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Abstract

A binary constraint network is tree convex if we can
construct a tree for the domain of the variables so that
for any constraint, no matter what value one variable
takes, all the values allowed for the other variable form
a subtree of the constructed tree. It is known that a tree
convex network is globally consistent if it is path consis-
tent. However, if a tree convex network is not path con-
sistent, enforcing path consistency on it may not make
it globally consistent. In this paper, we identify a sub-
class of tree convex networks which are locally chain
convex and union closed. This class of problems can be
made globally consistent by path consistency and thus
is tractable. More interestingly, we also find that some
scene labeling problems can be modeled by tree convex
constraints in a natural and meaningful way.

Introduction

A constraint network describes a problem as a set of vari-
ables with a finite set (called domain here) of values for each
variable, and a set of constraints among the variables. In this
paper, we consider only binary constraint networks where
each constraint involves at most two variables. A basic task
is to solve a constraint network, that is to find an assignment
of a value to each variable such that all the constraints in the
network are satisfied. Constraint networks, together with the
effective techniques developed for them, have many applica-
tions in manufacturing, transportation, telecommunication,
logistics and bio-informatics.

Since to solve general constraint networks is NP-hard,
much effort has been made to identify tractable constraint
networks which can be solved efficiently. A typical ex-
ample is that when the graph of a constraint network is a
tree, arc consistency is sufficient to make the network glob-
ally consistent (Freuder 1982). In this case, the topologi-
cal structure among variables plays an important role. The
structure or semantics of the constraints is also used to iden-
tify tractable networks, using the concept of k-consistency
(Freuder 1978). Dechter (1992) shows that some local con-
sistency in a network whose domains are of limited size en-
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sures global consistency. For monotone constraints, path
consistency implies global consistency (Montanari 1974).
Van Beek and Dechter (1995) generalize monotone con-
straints to a larger class of row convex constraints which are
further generalized to tree convex constraints by Zhang and
Yap (2003).

A binary constraint network is tree convex if we can con-
struct a tree for the domain of the variables so that for any
constraint, no matter what value one variable takes, all the
values allowed for the other variable form a subtree of the
constructed tree. To construct a tree for a domain is to con-
struct a tree such that its vertex set is exactly the domain it-
self. See Fig. 1(a) for an example of a tree convex constraint.
It has been shown that a tree convex network is globally con-
sistent if it is path consistent. However, if a tree convex
network is not path consistent, enforcing path consistency
on it may not make it globally consistent because some con-
straints may be modified during the enforcing procedure and
thus may no longer be tree convex.

In this paper, we examine the tree convex constraints and
characterize conditions under which the desirable tree con-
vex property of a network is preserved when path consis-
tency is enforced. We then identify a tractable class of
restricted tree convex constraints and show an application.
This result generalizes earlier work on monotone and con-
nected row convex constraints (Deville, Barette, & Van Hen-
tenryck 1997). Our work differs from the work by Jeavons
et al. (1997) in that we study the tractability of constraint
networks whereas they study that of constraint languages.
The tractable class reported here may not be closed under
the known algebraic operations proposed by these and other
researchers.

We first generalize tree convex constraint networks by re-
laxing the existence of a tree on all values to the existence
of a tree on the domain of each variable. The intuition is
that a constraint is defined on the domains of the involved
variables, rather than on all possible values in the network.
Such a relaxed tree convex network is globally consistent if
it is path consistent.

Next, we need to add some restrictions on a relaxed tree
convex network to avoid the destruction of its tree convex-
ity during the process enforcing path consistency. Enforc-
ing path consistency involves the intersection and composi-
tion of constraints. It can be verified that the intersection of
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two constraints is also tree convex, but the composition may
not be tree convex any more. We propose a natural restric-
tion on tree convexity which is preserved under composition.
Given a tree convex constraint c,, on variables = and y with
domains D, and D, respectively, the restriction is that for
some tree on D,, any two values that are neighbors on the
tree should share a common support in D,. The properties
are then studied.

Finally, a tractable class of networks is presented.

