
Leap Before You Look:
An Effective Strategy in an Oversubscribed Scheduling Problem∗

Laura Barbulescu and L. Darrell Whitley and Adele E. Howe
Computer Science Dept.

Colorado State University
Fort Collins, CO 80523

email:{laura,whitley,howe}@cs.colostate.edu

Abstract

Oversubscribed scheduling problems require removing
or partially satisfying tasks when enough resources are
not available. For a particular oversubscribed problem,
Air Force Satellite Control Network scheduling, we find
that the best approaches make long leaps in the search
space. We find this is in part due to large plateaus in
the search space. Algorithms moving only one task at
a time are impractical. Both a genetic algorithm and
Squeaky Wheel Optimization (SWO) make long leaps
in the search space and produce good solutions almost
100 times faster than local search. Greedy initialization
is shown to be critical to good performance, but is not
as important as directed leaps. When using fewer than
2000 evaluations, SWO shows superior performance;
with 8000 evaluations, a genetic algorithm using a pop-
ulation seeded with greedy solutions further improves
on the SWO results.

Introduction
Variants of local search have been shown to be extremely ef-
fective and robust for scheduling problems (Vaessens, Aarts,
& Lenstra 1996; Lemaı̂tre, Verfaillie, & Jouhaud 2000).
When heuristics are available for focusing attention on parts
of the schedule, then iterative repair performs well (e.g.,
(Kramer & Smith 2003)). Both these classes of algorithms
adopt an incremental view: propose a change, evaluate the
result, accept or retract the change, and identify the next
potential changes. The incremental strategy works well
because minor changes may cause a cascade effect in the
schedule and these cascade effects are difficult to predict.

In contrast, a genetic algorithm, Genitor (Whitley 1989),
has shown better performance on an oversubscribed schedul-
ing application: Air Force Satellite Control Network (AF-
SCN) access scheduling (Barbulescu et al. 2004b). Genitor
proposes large changes to a schedule at each iteration. It
represents a proposed schedule as a permutation (a priori-
tization) of the tasks, which can be translated into an actual
schedule with assignment of tasks to time slots on resources.
The crossover operator (Syswerda 1991) randomly selects

∗With apologies to Keith Golden, we have co-opted the clever
title to show how it applies to scheduling as well as planning
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

about half of the positions in a permutation for re-ordering,
typically producing a large change in the schedule.

One hypothesis about the superior performance is that the
genetic algorithm is learning patterns of task interactions.
An analysis of the search space and solutions showed that
a simple domain specific pattern emerged and provided evi-
dence for more complex patterns (Barbulescu et al. 2004a).

Aside from such patterns, another explanatory hypothe-
sis is that the large leaps taken by Genitor at each iteration
are needed to effectively traverse the search space. We find
evidence to support this hypothesis in the performance of
another method that makes directed leaps: Squeaky Wheel
Optimization (SWO)(Joslin & Clements 1999). SWO fo-
cuses attention on the most contentious tasks in the schedule
and simultaneously moves those requests forward in the pri-
oritized permutation, thereby causing other less troublesome
tasks to move backward. We show that solutions appear to
be residing on plateaus, which tend to be difficult for incre-
mental methods to traverse. We also examine whether the
power is obtained from simply starting closer to the best so-
lutions (i.e., the role of initialization) and whether Genitor
and SWO seem to be following similar paths to their so-
lutions. We find that narrowing the distance to the opti-
mal solutions certainly helps, but is not the only factor at
work, and that Genitor and SWO follow rather different
paths through the search space. Thus, these algorithms rep-
resent two different, but almost equally effective methods
for making large leaps across the search space.

AFSCN Scheduling
The U.S.A. AFSCN is responsible for coordinating com-
munications between users on the ground and satellites in
space. Communications to more than 100 satellites are per-
formed through 16 antennas at nine ground stations located
around the globe. To reserve a particular antenna for a pe-
riod of time, users submit a task request which includes a
required duration, a time window within which the duration
must occur and a desired resource. Alternate time windows
and antennas may also be specified. Approximately 500
requests are typically received for a single day. Separate
schedules are produced for each day.

Some antennas are typically oversubscribed. After human
schedulers attempt to fit all tasks into the schedule, often
about 120 conflicts, or requests that could not be accommo-

CONSTRAINT SATISFACTION & SATISFIABILITY 143

dated, remain. Because satellites are extremely expensive
resources and the tasks may be mission critical, absolute re-
jection of requests is not an option. Rather, human sched-
ulers must engage in a complex, time-consuming arbitration
process to create a conflict-free schedule.

