the so-called local propositions when
reducing the CKLn specification to LTL). A “direct” im-
plementation of CKLn model checking would thus be de-
sirable.

Our approach presents a methodology for symbolic
CKLn model checking, based on the semantics of inter-
preted systems with local propositions (Engelhardt, van der
Meyden, & Moses 1998), which leads to a “direct” imple-
mentation of CKLn model checking. Moreover, by the re-
sults presented, we can provide via OBDD (Bryant 1986)
an approach to symbolic verifying CTL∗, the combination
of LTL and CTL (branching temporal logic). This is in-
teresting because LTL and CTL have been well studied
and implemented efficiently into a number of tools (Clark,
Grumberg, & Peled 2000; Holzmann 1997) and the commu-
nity of model checking expects such a tool that can verify
specifications in full CTL∗ efficiently.

The present paper follows similar lines to (Hoek &
Wooldridge 2002), which is based on the idea of local
propositions as described in (Engelhardt, van der Meyden,
& Moses 1998; Engelhardt, van der Meyden, & Su 2002).
The main advantages of the present paper over (Hoek &
Wooldridge 2002) are:

1. We explicitly introduce the notion of finite-state program
with n-agents (which is a symbolic representation of the
well-known interpreted systems) and present some inter-
esting results on the theoretical foundations of (Hoek &
Wooldridge 2002).

2. In order to determine whether Kiϕ holds at some point
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of an interpreted system, Hoek and Wooldridge (Hoek &
Wooldridge 2002) attempt to find an i-local proposition ψ
which is equivalent to Kiϕ at that point; whereas, we try
to get an i-local proposition ψ which is equivalent to Kiϕ
at any point (see Remark 11).
The structure of the paper is as follows. In the next sec-

tion, we shortly introduce the well-known interpreted sys-
tem (Fagin et al. 1995) and a temporal logic of knowledge,
Halpern and Vardi’s CKLn (Halpern & Vardi 1989). Then,
we define a class of interpreted systems that are generated
by finite-state programs with n-agents. The most exciting
result is to show how to use OBDDs to implement symbolic
CKLn model checking, based on those interpreted systems
generated by finite-state programs with n-agents.

Knowledge in an Interpreted System with
Local Variables

In this section, we define the semantic framework within
which we study the model checking of specifications in
the logic of knowledge. First, we introduce interpreted sys-
tems (Fagin et al. 1995) and a temporal logic of knowl-
edge CKLn (Halpern and Vardi’s CKLn (Halpern & Vardi
1989)). Then, we present the notion of a finite-state pro-
gram with n-agents, a finite-state transition representation
for those interpreted systems with local variables

Interpreted systems
The systems we are modelling are composed of multiple
agents, each of which is in some state at any point of time.
We refer to this as the agent’s local state, in order to dis-
tinguish it from the system’s state, the global state. Without
loss of too much generality, we make the system’s state a
tuple (s1, · · · , sn), where si is agent i’s state.

Let Li be a set of possible local states for agent i, for
i = i, · · · , n. We take G ⊆ L1 × · · · × Ln to be the set
of reachable global states of the system. A run over G is a
function from the time domain–the natural numbers in our
case–to G. Thus, a run over G can be identified with a se-
quence of global states in G. We refer to a pair (r,m) con-
sisting of a run r and time m as a point. We denote the i’th
component of the tuple r(m) by ri(m). Thus, ri(m) is the
local state of agent i in run r at “time” m.

The idea of the interpreted system semantics is that a run
represents one possible computation of a system and a sys-
tem may have a number of possible runs, so we say a system
is a set of runs.

Assume that we have a set Φ of primitive propositions,
which we can think of as describing basic facts about the
system. An interpreted system I consists of a pair (R, π),
whereR is a set of runs over a set of global states and π is a
valuation function, which gives the set of primitive proposi-
tions true at each point inR (Fagin et al. 1995).

To define knowledge in interpreted systems, we associate
with every agent i, an equivalence relation∼i over the set of
points (Fagin et al. 1995): (r, u) ∼i (r′, v) iff ri(u) = r′i(v).