A careful reader may be concerned about the usefulness
of tree convexity even before our discussion of further re-
strictions on it. There do exist many tractable problems be-
longing to this class (e.g., monotone and row convex con-
straints), but the tree structure for a domain seems still too
strange to be of any practical use. No new application is
given in Zhang & Yap (2003). Interestingly, we find that
tree convex constraints help to model some scene labeling
problems in a natural and meaningful way, which may not
be captured by a general constraint network. In the follow-
ing example we show that for some problems, there exists a
relationship between the constraints and a certain structure
on the domain of variables. Consider the inequality on in-
tegers: © < y with z € {1,2,3} and y € {2,3,4}. There
is a natural total ordering (denoted by < to be distinguished
from <) on the values. Its graphical representation is a chain
of the values {1,2,3,4}. If 2.1 < y.2 where z.1 denotes in-
teger 1 for variable z, then .1 < y.3 because y.2 < 4.3. In
fact, the constraint 2 < y has to conform to the structure <
on integers. A more complex example, where the values of
each domain form a tree structure, will be presented later.

Related work is discussed and concluding remarks are
given in the conclusion.

Preliminaries
In this section, we introduce the basic concepts and notations
used in this paper.

Constraint Network A binary constraint network con-
sists of a set of variables V' = {z1, za, - - -, z,, } With a finite
domain D; for each variable z; € V, and a set of binary
constraints C. ¢, denotes a constraint on variables = and y
which is defined as a relation over D, and D,,. Operations
on relations, e.g., intersection (N), composition (o), and in-
verse, are applicable to constraints.

We assume that, between any ordered variables (z,y),
there is only one constraint. ¢, and c,, are considered to
be two different constraints, however, we assume the inverse
of ¢, is equal to ¢y,

Image Given a constraint c;, and a value v € D,, v €
D, is a support of u if u and v satisfy c,,, that is (u,v) €
Cqy. 'S iMage under c,,,, denoted by 7, (u), is the set of all
its supports in D,,. The image of a subset of D, is the union
of the images of its values.

k-consistency A constraint network is k-consistent if and
only if any consistent instantiation of any distinct £ — 1
variables can be consistently extended to any new variable.
A network is strongly k-consistent if and only if it is j-
consistent for all j < k. A strongly n-consistent network
is called globally consistent. 2- and 3-consistency are usu-
ally called arc consistency and path consistency respectively.
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Note that under this definition, we need to add a universal
constraint between variables which are not explicitly con-
strained by the network.

Matrix Representation A constraint ¢, can be repre-
sented by a boolean matrix whose rows are named by values
in D, and columns by values in D,. An entry in the ma-
trix is 1 if its row value and column value satisfy c,,,, and
otherwise is 0. For an example, see c,, in Fig. 1(a). The
composition of two constraints can be defined as the multi-
plication of boolean matrices. Path consistency is described
by the intersection and multiplication by many authors.

More materials on these concepts can be found in Mack-
worth (1977), Montanari (1974), Freuder (1978).

Trees, Chains, and Sets In the following we review trees
which play a fundamental role in the analysis of tree convex
constraints and introduce some new notations used in this
paper. A tree is a connected graph without any cycles. In the
rest of the paper, we always assume there is a root for a tree.
The path between any two nodes (or vertices) is unique and
the distance of a node to the root is defined as the number
of edges in the path between them. Given a tree, a subtree
is defined as a connected subgraph of the tree, and its root is
the node closest to the root of the tree.

A tree on a set S is a tree whose vertex set is exactly S.
We also call a set I a subtree of a tree T if there exists a
subtree of T whose vertex set is exactly 7. An empty set is
a subtree of any tree. A tree (subtree respectively) becomes
a chain (subchain) if each node of the tree (subtree) has at
most one child. The last value of a subchain is the farthest
one away from its root. For example, the graph in Fig. 1(b)
isatree on {a,b,c,d}. {a,b,c} is asubtree of it, and {a, b}
is a subchain whose last value is b.

The intersection of two trees is defined as the graph whose
vertices and edges are in both trees. It has the following

property:

Proposition 1 (Zhang & Yap 2003) Let 77,75 be two sub-
trees of some tree. The intersection of 77 and T5 is also a
subtree of the tree. Furthermore, if the intersection is not
empty, the root of the intersection is either the root of 77 or
that of T5.

Various convex constraints are introduced below.

Row Convex Constraints A constraint is row convex if
and only if in each row of its matrix representation, all 1’s
are consecutive. It is connected row convex if it is row con-
vex and all ones in any two neighboring rows are consecu-
tive.

Tree Convex Sets (Zhang & Yap 2003) Sets Ey,-- -, Ey,

are tree convex with respect to a tree T on |J E; if and
i€l..l
only if every E; is a subtree of T'. For example, given the

tree in Fig. 1(b), sets {a,b,c}, {a,b,d}, and {a,c,d} are
tree convex.