For our studies, we use 12 days of actual data from the
AFSCN: seven consecutive days from 1992 and five days
from 2002-20031. These data demonstrate the changing na-
ture of the task (e.g., differences in size and differences in
utilization of resources between 1992 and 2002/2003) and
exhibit the complex structure of real problems, which we
have not been able to replicate in synthesized problems.

Analyses of these problems have shown a high degree of
contention for resources, which leads to a high branching
factor for most search algorithms (Barbulescu et al. 2004a).
Genitor has shown the best performance on this problem so
far (Barbulescu et al. 2004b; 2004a), finding schedules that
minimize the number of conflicts. It appears that Genitor
may be learning patterns, some that are easily translated into
heuristics (e.g., schedule the low altitude satellite requests
first) and some that are more complex.

The primary criterion that has been used in attempts to
automate AFSCN scheduling is minimizing the number of
conflicts (e.g., (Gooley 1993; Parish 1994)). This results in
a very coarse evaluation function for an NP-hard problem
where the search space is exponentially large (Barbulescu
et al. 2004b). Minimizing conflicts also means that large
tasks are generally bumped more often than smaller tasks.
Conversations with human schedulers indicate that they of-
ten negotiate changes in duration of tasks to fit in addi-
tional tasks–and that everything must eventually be sched-
uled, even if tasks must be modified. Thus, a better evalua-
tion criterion and the one used in this paper is to minimize
the sum of overlaps between conflicting tasks in a proposed
schedule. This provides the human schedulers with a bet-
ter starting point for negotiations. It also provides a richer
evaluation function.

Related Work
Other examples of multiple resource, oversubscribed prob-
lems include applications such as USAF Air Mobility Com-
mand (AMC) scheduling (Kramer & Smith 2003), NASA’s
shuttle ground processing (Deale et al. 1994), and satellite
scheduling (Frank et al. 2001; Globus et al. 2003).

AMC scheduling assigns delivery missions to air wings.
Kramer and Smith (Kramer & Smith 2003) adopt an itera-
tive repair approach by greedily creating an initial schedule
by priority order and then attempting to insert unscheduled
tasks by retracting and re-arranging conflicting tasks.

Globus et al.(2003) compared a genetic algorithm, sim-
ulated annealing, SWO and hill climbing on a simplified,
synthetic form of the satellite scheduling problem (two satel-
lites with a single instrument). The genetic algorithm and
SWO techniques were reported to perform poorly. However,

1We thank Dr. James T. Moore, Associate Professor, Dept. of
Operational Sciences, Air Force Institute of Technology and Brian
Bayless and William Szary from Schriever Air Force Base for pro-
viding the data.

similarly to what we found for AFSCN scheduling, multiple
moves performed better than single moves.

For both AFSCN scheduling and MAXSAT, it is possible
to quickly identify key variables or tasks that are unsatisfied.
In both cases, there is an opportunity to resolve these un-
satisfied variables or requests and to use a greedy selection
strategy for changing a variable or schedule assignment.

Another similarity is that the search spaces in both cases
have large flat regions or plateaus (Gent & Walsh 1993).
In MAXSAT, these plateaus result from the fact that the
evaluation function is a linear combination of subfunctions:
each clause is a subfunction. In oversubscribed scheduling
problems, moves affecting only requests that do not com-
pete for the same resources or time windows have no impact
on the evaluation function. Strategies for “walking” across
these flat regions are therefore key components for success-
ful search in both domains. One strategy that is similar in
flavor to the SWO strategy used here is JumpSAT (Gent &
Walsh 1995). Instead of flipping one variable in an unsatis-
fied clause, one variable is flipped in each unsatisfied clause.
While not state of the art for MAXSAT, JumpSat was shown
to outperform greedy local search (the GSAT algorithm).

MAXSAT and AFSCN differ in two important ways.
First, the neighborhood size is O(N) for MAXSAT while
it is O(N2) for scheduling (where N is the number of vari-
ables or requests). Second, MAXSAT has a fast partial eval-
uation that allows one to quickly evaluate a move. Our
scheduling domain requires that a new schedule be built
from scratch and evaluated after every move.