If (r, u) ∼i (r′, v), then we say that (r, u) and (r′, v)
are indistinguishable to agent i, or, alternatively, that agent i
carries exactly the same information in (r, u) and (r′, v).

To give a semantics to the “common knowledge” among
a group Γ of agents, two further relations, ∼EΓ and ∼CΓ , are
introduced (Fagin et al. 1995). We define the relation ∼EΓ
as
⋃

i∈Γ ∼i and the relation ∼CΓ as the transitive closure of
∼EΓ .

Notice that a system as a set of infinite runs seems not
well suited to model checking directly as it is generally ap-
plied to the finite state systems. In fact, we can represent an
interpreted system as a finite-state program (G,G0, R, V ),
where G0 is a set of initial states, R is a total “next time”
relation, and V associates each state with a truth assignment
function. A set of infinite runs is then obtained by “unwind-
ing” the relation R starting from initial states in G0.

Semantics
Given a set Φ of primitive propositions, we use Prop to de-
note the set of all propositional formulas over Φ.

The linear temporal logic LTL (Manna & Pnueli 1995)
is propositional logic augmented by the future-time connec-
tives © (next) and U (until). The other future-time connec-
tives 3 (sometime or eventually) and 2 (always) can be in-
troduced as abbreviations.

The language of CKLn is the language of propositional
temporal logic augmented by a modal operator Ki for each
agent i, and common knowledge operators CΓ, where Γ is
a group of agents. The semantics of CKLn is given via the
satisfaction relation “|=CKLn

”. Given an interpreted system
I = (R, π) and a point (r, u) in I, we define (I, r, u) |= ψ
by the induction on the structure ψ. The only nontrivial cases
are when ψ is of the forms Kiϕ, CΓϕ,©ϕ and ϕUϕ′.

• (I, r, u) |=CKLn
Kiϕ iff (I, r′, v) |=CKLn

ϕ for all
(r′, v) such that (r, u) ∼i (r′, v).

• (I, r, u) |=CKLn
CΓϕ iff (I, r′, v) |=CKLn

ϕ for all
(r′, v) such that (r, u) ∼CΓ (r

′, v).

• (I, r, u) |=CKLn
©ϕ iff (I, r, (u+ 1)) |=CKLn

ϕ

• (I, r, u) |=CKLn
ϕUϕ′ iff (I, r, u′) |=CKLn

ϕ′ for
some u′ ≥ u and (I, r, u′′) |=CKLn

ϕ for all u′′ with
u ≤ u′′ < u′.

We say that ϕ is valid in I, denoted by I |=CKLn
ϕ,

if (I, r, u) |=CKLn
ϕ for every point (r, u) in I. We also

write (I, r, u) |=LTL ϕ for (I, r, u) |=CKLn
ϕ when ϕ is

anLTL formula. For a propositional formula ϕ, we use |= ϕ
to express that ϕ is a valid formula or tautology.

Finite-state program with n agents
A finite-state program with n agents is a finite-state program
associated with a set Oi of observable variables for each
agent i. To get a symbolic representation of a finite-state pro-
gram with n agents, we present a symbolic representation of
a finite-state program (G,G0, R, V ) in what follows.

1. We use a tuple of boolean variables x = {x1, · · · , xk}
and encode a state as an assignment for x, or a subset
of x. (For convenience, we sometimes do not distinguish
a set and its characteristic function.) Thus, G0 and any
set of states can be represented as a propositional formula
over x.
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2. Further, we use another tuple of boolean variables x′ =
{x′1, · · · , x

′
k} and represent the “next time” relation R be-

tween two states as a propositional formula τ over x∪x′.
In other words, for two assignments s and s′ for x, sRs′
holds iff τ(x,x′) is satisfied by the assignment s∪N(s′),
where N(s′) denotes {x′j | xj ∈ s

′ and 0 < j ≤ k}.

3. We assume that for each s, V (s) equals s, that is, for each
variable xj (1 ≤ j ≤ k), V (s)(xj) = 1 iff s(xj) = 1.

Omitting the component V , we represent the finite-state pro-
gram (G,G0, R, V ) just as (x, θ(x), τ(x,x′)).