Tree Convex Constraints A constraint c,, is tree convex
with respect to a tree 7" on D,, if and only if the images of all
values in D, are tree convex with respect to 7". That c,,, is
tree convex might not mean that c,,, is tree convex. Consider
Cqy INFig. 1(a). The images of a, b, care {a, b, c}, {a,c,d},
and {a, b, d} respectively. They are tree convex with respect



to Fig. 1(b) and thus ¢, is tree convex with respect to that
tree. The readers are invited to verify that there is no tree to
make ¢, (in Fig. 1(c)) tree convex.

Relaxed Tree Convex Constraint Networks

In Zhang & Yap (2003), a tree convex constraint network
is defined as a network where all constraints are tree convex
with respect to a common tree on the union of all domains in
the network. In the following definition only the tree struc-
tures on individual domains matter.

Definition 1 A constraint network is tree convex if and only
if there exists a tree on each domain such that every con-
straint c,,, is tree convex with respect to the tree on D,,.

In the rest of the presentation, tree convexity always refers
to our new definition. This new definition is equivalent to the
old one if the domains are pairwise disjoint. One advan-
tage of the new definition is that even if the domains of two
variables of a constraint c;, share some values, it explicitly
allows us to use different tree structures for each domain in
deciding the tree convexity of c,, and c,,. Furthermore, it
helps simplify the presentation.

Here is the consistency result on tree convex networks:

Theorem 1 A tree convex constraint network is globally
consistent if it is path consistent.

The proof follows directly from the proof in Zhang & Yap
(2003) since the new definition does not affect the essential
part of that proof.

Properties of I nter section and Composition of
Tree Convex Constraints

A network can be made path consistent by removing from
the constraints the tuples which can not be consistently ex-
tended to a new variable. It is equivalent to the matrix com-
putation ¢,y = czyN(cz20¢2y ), Where o means composition.

As suggested by Theorem 1, we need to study the impact
of the intersection and composition operations on the tree
convexity of constraints.

Proposition 2 Assume constraints ¢, and c2,, are tree con-
vex wrt a tree 7" on the domain D,,. Their intersection is also
tree convex.

Proof. Let ¢,y = ¢}, N c2,. Forany v € D,, its images

under ¢! and ¢? are both subtrees of 7. The intersection of
the two images is a subtree of T, by Proposition 1. That is,
the image of every v € Dy is a subtree of T'. Hence c is tree
convex. O

The intersection of two subtrees may be an empty set,
which means that after the intersection of two tree convex
constraints, the image of a value could be empty. Deleting
such a value could make a constraint no longer tree convex.
An example is shown is Fig. 1.

It is also interesting to note that a constraint c,,, may be-
come tree convex after a sufficient number of values are re-
moved from D,,.

We identify a special class of tree convex constraints
which is closed under the operation of deleting values.

abed a
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Figure 1: (a) Constraint c,,, is represented by a matrix. The
column {a, b, c} after the matrix is the domain of = and the
row {a, b, ¢, d} above the matrix the domain of y. (b) A tree
constructed for the domain of y. (c) c;y is obtained from c,
by deleting the value a from the domain of y.

czy 1S tree convex with respect to the tree on D, in (b), but
c;y is not tree convex with respect to any tree.

Definition 2 A constraint c,, is locally chain convex with
respect to a tree on D, if and only if the image of every
value in D, is a subchain of the tree. A constraint network
is locally chain convex iff there exists a tree on each domain
such that every constraint c,,, is locally chain convex with
respect to the tree on D,,.

For example, under the tree for D, in Fig. 1(b), the con-
straint in Fig. 1(a) is not locally chain convex because the
image of a € D, is {a, b, c} which is not a subchain of the
tree on D,,. In fact, there does not exist any tree to make it
chain convex.

Proposition 3 A locally chain convex constraint network
(V, D, C) is still locally chain convex after the removal of
any value from any domain.

Proof. Assume the tree on D, is T and a value v is removed
from D,. The removal of v does not affect the property
of constraint c¢,,, € C forany z € V. We need to show
that for all x € V, constraint ¢, is locally chain convex.
The deletion of v could make some subchain not connected.
By constructing a new tree 7" on D, those broken sub-
chains would be connected under 7. Let the children of v
be vy, -+, v;. Construct a new tree T” from T' by removing
v and all edges incident on v. If v is the root of T°, construct
T" from T’ by adding an edge between v; and v; for all
i(2 <1 <1). Otherwise, let p, be the parent of v in 7', and
construct 7 from 7" by adding an edge between p,, and v;
forall i(1 < ¢ < ). In either case, we can verify that the
claim holds under 7. O

Now let us study a property of the composition of tree
convex constraints. Let us use a more intuitive way than
matrix multiplication to understand the composition. See
Fig. 2. After composing c,, and c, ., the image of a under
the composition ¢, is {a, b, ¢, d} which is exactly the union
of the images of b and d in D,, under c,,. We know that
{b,d} is the image of a under c,,. In short, the image of a
under ¢, is the image of I,,(a) under c,..