Minimizing Overlap in AFSCN
A wide range of approaches have been tested for minimizing
conflicts in AFSCN scheduling. One of the earliest, Gooley
(1993), exploited complex heuristics and mixed integer pro-
gramming. Attempts using constraint based methods (e.g.,
texture-based (Beck et al. 1997) and minslack (Smith &
Cheng 1993)) worked well on small, synthetic problems,
but did not scale well to the actual data (Barbulescu et al.
2002); similarly, attempts to use constructive tree search al-
gorithms, such as HBSS (Bresina 1996), have so far not pro-
duced good results, probably because the ordering heuristics
are inadequate.

Some of the approaches do not translate well for minimiz-
ing overlaps because they were carefully tuned for the orig-
inal evaluation metric. Local search and Genitor are easily
adapted. Additionally, because the evaluation metric is less
coarse, new algorithms such as SWO are viable. This sec-
tion describes the set of algorithms and their performance.

Algorithms
The three algorithms considered encode solutions using a
permutation π of the n task request IDs (i.e., [1..n]); a sched-
ule builder is used to generate solutions from the permuta-
tion. In the order defined by π, each task request is assigned
to the first available resource from its list of alternatives and
at the earliest possible starting time. If a request cannot
be scheduled without conflict on any of the alternative re-
sources, it overlaps; we assign such a request to the alterna-

144 CONSTRAINT SATISFACTION & SATISFIABILITY

tive resource on which the overlap with requests scheduled
so far is minimized.

Genetic algorithms were found to perform well in some
early studies (Parish 1994) and for an abstraction of NASA’s
Earth Observing Satellite (EOS) scheduling problem (Wolfe
& Sorensen 2000). For our studies, we use the version of
Genitor originally developed for a warehouse scheduling ap-
plication (Starkweather et al. 1991). Like all genetic al-
gorithms, Genitor maintains a population of solutions. In
each step of the algorithm, a pair of parent solutions is se-
lected, and a crossover operator is used to generate a sin-
gle child solution, which then replaces the worst solution in
the population. Selection of parent solutions is based on the
rank of their fitness, relative to other solutions in the popu-
lation. Following Parish (1994), we use Syswerda’s (1991)
position-based crossover operator.

As the local search algorithm, we implemented a hill-
climber. Because it has been successfully applied to a
number of well-known scheduling problems, we selected a
domain-independent move operator, the shift operator. From
a current solution π, a neighborhood is defined by consider-
ing all (N − 1)2 pairs (x, y) of positions in π, subject to the
restriction that y 6= x − 1. The neighbor π

′

corresponding
to the position pair (x, y) is produced by shifting the job at
position x into the position y, while leaving all other relative
job orders unchanged. Given the large neighborhood size,
we use the shift operator in conjunction with next-descent
hill-climbing: the neighbors of the current solution are ex-
amined in a random order, and the first neighbor with either
a lower or equal sum of overlaps is accepted.

SWO (Joslin & Clements 1999) repeatedly iterates
through a cycle composed of three phases. First, a greedy
solution is built, based on priorities associated with the el-
ements in the problem. Then, the solution is analyzed and
the elements causing “trouble” are identified, based on their
contribution to the objective function. Third, the priorities
of such “trouble makers” are modified, such that they will
be considered earlier during the next iteration. The cycle is
then repeated, until a termination condition is met.

In our implementation of SWO, we identify the overlap-
ping requests as the “trouble spots” in the schedule. We sort
the overlapping requests in increasing order of their contri-
bution to the sum of overlaps. We associate with each such
request a distance to move forward, based on its rank in the
sorted order. We fix the minimum distance of moving for-
ward to one and the maximum distance to five (this seems
to work better than other possible values we tried). The dis-
tance values are equally distributed among the ranks. We
move the requests forward in the permutation in increasing
order of their contribution to the sum of overlaps (smaller
overlaps first). We tried versions of SWO where the dis-
tance to move forward is proportional with the contribution
to the sum of overlaps or is fixed. However, these versions
performed worse than the rank based distance implementa-
tion described above.

We construct the initial greedy permutation for SWO by
sorting the requests in increasing order of their flexibility.
Our flexibility measure is identical to that defined for AMC
(Kramer & Smith 2003): the duration of the request divided

by the average time window on the possible alternative re-
sources. We break ties based on the number of alterna-
tive resources available. For requests with equal flexibili-
ties and numbers of alternative resources, the earlier request
is scheduled first. For multiple runs of SWO, we restart it
from a modified permutation created by performing 20 ran-
dom swaps in the initial greedy permutation.