Hence, we formally define a (symbolic) finite-
state program with n agents as a tuple P =
(x, θ(x), τ(x,x′), O1, · · · , On), where

1. x is a set of system variables;

2. θ is a boolean formula over x, called the initial condition;

3. τ is a boolean formula over x ∪ x′, called the transition
relation; and

4. for each i, Oi ⊆ x, containing agent i’s local variables,
or observable variables.

Given a state s, we define agent i’s local state at state s to
be s∩Oi. For convenience, we denote (s∩O1, · · · , s∩On)
by g(s). We associate with P the interpreted system IP =
(R, π), whereR is a set of those runs r satisfying that

1. for each m, r(m) is of the form g(s) = (s ∩ O1, · · · , s ∩
On) where s is a state in P and the assignment π(s) is the
same as s;

2. r(0) is g(s) for some assignment s that satisfies θ;

3. for each natural number m, if r(m) = g(s) and r(m +
1) = g(s′) for some assignments s and s′ for x , then
s ∪N(s′) is an assignment satisfying τ(x,x′).

The interpreted system IP is called the generated inter-
preted system of P .

For convenience, we fix throughout this paper P =
(x, θ(x), τ(x,x′), O1, · · · , On) to be a finite-state program
with n agents.

Local propositions
We now introduce the notion of a local proposition (Engel-
hardt, van der Meyden, & Moses 1998). An i-local propo-
sition is a formula whose interpretation is the same in each
of the points in each equivalence class induced by the ∼i
relation. Formally, given an interpreted system I and an
agent i, a formula ϕ is i-local iff for each point (r, u) in
I, if (I, r, u) |=CKLn

ϕ, then (I, r′, u′) |=CKLn
ϕ for all

points (r′, u′) such that (r, u) ∼i (r′, u′). Further, for a set
Γ ⊆ {1, · · · , n}, we say a formula ϕ is Γ-local if ϕ is i-local
for each i ∈ Γ.

The model checking problem for CKLn we are con-
cerned is the problem of determining whether, given an in-
terpreted system I = (R, π) and a formula ϕ, the formula ϕ
is true in the initial state of every run in R. More concisely,
given an interpreted system I and a formula ϕ, we say that
I realizes ϕ, denoted by mcCKLn

(I, ϕ), if for all runs r in
I, we have (I, r, 0) |=CKLn

ϕ.

If ϕ is an LTL formula in the above definition, we
also write mcLTL(I, ϕ) to stand for mcCKLn

(I, ϕ). We
use li(IP , r, u) to denote the above formula (

∧

x∈ri(u)
x ∧

∧

x∈(Oi−ri(u))
¬x).

Proposition 1 A formula ϕ is i-local in the generated
interpreted system IP iff there is a propositional for-
mula ψ containing only variables over Oi such that
mcCKLn

(IP ,2(ϕ⇔ ψ)).

Proposition 2 Let Γ be a set of agents. Then, a formula ϕ is
Γ-local in the generated interpreted system IP iff for each
agent i in Γ, there is a propositional formula ψi contain-
ing only variables over Oi such that mcCKLn

(IP ,2(ϕ ⇔
ψi)).

We omit the proofs of the two propositions above, which
present both necessary and sufficient conditions for i-
locality and Γ-locality, respectively, whereas Proposition 1
and 2 in (Hoek & Wooldridge 2002) give only sufficient con-
ditions.

Reachable global states
Let ξ be an operator from the set of boolean formulas over
x to the set of boolean formulas over x. We say ψ is a fixed
point of ξ, if |= ξ(ψ) ⇔ ψ. We say a ψ0 is a greatest fixed
point of ξ, if ψ0 is a fixed point of ξ and for every fixed point
ψ of ξ, we have that |= ψ ⇒ ψ0. Clearly, any two greatest
fixed points are logically equivalent to each other. Thus, we
denote a greatest fixed point of ξ by gfpZξ(Z). Similarly,
We say a ψ0 is a least fixed point of ξ, if ψ0 is a fixed point of
ξ and for every fixed point ψ of ξ, we have that |= ψ0 ⇒ ψ.
A least fixed point of ξ is denoted by lfpZξ(Z). We say ξ
is monotonic, if for every two formulas ψ1 and ψ2 such that
|= ψ1 ⇒ ψ2, we have |= ξ(ψ1) ⇒ ξ(ψ2). For a finite set
x of boolean formulas if ξ is monotonic, then there exist a
least fixed point and a greatest fixed point (Tarski 1955).