By this understanding we can construct an example where
the composition does not preserve the property of tree con-
vexity; and we are also able to identify conditions under
which tree convexity is preserved under the composition.
The intuition behind the following special class of con-
straints is that given a constraint c,,,, the image of any sub-
tree of D, should be a connected graph (thus a subtree of
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Figure 2: The composition of two constraints. In the dia-
grams in this paper, a value is drawn as a dot or letter, and
a variable is drawn as an ellipse. The values inside an el-
lipse form the domain of the corresponding variable. The
edges between two ellipses form the constraint between the
variables.

the tree on D,)).

Definition 3 A tree convex constraint c,,, is consecutive wrt
atree T, on D, if and only if every two neighboring values
on T, share a common support. A constraint network is tree
convex and consecutive iff there exists a tree on each domain
such that every constraint c,,, is tree convex and consecutive
wrt the trees on D, and D,

Proposition 4 The class of consecutive tree convex con-
straints is closed under composition.

Proof. Let c,,, and c,, be two consecutive tree convex con-
straints with trees 7,,, Ty, and 7%, on D, D,;, and D, respec-
tively, and ¢, the composition of c,,, and c,,. Firstly, we
show that c,., is tree convex. Consider any v € D,. Let its
image in D, be I,(v). Thei image of v under c,, would be
Uper, (v) 1= ( ) Where I.(b) is the image of b under ¢, (here
we need the intuitive understanding of the composition dis-
cussed above). Since the intersection of the images of any
neighboring values in I, (v) is non empty, the union of all the
images of values in I, (v) is connected and thus is a subtree
of ..

Secondly, we show that ¢, is consecutive. Let u,v € D,
be neighbors. Let I,(u) and I.(v) be their images under
Czz- SiNCe ¢y, is cOnsecutive, the images of « and v share a
value w € D,. Hence, the image of w in D, will appear in
both I, (u) and I, (v). O

Tractable Tree Convex Constraint Networ ks

We are now in a position to explore the conditions under
which tree convex constraint networks are tractable. A first
attempt is to combine the local chain convexity with consec-
utiveness. However, the composition may destroy the chain
convexity, as shown by the example in Fig. 3(a).

The image of a value under the composition is the union
of several subchains. This union can not be guaranteed to
be a subchain by the consecutiveness of the constraints. We
need a stronger restriction.

Definition 4 A locally chain convex constraint ¢, (wrt a
tree T}, on D,) is strictly union closed wrt a tree 73, on D,
iff the image of any subchain of T is a subchain of 7.

Remark Strict union closedness implies consecutiveness
for a locally chain convex constraint network; but consecu-
tiveness might not imply union closedness as shown by the
example in Fig. 3.
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Figure 3: In this diagram, we draw the tree on a domain
inside an ellipse. (a) Both ¢,, and c,. are locally chain
convex, but their composition is not because the image of
b € D, under this composition is {b,c,d} (the darkened
shape), which is not a subchain. (b) ¢, contains the solid
linesin D,. t, contains (p,,7,1,¢). t, contalns (r,1).

(b)

Now we have the main result on a class of tractable con-
straint networks.

Definition 5 A constraint network is locally chain convex
and strictly union closed iff there exists a tree on each do-
main such that every constraint c,, is locally chain convex
(wrt the tree on D,) and strictly union closed (wrt the tree
on D,).

Theorem 2 A locally chain convex and strictly union closed
constraint network (V,D,C) can be transformed to an
equivalent globally consistent network in polynomial time.

Proof. We show that after enforcing arc and path consis-
tency on the given network, it is locally chain convex. In
accordance with Theorem 1, the new network is globally
consistent. It is known that arc and path consistency enforc-
ing (Zhang & Yap 2001) are of polynomial complexity.

Since arc consistency enforcing only removes values from
domains, the consequent network is still locally chain con-
VeX.