Performance
The results of running each of the algorithms are summa-
rized in Table 1. For each of the three algorithms, we report
the best and mean value and the standard deviation observed
over 30 runs, with 8000 evaluations per run. CPU times
corresponding to 30 runs of each algorithm (on a Dell Preci-
sion 650, 3.06 GHz Xeon, running Linux) are also included.
“Size” is the number of requests for that date. In the third
column, we include the best values we have seen for the sum
of overlaps; these values were obtained by running Genitor
with the population size increased to 400 and up to 50,000
evaluations. Both Genitor and local search were initialized
from random permutations.

While Genitor and SWO perform equally well for the data
from 1992 and R5, SWO produces the best results for the re-
maining data. The performance of local search is relatively
poor: worse mins/means and higher variance. If SWO is
allowed up to 50,000 evaluations, SWO does not find bet-
ter solutions, unlike Genitor which continues to improve the
solution quality.

Leap or Creep?
Both SWO and Genitor make large changes to the permu-
tation at each step before evaluating the resulting schedule.
Thus, another hypothesis for Genitor’s success is that ef-
fectively searching the space requires a large step size or
“leaping before looking”. Local search adopts a conserva-
tive approach by assessing the results of each change. Local
search can find close to optimal solutions for these problems
provided that it searches for a very long time (500,000 eval-
uations). In this case, the search space may be too big, and
the information gained at each evaluation may be too little
to justify the expense of evaluation after each move.

To test the hypothesis that large step size is critical to good
performance, we look at four factors. First, we examine the
neighborhood of permutations to assess whether the search
space does contain plateaus and more specifically, whether
solutions appear to reside on them. Second, we assess the
role of initialization in traversing the space: are Genitor and
SWO succeeding because they just start out closer to the
solution? Third, we control for the effects of multiple moves
by comparing SWO to a version that makes one move at a
time. Finally, we look at the rate of solution improvement
over time for both SWO and Genitor.

Plateaus
One reason local search has trouble with AFSCN schedul-
ing are plateaus. We count the number of pairwise shifts
in 30 random and 30 best known solutions that produce no

CONSTRAINT SATISFACTION & SATISFIABILITY 145

Best Genitor Local Search SWO
Day Date Size Known Min Mean Stdev CPU Min Mean Stdev CPU Min Mean Stdev CPU
A1 10/12/92 322 104 104 106.9 0.6 107 255 375.0 54.4 96 104 104 0.0 97
A2 10/13/92 302 13 13 13 0.0 101 65 174.6 50.6 92 13 13.4 2.0 91
A3 10/14/92 311 28 28 28.4 1.2 102 144 252.0 52.9 91 28 28.1 0.6 89
A4 10/15/92 318 9 9 9.2 0.7 107 153 239.6 55.4 97 9 13.3 7.8 95
A5 10/16/92 305 30 30 30.4 0.5 104 142 220.1 59.3 93 30 30 0.0 91
A6 10/17/92 299 45 45 45.1 0.4 105 190 277.4 46.7 93 45 45.1 0.3 92
A7 10/18/92 297 46 46 46.1 0.6 90 137 219.6 40.4 81 46 46 0.0 79
R1 03/07/02 483 774 913 987.8 40.8 189 1559 1830.9 143.4 175 798 841.4 14.0 178
R2 03/20/02 457 486 519 540.7 13.3 162 1078 1235.5 92.8 146 491 503.8 6.5 148
R3 03/26/03 426 250 275 292.3 10.9 144 788 967.7 96.7 133 265 270.1 2.8 130
R4 04/02/03 431 725 738 755.4 10.3 140 1139 1287.1 84.2 126 731 736.2 3.0 125
R5 05/02/03 419 146 146 146.5 1.9 127 351 457.9 69.1 112 146 146.0 0.0 109

Table 1: Performance of Genitor, local search and SWO in terms of the best and mean sum of overlaps. All statistics are taken
over 30 independent runs, with 8000 evaluations per run. Best values we have obtained for these problems are included in the
third column. Dates are given shorthand names to indicate whether they belong to the AFIT set (A) or are recent (R). CPU
times (in seconds) corresponding to the 30 runs of each algorithm are also shown.

change in the resulting schedule (non-interacting pairs). Ta-
ble 2 shows the mean number of non-interacting pairs of
tasks. Average Percentage corrects for problem size differ-
ences. More than 33% of the shifts make no change to the
schedule. Best known solutions (except for R3) have slightly
more non-interacting pairs than do random solutions.