As usual, for a set of boolean variables v = {v1, · · · , vm},
∃vϕ (∀vϕ) stands for ∃v1 · · · ∃vmϕ (∀v1 · · · ∀vmϕ), and
ψ(x

′

x
) is the result of renaming variables in x′ by those in

x respectively.
Let

G(P) = lfpZ

[

θ(x) ∨ (∃x(Z ∨ τ(x,x′)))

(

x′

x

)]

.

The following lemma says that the (quantified) boolean for-
mula G(P) expresses the set of reachable global states .

Lemma 3 The following holds:

1. IP |=CKLn
G(P).

2. For a boolean formula ϕ, IP |=CKLn
ϕ iff |= G(P) ⇒

ϕ.

Symbolic Model Checking CKLn

The intuition of our approach to symbolic model checking
CKLn is to replace a formula of the form Kiϕ by some i-
local formula ψ. There are two cases depending on whether
ϕ is a pure propositional formula or an LTL formula con-
taining modalities U or©.
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Model checking knowledge of state properties
First, we consider the case that ϕ does not contain temporal
modalities, this is, ϕ represents a state property.

Proposition 4 Let ϕ be a formula that does not containing
any temporal modalities. Then

IP |=CKLn
Kiϕ⇔ ∀(x−Oi)(G(P)⇒ ϕ).

Proof: The conclusion of the proposition follows by Propo-
sition 1 and Lemma 3.

Proposition 5 Let ϕ be a formula that does not containing
any temporal modalities, Γ a set of agents, and Λ an opera-
tor such that

Λ(Z) =
∧

i∈Γ

∀(x−Oi)(G(P)⇒ Z).

Then

IP |=CKLn
CΓϕ⇔ gfp Z(G(P) ∧ ϕ ∧ Λ(Z)).

Proof: Omitted for limited space.

By Proposition 4 and 5, when we do the task of model
checking CKLn formula, we can replace formulas of the
form Kiϕ (CΓϕ) by some i-local (Γ-local) proposition,
where ϕ does not containing any temporal modalities.

Model checking knowledge of temporal properties
Now, we deal with the case that ϕ may contain some tempo-
ral modalities. We use the idea of the so-called tableau con-
struction as descried in (Lichtenstein & Pnueli 1985) and
(E.M. Clarke & Hamaguchi 1994). For a formula, ψ, we
write ψ ∈ ϕ to denote that ψ is a sub-formula of (possi-
bly equals to) ϕ. Formula ψ is called principally temporal if
its main operator is temporal operator, i.e., ψ is of the form
©α or αUβ.

Given a formula ϕ, we define a finite-state program Pϕ =
(xϕ, θϕ, τϕ, O1, · · · , On) as follows.

System variables: The set xϕ of system variables of Pϕ
consists of x plus a set of auxiliary boolean variables

Xϕ : {xψ | ψ is a principally temporal sub-formula of ϕ}.

The auxiliary variable xψ is intended to be true in a state of
a computation iff the temporal formula ψ holds at the state.

For convenience, we define a function χ which maps ev-
ery sub-formula of ϕ into a boolean formula over x ∪Xϕ.

χ(ψ) =











ψ for ψ a variable in x
¬χ(α) for ψ = ¬α
χ(α) ∧ χ(β) for ψ = α ∧ β
xψ for principally temporal ψ

Let X ′
ϕ be the primed version of Xϕ. For a formula ψ over

x∪Xϕ, we use χ′(ψ) to denote the formula ψ( x∪Xϕ

x′∪X′

ϕ
), i.e.,

the primed version of ψ.

Initial condition: The initial condition of Pϕ is the same
as for IP .