Next we show that the removal of any value v € D, pre-
serves strict union closedness. For all x € V, ¢y is still
strictly union closed (similar to the proof of Proposition 3).
Consider a constraint c,,,, for any variable z € V. If itis still
strictly union closed, the claim is true. Otherwise, there ex-
ists a subchain, denoted by ¢, of D,, which contains exactly
v and its parent and child, such that its image is no longer a
connected graph due to the removal of v. See Fig. 3(b). Let
t, be the image of ¢,, before removing v. After the removal
of v, t,, is broken |nto two chains. Let the gap (removed sub-
chain) in ¢, be t,.. Note ¢, might not be equal to the image of
v due to possible overlapping of the image of v and that of
its parent and/or child. Let r be the root and [ the last node of
t.. Let p, and p, be the parents of v and r respectively, and
¢, and ¢; the children of v and [ respectively. Consider any
node u € t,. We know that « is supported by v, but not by
Dy NOT DY ¢, int,. Further, since c,, is strictly union closed,
the image of ¢, must be a subchain containing (p,, v, ¢,). It
implies that the image of « must be on or contain the sub-
chain (p,, v, c,) . Hence, v is the only support of w. After it
is gone, u should also be removed. After the removal of ¢..,
the image of ¢,, is now connected and thus a subchain.



Next we show that path consistency enforcing preserves
the local chain convexity and strict union closedness. For
any constraint ¢, path consistency is usually done by first
composing ¢, and ¢, and then setting the new constraint
between x and z to be the intersection of the composition
and c,,.

Firstly, we show that the composition of ¢, and c,. is
locally chain convex and strictly union closed. 1) For any
v € Dy, its image ¢, is a subchain. Since c,, is strictly
union closed, the image of ¢, in D is also a subchain. We
know that the image of v under the composition is the image
of t, in D,. 2) For any subchain ¢, € D,, its image t; under
Czy 1S also a subchain due to the strict union closedness of
Czy- Thanks to the strict union closedness of ¢, again, the
image of t; is a subchain of D,: that is, the image of ¢,
under the composition is a subchain.

Figure 4: (@) c,, N .. In the intersection, assume b and ¢
are not shared by the images of v under c,, and under ¢, .
The constraints ¢, and ¢/, should have a form as shown in
(b) and (c).

Secondly, we show that the intersection ¢, of ¢,, and

X

¢, (= ¢y © ¢y2) IS locally chain convex and strictly union
closed. Local chain convexity is preserved under intersec-
tion in accordance with Proposition 3.

We now prove the strict union closedness of the constraint
c”_. In this paragraph, when we refer to image, it is under
.. Assume there is a subchain ¢,, in D, whose image t” is
not a subchain. Since the intersection does not form a cycle,
t” must not be connected. Starting from the root of ¢, we
find the first value v € t,, whose image is disjoint from the
image of its parent p,,. Assume the image of v is below the
image of p, (the opposite can be proved similarly). Let a be
the last value of p,’s image. Let d be the root of v’s image.
See Fig. 4(a). Let u be any value between (but not including)
a and d in D,. We next prove that there is no support for w.
Hence it should be removed and thus the image of ¢, is a
chain after the deletion.

Let p,’s images under c,, and ¢, be I(p,) and I'(p,)
respectively. The intersection of I(p,) and I'(p,) is a sub-
chain of D,. Since both I(p,) and I’(p,) are subchains, a
must be the last value of either I(p,) or I'(p,). Assume it
is the last value of I(p,). See Fig. 4(b). This implies p,, is
not in w’s image I(u) under ¢, since w is between a and d.
I(u) has to be below p, (not including it) because I(u) is a
chain. Let I(v) and I’(v) be the images of v under ¢, and
¢, respectively. I(v) should include at least d and all val-

ues between a and d in the tree D, because the chain (p,,, v)
is strictly union closed. For d is the root of I(v) N I'(v),
I’(v) includes d but does not include values above d (see
Fig. 4(c)). Hence, v is not a support of v, implying that
I'(u) has to be above v (not including it). Therefore, the
image of u under ¢, is empty because it is the intersection
of I(u) and I'(u). In other words, u has no support in the
intersection of ¢, and ¢/,,.

Finally, path consistency also involves universal con-
straints. It can be verified that strict union closedness and
local chain convexity of a constraint are preserved when it is
composed and intersected with a universal constraint.

There may be universal constraints in the final path con-
sistent network, but the tree convexity of all constraints is
sufficient to ensure the global consistency of the network. O

In fact the strict union closedness can be further relaxed
in the following way.

Definition 6 A locally chain convex constraint c,,, is union
closed if and only if for any subchain of D,, its image is
either a subchain of D, or the whole tree of D,,.