Non-interacting Pairs
Day Total Random Perms Optimal Perms

Pairs Mean Avg % Mean Avg %
A1 51681 20767.2 40.2 22925.8 44.3
A2 45451 19684.3 43.3 21169.7 46.6
A3 48205 19859.6 41.2 20373.5 42.3
A4 50403 19491.7 38.7 20729.1 41.1
A5 46360 18371.3 39.6 19238.9 41.5
A6 44551 16771.7 37.6 17811.7 39.9
A7 43956 18406.9 41.9 20220.7 46.0
R1 116403 39380.1 33.8 37805.9 36.2
R2 104196 34362.7 32.9 33894.3 37.4
R3 90525 33470.8 36.9 41285.6 35.5
R4 92665 34147.1 36.8 36816.9 39.7
R5 87571 34180.8 39.0 35891.4 40.9

Table 2: Mean and average % for the number of pairs of
non-interacting requests over 30 random and optimal per-
mutations. Second column is the total number of request
pairs in the permutation.

Intuition might suggest that Genitor is likely to locate
and jump onto the middle of a large plateau, while gradient
methods might be more likely to find the edge of a plateau.
To test this idea, we apply a random walk to solutions from
Genitor and local search with the constraint that after each
shift the new permutation has the same value as the initial
one. We then compute the pairwise distance after incre-
ments of shifts (10, 50, 100 and 500). Genitor’s solutions
drift somewhat further than do those of local search (average
distance of 19869 versus 19350). However, the difference is
small, and neither ever revisits the same point in the space

Seeded Genitor GreedyStartLS
Day Min Mean Stdev Min Mean Stdev
A1 104 107.9 3.0 104 122.5 10.6
A2 13 13 0.0 13 23.4 14.9
A3 28 28 0.0 28 33.0 6.1
A4 9 9 0.0 9 14.4 10.1
A5 30 30 0.0 30 43.1 13.8
A6 45 45 0.0 45 47.5 5.5
A7 46 46 0.0 46 81.6 22.9
R1 794 828.3 19.3 958 1062.4 41.4
R2 486 494.5 7.7 554 600.7 26.2
R3 250 257 5.9 356 451.8 37.9
R4 725 730.6 6.5 754 848.5 51.6
R5 146 146 0.0 146 153.4 8.1

Table 3: Performance of Genitor and local search when ini-
tialized from greedy permutations. All statistics are taken
over 30 independent runs, with 8000 evaluations per run.

even after 500 shifts.

Role of Initialization
While Genitor and local search normally start with random
permutations, SWO is initialized with a greedy solution.
The greedy solution can be quite good; for two problems
(A6 and R5), the greedy solution translated into best known
values. In this section, we investigate the effects of initial-
izing the search from similar greedy solutions for all three
algorithms considered.

We modify the local search algorithm by starting it from
the SWO greedy initial permutation and from variations of
it obtained by randomly swapping 20 pairs of tasks (as in
the initialization for SWO); we call this GreedyStartLS. We
also seed the initial population of Genitor (size 200) with
the greedy initial permutation built for SWO and 199 varia-
tions of this permutation, obtained by randomly swapping 20

146 CONSTRAINT SATISFACTION & SATISFIABILITY

SWO1move
Day Size Min Mean Stdev
A1 322 113 115.0 4.2
A2 302 13 13.1 0.3
A3 311 28 29.2 1.9
A4 318 9 11.6 3.0
A5 305 30 31.8 2.7
A6 299 45 45.9 1.7
A7 297 46 49.1 3.7
R1 483 999 1125.2 54.6
R2 457 600 627.6 13.3
R3 426 288 313.7 15.8
R4 431 820 842.0 10.9
R5 419 146 157.0 7.9

Table 4: Performance of a modified version of SWO where
only one request is moved forward. All statistics are taken
over 30 independent runs, with 8000 evaluations per run.

pairs of requests; we call the new algorithm Seeded Genitor.
We compare the results of random initializations (Table 1) to
those of running GreedyStartLS and Seeded Genitor (shown
in Table 3). The initialization from a greedy permutation
induces a major improvement in the local search perfor-
mance. Initializing the Genitor population also results in
major improvements on the results obtained for the new days
of data (in fact, except for R1 all the results are equal to the
best known results). Also, while SWO is still better than
GreedyStartLS, Seeded Genitor finds equal or better solu-
tions that does SWO.