Transition relation: The transition relation τϕ of Pϕ is
the transition relation τ plus

∧

©ψ∈ϕ

(x©ψ ⇔ χ
′(ψ))∧

∧

αUβ∈ϕ

(xαUβ ⇔ (χ(β)∨(χ(α)∧x′αUβ)))

For convenience, we introduce now some more notations
from the CTL logic (Clark, Grumberg, & Peled 2000). Let
EX be the operator such that for a boolean formula ψ over
x ∪Xϕ ,

EXψ(x, Xϕ) = ∃(x
′ ∪X ′

ϕ)(ψ(x
′, X ′

ϕ) ∧ τϕ).

In other words, the set of those states satisfying
EXψ(x, Xϕ) is the image of the set of those states satis-
fying ψ under the transition relation τϕ.

The operators EF and EU are defined by the least fixed
point of some monotonic operators: EFf = lfp Z(f ∨
EXZ), and EU(f, g) = lfp Z(g ∨ (f ∧EXZ)).

Let Jϕ be the set of all formulas ¬xαUβ ∨ χ(β), where
αUβ is a sub-formula of ϕ. To give the knowledge of agent i
at some state, we consider the following fairness constraints:

C1
ϕ: There is a computational path for which each formula in
Jϕ holds infinitely often.

C2
ϕ: There is a finite computational path such that each for-

mula in Jϕ holds at the last state of the computational
path, and the last state does not have any next state in the
system IP .

Clearly, if C1
ϕ holds with Jϕ 6= ∅, then there is a computa-

tional path which is infinitely long. If C2
ϕ holds, then there

is a finite computational path at which the last state does not
have a next state in the system IP .

We suppose that Jϕ is not an empty set. This assumption
does not lose any generality because we can put true in Jϕ.

The constrain C2
ϕ can be expressed as EF(End(P) ∧

∧

ψ∈Jϕ
ψ) in the standard CTL logic, where End(P) is the

formula related to the set of dead states in the system IP , it
can be represented as ¬∃x′τ(x,x′).

The constrain C1
ϕ can be defined as:

C1
ϕ = gfp Z[

∧

J∈Jϕ

EX(EU(true, Z ∧ J))].

It is not difficult to see that a state satisfies the condition
C1
ϕ iff the state is at some run where each J ∈ Jϕ holds

for infinite times along the run (Clark, Grumberg, & Peled
2000).

We say a run rϕ in IPϕ
is fair, if either rϕ is infinitely

long and each J in Jϕ is satisfied by infinitely many states
at rϕ, or there is a state, say send, such that send ∩ x has
no successor in IP and each J ∈ Jϕ is satisfied by send. It
follows the following assertion.

Lemma 6 Let ϕ be an LTL formula, sϕ a state of IPϕ
.

Then, sϕ satisfies C1
ϕ ∨C

2
ϕ iff sϕ is at some fair run of IPϕ

.

Lemma 7 Let ϕ be an LTL formula. Then for each run r in
IP , there is a fair run rϕ in IPϕ

such that for every natural
number u and for every subformula ψ of ϕ,
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1. r(u) = rϕ(u) ∩ x,
2. (IP , r, u) |=LTL ψ iff χ(ψ) is satisfied by rϕ(u).

Proof: Let r be a run in IP . We define a fair run rϕ in IPϕ

as follows. For each point r(u), let rϕ(u) be the variable set

r(u) ∪

{

xα

∣

∣

∣

∣

α is principally temporal subformula of ϕ
and (IP , r, u) |=LTL α

}

It follows immediately that r(u) = rϕ(u) ∩ x and, for
a principally temporal subformula ψ of ϕ, we have that
(IP , r, u) |=LTL ψ iff χ(ψ) is satisfied by rϕ(u). For other
subformula ψ of ϕ, we can prove the above assertion holds
by induction on ψ. It is also easy to see that rϕ is a run in
IPϕ

and rϕ is fair.

Lemma 8 Let ϕ be as in Lemma 7. Then, for each fair run
rϕ in IPϕ

, there is a run r in IP such that for every natural
number u and for every subformula ψ of ϕ,

1. r(u) = rϕ(u) ∩ x,
2. (IP , r, u) |=LTL ψ iff χ(ψ) is satisfied by rϕ(u).