Locally chain convex constraint networks with relaxed
union closedness are still tractable.

Theorem 3 A locally chain convex and union closed con-
straint network (V, D, C') can be transformed to an equiva-
lent globally consistent network in polynomial time.

This can be proved similarly to Theorem 2.

Application of Tree Convex Networks

Scene labeling problems are NP-hard (Kirousis & Papadim-
itriou 1988). In the following, we show that some scene
labeling instances can be naturally modeled by tree convex
constraints.

Consider the labeling of the line drawing in Fig. 5 taken
from van Beek & Dechter (1995). Traditionally, it is mod-
eled as a constraint network in the following way. Each ver-
tex ¢ is a variable x;. A value for a variable is the edges in-
cident on this vertex and a label (of +, - or >) on each edge.
For example, the edges on vertex 1 form a fork. There are
six possible ways to label the fork (Fig. 5), and thus x; has
six values. Similarly, we have two other domains of values:
Arrow and Ell as shown in Fig. 5. The constraint is that any
two variables should share the same labeling on their shared
edge (see Fig. 6).

Fork +a+ _b R _d e
| YYYYY
Rl VANV

Figure 5: On the left is a line drawing and on the left is a
table of the values necessary to model the labeling of this
drawing
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A distinctive feature of this model is that the values of a
variable have complex structures and there is some natural
relationship among them. Consider the fork values in Fig. 5.
Values ¢, d, and e have an edge labeled as -, and all three
edges of b are labeled as - . We can let b be the parent of ¢, d
and e, resulting in the subtree {b, ¢, d, e} in Fig. 6(a). Since
value a has nothing to do with the rest, we simply connect it
with b to make a tree for all fork values. Similarly we have
tree structures for Arrow values in Fig. 6(b) and EIl values
in Fig. 6(c). The tree on EIll values is not constructed by
intuition only, but also by the constraints on the EIl values.
Under these trees, the constraints are both locally chain con-
vex and union closed. Note that for constraint ¢;5 (and some
other constraints), the image of the subchain (a, b, ¢) of the
tree on the domain of x; ( Fig. 6(a)) is the whole tree of Dy
(the Arrow tree in Fig. 6(b)). Note also that an empty set is
taken as a (trivial) subchain of any tree.

This network is globally consistent after enforcing arc and
path consistency on it.

Constraints co1, ¢31, and cs; are not row convex. They are
“connected row convex” as defined by Deville, Barette, &
Van Hentenryck (1997) in the sense that their reduced forms
(by deleting the values without any support) are connected
row convex (as defined in the preliminary section of this pa-
per).

To see the difference between connected row convexity,
and locally chain convexity and union closedness, we mod-
ify o1, c31, and c51 by allowing v to be compatible with ev-
ery value in the domains of x5, 23 and x5 respectively. Now
the new constraints are no longer connected row convex (as
defined by Deville, Barette, & Van Hentenryck (1997)), but
are still locally chain convex and union closed.

In this example, we can identify the tree structures for
some domains in an intuitive way. However, there also exists
some domain to construct a tree for which we need more
knowledge about the constraints on it. It is both interesting
and challenging to explore the principles of the construction
of trees for domain values appearing in the scene labeling
problems.

A more general lesson is that by studying the semantics of
domain values, we could discover more efficient constraint
solving techniques.

a
abcde |
01100] 01010 01001 b
cg1 = [10000| v c31 = | 10000| c51 = | 10000 /Ji\
10000 | w 10000 10000 © ¢
- (a) Fork
123456 4
v 001000 w 2N

/\ coa = car = cs6 = | 000001 | v PN

000110 | w 2 6
u w F |
100000 3
(b) Arrow  ¢o6 = ¢34 = 57 = | 000100
(© Ell
000011

Figure 6: The constraints for labeling the drawing in Fig. 5
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Conclusion

We have identified a new tractable class of networks: lo-
cally chain convex and union closed networks. This result
not only generalizes the existing work, but also shows an
direct interaction between the semantics of constraints and
the semantics of domain values in deciding a tractable class
of problems. This interaction is reflected in the properties
of intersection and composition of tree convex constraints.
An application of the new tractable class of networks is also
presented, demonstrating that tree convexity is a useful way
to characterize the semantics of domain values, in addition
to the traditional ones like total ordering.

Compared with the work on connected row convexity by
Deville et al. (1997), our work reveals more fundamen-
tal properties — local chain convexity and union closedness
— that determine the tractability of a class of convex con-
straints. The new tractable class covers more networks.
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