Multiple Moves in the Search Space
We hypothesize that multiple moves are needed to effec-
tively traverse the search space to good solutions. To test
this, we implement a version of the SWO where only the re-
quest that contributes the most to the sum of the overlaps is
moved forward. We use a distance proportional to the con-
tribution of the chosen request to the sum of overlaps. We
call this new algorithm SWO1Move. The results obtained
by running SWO1Move for 30 runs, with 8000 evaluations
per run are presented in Table 4.

The performance of SWO worsens significantly when
only one task is moved forward. In fact, GreedyStartLS out-
performs SWO1move, suggesting just focusing on the major
contributors to the evaluation error is not enough. These re-
sults support the conjecture that the performance of SWO is
due to the simultaneous moves of requests.

Progress toward the Solution
To further compare the genetic algorithm and SWO, we
track the best value obtained so far when running the two al-
gorithms. For each problem, we collect the best value found
by SWO and Seeded Genitor in increments of 100 evalu-
ations for up to 8000 evaluations. We average these val-
ues over 30 runs of SWO and Seeded Genitor, respectively.
A typical example is presented in Figure 1. In the begin-
ning, SWO progresses very fast to a good solution, but fur-

ther improvements over time are small. On the other hand,
Seeded Genitor steadily progresses in smaller steps toward
the best solution, and while it takes longer to reach values
as good as the ones produced by SWO, it outperforms SWO
given enough evaluations.

Conclusion
For AFSCN oversubscribed scheduling, directed leaping ap-
pears to be an effective strategy for traversing its large search
space. Both the genetic algorithm and SWO make long leaps
in the search space and quickly arrive at good solutions.
These leaps may change as much as 50% of the schedule
at each iteration. By contrast, local search, by only moving
one task at a time, results in a slow creep through the search
space. One explanation for the relatively poor performance
of algorithms that creep is that large plateaus are present in
the search space.

We investigate the role of initializing the search closer
to the best solution (as in SWO). We find that initialization
helps. However, the multiple moves are more important: the
performance of SWO is significantly worse when only one
of the conflicting tasks is moved.

Finally, we show that Genitor and SWO follow different
paths through the search space. SWO finds good solutions
fast. Given more evaluations, Genitor finds better solutions.

The success in transferring the flexibility measure from
Air Mobility Command scheduling suggests the domains
may have a great deal in common. Future work will investi-
gate whether our results generalize to other oversubscribed
scheduling problems such as AMC.

Acknowledgments
This research was sponsored by the Air Force Office of Sci-
entific Research, Air Force Materiel Command, USAF, un-
der grant number F49620-03-1-0233. The U.S. Government
is authorized to reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyright notation
thereon. Adele Howe was also supported by the National
Science Foundation under Grant No. IIS-0138690. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foun-
dation. We wish to thank the AAAI reviewers for their in-
sightful comments and an anonymous reviewer of a previous
paper for, among other excellent advice, suggesting we take
a second look at SWO.

References
Barbulescu, L.; Howe, A.; Watson, J.; and Whitley, L.
2002. Satellite range scheduling: A comparison of genetic,
heuristic and local search. In Proceedings of The Seventh
International Conference on Parallel Problem Solving from
Nature(PPSNVII).
Barbulescu, L.; Howe, A.; Whitley, L.; and Roberts,
M. 2004a. Trading places: How to schedule more in a
multi-resource oversubscribed scheduling problem. In Pro-
ceedings of the International Conference on Planning and
Scheduling. to appear.

CONSTRAINT SATISFACTION & SATISFIABILITY 147

 500

 520

 540

 560

 580

 600

 620

 640

 660

 680

 0 500 1000 1500 2000 2500 3000

S
um

 o
f o

ve
rla

ps

Iterations

Seeded Genitor
SWO

 490

 495

 500

 505

 510

 515

 520

 525

 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

S
um

 o
f o

ve
rla

ps

Iterations

Seeded Genitor
SWO

Figure 1: Evolutions of the average best value obtained by SWO and Genitor during 8000 evaluations, over 30 runs. The left
figure depicts the improvement in the average best value over the first 3000 evaluations. The last 5000 evaluations are depicted
in the right figure; note that the scale is different on the y-axis.