Proof: Let rϕ be a fair run in IPϕ
. We define a run r in IP

simply by r(u) = rϕ(u) ∩ x for each state rϕ(u).
We assume that rϕ is infinitely long because the other

case, where rϕ is finite, can be dealt with in the same way.
Given a subformula ψ of ϕ, we show, by induction on the

structure of ψ, the claim that (IP , r, u) |=LTL ψ iff χ(ψ) is
satisfied by rϕ(u). The conclusion of the lemma follows by
the above claim.

We now extend the logic CKLn by introducing two
path quantifiers A and E. The resulting language is de-
noted by ECKLn. For a finite-state program P with n
agents, a run r in IP , a formula ψ, and a natural num-
ber u, we have (IP , r, u) |=CKLn

Eψ iff there is a run
r′ such that, for some natural number v, r(u) = r′(v) and
(IP , r

′, v) |=CKLn
ψ. We define Aψ as ¬E¬ψ.

Clearly, if we remove knowledge modalities from
ECKLn, we get the well-known logic CTL∗. The follow-
ing proposition presents a methodology of implementing
symbolic verifying CTL∗ via OBDDs.

Proposition 9 Let ϕ be an LTL formula. Then

IP |=CKLn
Eϕ⇔ ∃Xϕ((C

1
ϕ ∨ C

2
ϕ) ∧ χ(ϕ)).

Proof: (⇒) Assume that (IP , r, u) |=CKLn
Eϕ. There is a

run r′ and a natural number v such that r′(v) = r(u) and
(IP , r

′, v) |=CKLn
ϕ. By Lemma 7, there is a fair run rϕ

in IPϕ
, such that rϕ(v) satisfies χ(ϕ) iff (IP , r, v) |=CKLn

ϕ. Thus, rϕ(v) satisfies χ(ϕ). Moreover, because rϕ is a
fair run, every state at run rϕ must satisfy C1

ϕ ∨ C
2
ϕ. So,

rϕ(v) satisfies (C1
ϕ ∨C

2
ϕ) ∧ χ(ϕ). Because r(u) = r′(v) =

rϕ(v)∩x, we have that r(u)∪(rϕ(v)∩Xϕ) = rϕ(v) satisfies
(C1

ϕ ∨C
2
ϕ) ∧ χ(ϕ). This is, (IP , r, u) |=CKLn

∃Xϕ((C
1
ϕ ∨

C2
ϕ) ∧ χ(ϕ)).
(⇐) Suppose that (IP , r, u) |=CKLn

∃Xϕ((C
1
ϕ ∨ C

2
ϕ) ∧

χ(ϕ)). Then, r(u) satisfies ∃Xϕ((C
1
ϕ ∨ C

2
ϕ) ∧ χ(ϕ)), and

there is a state sϕ in IPϕ
such that r(u) = sϕ ∩ x, and sϕ

satisfies ((C1
ϕ ∨ C

2
ϕ) ∧ χ(ϕ)). By the fact that sϕ satisfies

C1
ϕ ∨ C

2
ϕ and Lemma 6, we get that sϕ is at some fair run

rϕ in IPϕ
, and there is a natural number v such that sϕ =

rϕ(v). By Lemma 8, there is a run r′ in IP such that r′(v) =
rϕ(v)∩x and (IP , r′, v) |=CKLn

ϕ iff rϕ(v) satisfies χ(ϕ).
Recalling rϕ(v) = sϕ and r(u) = sϕ ∩ x, we have r′(v) =
r(u). Moreover, by the fact that rϕ(v) satisfies χ(ϕ), we
have that (IP , r′, v) |=CKLn

ϕ. Hence, (IP , r, u) |=CKLn

Eϕ.

Now follow the main results in this section.
Proposition 10 Let ϕ be an LTL formula. Then, the fol-
lowing formula
Kiϕ⇔ ∀(Xϕ ∪ x−Oi)((C

1
ϕ ∨ C

2
ϕ) ∧G(P)⇒ χ(ϕ))

is valid in IP .
Proof: We first notice that the formula Kiϕ ⇔ KiAϕ is
valid in IP . Proposition 9 says that the formula Aϕ ⇔
∀Xϕ((C

1
ϕ ∨ C

2
ϕ)⇒ χ(ϕ)) is valid. Hence,

IP |=CKLn
Kiϕ⇔ Ki(∀Xϕ((C

1
ϕ ∨ C

2
ϕ)⇒ χ(ϕ))).

By Proposition 4, the following formula
Kiϕ⇔ ∀(x−Oi)(G(P)⇒ ∀Xϕ((C

1
ϕ ∨ C

2
ϕ)⇒ χ(ϕ)))

must be valid in IP . Because variables in Xϕ do not appear
in G(P), the formula

Kiϕ⇔ ∀(Xϕ ∪ x−Oi)((C
1
ϕ ∨ C

2
ϕ) ∧G(P)⇒ χ(ϕ))

is thus valid in IP .

Remark 11 In order to determine whether Kiϕ holds at
some point of an interpreted system, Hoek and Wooldridge
(Hoek & Wooldridge 2002) attempt to find an i-local propo-
sition ψ such that Kiϕ holds iff ψ holds at that point. How-
ever, how to get such an i-local proposition ψ was not pre-
sented in (Hoek & Wooldridge 2002). In addition, the local-
proposition formula ψ may depend on the point at which
we check Kiϕ (see Proposition 5 in (Hoek & Wooldridge
2002)). Thus, when faced with the problem of determining
whether some point satisfies a formula α with a subformula
of the form Kiϕ, we could not reduce the problem to de-
termining whether the point satisfies the formula α(Kiϕ

ψ
)

(which results from α by replacing Kiϕ with ψ.) The main
advantage of Proposition 10 over Hoek and Wooldridge’s
results is that the i-local proposition ψ is given out (i.e.
∀(Xϕ ∪ x − Oi)((C

1
ϕ ∨ C

2
ϕ) ∧ G(P) ⇒ χ(ϕ))) and the

proposition ψ does not depend on the point (r, u).
We also remark that Proposition 10 provides a reduction

of CKLn to LTL, while Proposition 9 gives a method of
model checking LTL formulas. The complexity of our re-
duction of CKLn to LTL is PSPACE-complete. Nev-
ertheless, because C1

ϕ, C2
ϕ and quantifications of boolean

functions can be dealt with in any OBDD package, the re-
duction of CKLn to LTL and the LTL model checking
method can be based on OBDDs. Thus, the CKLn model
checking algorithm via Proposition 10 and 9 might be prac-
tically implementable.

As for model checking common knowledge of temporal
properties, we can see the following proposition holds.
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Proposition 12 Let ϕ be a formula that may contain some
temporal modalities, Λ an operator such that

Λ(Z) =
∧

i∈Γ

∀(x−Oi)(G(P)⇒ Z).

Then, the following formula is valid in IP :

CΓϕ⇔ gfp Z[G(P)∧∀Xϕ((C
1
ϕ ∨C

2
ϕ)⇒ χ(ϕ))∧Λ(Z)]

Proof: By Proposition 9 and Proposition 5.

Conclusions
In this paper, we have considered the model checking prob-
lem for Halpern and Vardi’s well-known temporal epistemic
logic CKLn. We have introduced the notion of a finite
state program with n agents, which can be thought of as
a symbolic representation of interpreted systems. We have
developed an approach to symbolic CKLn model check-
ing, using OBDDs. In our approach to model checking
specifications involving agents’ knowledge, the knowledge
modalities are eliminated via quantifiers over agents’ non-
observable variables. As a by-product, we have presented
a methodology of implementing symbolic verifying CTL∗

via OBDDs.
We are currently working on an implementation of a

CKLn model checker based on the results in this paper,
via CUDD library developed by Fabio Somenzi at Colorado
University. We have founded the prototype of the model
checking system and finished the kernel part of it. Because
of limited space, we do not include experimental results
here. As for future work, we are interested in providing au-
tomated support for the analysis of knowledge in distributed
system protocols and game theoretic examples, and the veri-
fication and compilation of knowledge-based programs (Fa-
gin et al. 1995).
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