Barbulescu, L.; Watson, J.; Whitley, D.; and Howe, A.
2004b. Scheduling space-ground communications for the
Air Force satellite control network. Journal of Scheduling
7(1):7–34.
Beck, J. C.; Davenport, A. J.; Sitarski, E. M.; and Fox,
M. S. 1997. Texture-based Heuristic for Scheduling Revis-
ited. In Proceedings of the Fourteenth National Conference
on Artificial Intelligence (AAAI-97), 241–248. Providence,
RI: AAAI Press / MIT Press.
Bresina, J. 1996. Heuristic-Biased Stochastic Sampling.
In Proceedings of the Thirteenth National Conference on
Artificial I ntelligence, 271–278.
Deale, M.; Yvanovich, M.; Schnitzuius, D.; Kautz, D.;
Carpenter, M.; Zweben, M.; Davis, G.; and Daun, B. 1994.
The Space Shuttle ground processing scheduling system.
In Zweben, M., and Fox, M., eds., Intelligent Scheduling.
Morgan Kaufmann. 423–449.
Frank, J.; Jonsson, A.; Morris, R.; and Smith, D. 2001.
Planning and scheduling for fleets of earth observing satel-
lites. In Proceedings of the Sixth International Symposium
on Artificial Intelligence, Robotics, Automation and Space.
Gent, I., and Walsh, T. 1993. Toward and Understanding
of Hill-climbing Procedures for SAT. In Proceedings of
the Eleventh National Conference on Artificial Intelligence
(AAAI-93). AAAI Press.
Gent, I., and Walsh, T. 1995. Unsatisfied variables in local
search. In Hybrid Problems, Hybrid Solutions, 73–85. IOS
Press Amsterdam.
Globus, A.; Crawford, J.; Lohn, J.; and Pryor, A. 2003.
Scheduling earth observing satellites with evolutionary
agorithms. In International Conference on Space Mission
Challenges for Information Technology.
Gooley, T. 1993. Automating the Satellite Range Schedul-
ing Process. In Masters Thesis. Air Force Institute of Tech-
nology.

Joslin, D. E., and Clements, D. P. 1999. “Squeaky Wheel”
Optimization. In Journal of Artificial Intelligence Re-
search, volume 10, 353–373.
Kramer, L., and Smith, S. 2003. Maximizing flexibility:
A retraction heuristic for oversubscribed scheduling prob-
lems. In Proceedings of 18th International Joint Confer-
ence on Artificial Intelligence.
Lemaı̂tre, M.; Verfaillie, G.; and Jouhaud, F. 2000. How
to manage the new generation of Agile Earth Observa-
tion Satellites. In 6th International SpaceOps Symposium
(Space Operations).
Parish, D. 1994. A Genetic Algorithm Approach to Au-
tomating Satellite Range Scheduling. In Masters Thesis.
Air Force Institute of Technology.
Smith, S., and Cheng, C. 1993. Slack-based Heuristics
for Constraint Satisfaction Problems. In Proceedings of
the Eleventh National Conference on Artificial Intelligence
(AAAI-93), 139–144. Washington, DC: AAAI Press.
Starkweather, T.; McDaniel, S.; Mathias, K.; Whitley, D.;
and Whitley, C. 1991. A Comparison of Genetic Sequenc-
ing Operators. In Booker, L., and Belew, R., eds., Proc. of
the 4th Int’l. Conf. on GAs, 69–76. Morgan Kaufmann.
Syswerda, G. 1991. Schedule Optimization Using Genetic
Algorithms. In Davis, L., ed., Handbook of Genetic Algo-
rithms. NY: Van Nostrand Reinhold. chapter 21.
Vaessens, R. J. M.; Aarts, E. H. L.; and Lenstra, J. K.
1996). Job shop scheduling by local search. INFORMS
J. Comput. 8(3):302–317.
Whitley, L. D. 1989. The GENITOR Algorithm and Selec-
tive Pressure: Why Rank Based Allocation of Reproduc-
tive Trials is Best. In Schaffer, J. D., ed., Proc. of the 3rd
Int’l. Conf. on GAs, 116–121. Morgan Kaufmann.
Wolfe, W. J., and Sorensen, S. E. 2000. Three Scheduling
Algorithms Applied to the Earth Observing Systems Do-
main. In Management Science, volume 46(1), 148–168.

148 CONSTRAINT SATISFACTION & SATISFIABILITY

