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Abstract

There are a number of frameworks for modelling argumen-
tation in logic. They incorporate a formal representation of
individual arguments and techniques for comparing conflict-
ing arguments. An example is the framework by Besnard and
Hunter that is based on classical logic and in which an ar-
gument (obtained from a knowledgebase) is a pair where the
first item is a minimal consistent set of formulae that proves
the second item (which is a formula). In the framework, the
only counter-arguments (defeaters) that need to be taken into
account are canonical arguments (a form of minimal under-
cut). Argument trees then provide a way of exhaustively col-
lating arguments and counter-arguments. A problem with this
set up is that some argument trees may be “too big” to have
sufficient impact. In this paper, we address the need to in-
crease the impact of argumentation by using pruned argument
trees. We formalize this in terms of how arguments resonate
with the intended audience of the arguments. For example, if
a politician wants to make a case for raising taxes, the argu-
ments used would depend on what is important to the audi-
ence: Arguments based on increased taxes are needed to pay
for improved healthcare would resonate better with an audi-
ence of pensioners, whereas arguments based on increased
taxes are needed to pay for improved transport infrastructure
would resonate better with an audience of business execu-
tives. By analysing the resonance of arguments, we can prune
argument trees to raise their impact.

Introduction
Consider reading an article in a current affairs magazine
such as the Economist or Newsweek. Such an article only
has a relatively small number of arguments. These argu-
ments are quite a small subset of all possible arguments that
either the writer or the reader could construct from their own
knowledgebases. In producing an article, a writer regards
some arguments as having higher impact with the intended
audience than others, and only the higher impact ones are
used. In a sense, there is some filter on the argument tree
that can be constructed.

This perspective raises two questions: (1) What is this
notion of impact? (i.e. what does it mean and how do we
measure it in practice?) and (2) Given a measure of impact,
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how do we use it as a filter on arguments? In this paper, we
look at some of the issues surrounding these questions.

To characterize these issues we use an existing frame-
work for logic-based argumentation by Besnard and Hunter
(Besnard & Hunter 2001). In the next section, we review
this framework. Then in subsequent sections, we show how
this can be adapted for higher impact argumentation.

Logic-based argumentation
We consider a propositional language. We use α, β, γ, . . . to
denote formulae and ∆,Φ,Ψ, . . . to denote sets of formulae.
Deduction in classical propositional logic is denoted by the
symbol � and deductive closure by Th so that Th(Φ) = {α |
Φ � α}.

For the following definitions, we first assume a knowl-
edgebase ∆ (a finite set of formulae) and use this ∆ through-
out. We further assume that every subset of ∆ is given an
enumeration 〈α1, . . . , αn〉 of its elements, which is called
its canonical enumeration. This really is not a demanding
constraint: In particular, the constraint is satisfied whenever
we impose an arbitrary total ordering over ∆. Importantly,
the order has no meaning and is not meant to represent any
respective importance of formulae in ∆ is imposed. It is
only a convenient way to indicate the order in which it is
assumed the formulae in any subset of ∆ are conjoined to
make a formula logically equivalent to that subset.

The paradigm for the approach is a large repository of in-
formation, represented by ∆, from which arguments can be
constructed for and against arbitrary claims. Apart from in-
formation being understood as declarative statements, there
is no a priori restriction on the contents, and the pieces of
information in the repository can be as complex as possible.
Therefore, ∆ is not expected to be consistent. It need even
not be the case that every single formula in ∆ is consistent.

The framework adopts a very common intuitive notion of
an argument. Essentially, an argument is a set of relevant
formulae that can be used to classically prove some point,
together with that point. Each point is represented by a for-
mula.

Definition 1 An argument is a pair 〈Φ, α〉 such that: (1)
Φ �� ⊥; (2) Φ � α; and (3) there is no Φ′ ⊂ Φ such that
Φ′ � α. We say that 〈Φ, α〉 is an argument for α. We call
α the consequent of the argument and Φ the support of the
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argument. We also say that Φ is a support for α. For an
argument 〈Φ, α〉, let Support(〈Φ, α〉) = Φ.

Example 1 Let ∆ = {α, α → β, γ → ¬β, γ, δ, δ →
β,¬α,¬γ}. Some arguments are:

〈{α, α→ β}, β〉
〈{¬α},¬α〉

〈{α→ β},¬α ∨ β〉
〈{¬γ}, δ → ¬γ〉

Arguments are not independent. In a sense, some encom-
pass others. This is clarified as follows.

Definition 2 An argument 〈Φ, α〉 is more conservative
than an argument 〈Ψ, β〉 iff Φ ⊆ Ψ and β � α.

Example 2 〈{α}, α ∨ β〉 is more conservative than
〈{α, α→ β}, β〉. Here, the latter argument can be obtained
from the former (using α → β as an extra hypothesis) but
this is not the case in general.

Some arguments directly oppose the support of others,
which amounts to the notion of an undercut.

Definition 3 An undercut for an argument 〈Φ, α〉 is an ar-
gument 〈Ψ,¬(φ1 ∧ . . . ∧ φn)〉 where {φ1, . . . , φn} ⊆ Φ.

Example 3 Let ∆ = {α, α → β, γ, γ → ¬α}. Then,
〈{γ, γ → ¬α},¬(α ∧ (α → β))〉 is an undercut for
〈{α, α → β}, β〉. A less conservative undercut for
〈{α, α→ β}, β〉 is 〈{γ, γ → ¬α},¬α〉.
Definition 4 〈Ψ, β〉 is a maximally conservative undercut
of 〈Φ, α〉 iff 〈Ψ, β〉 is an undercut of 〈Φ, α〉 such that no un-
dercuts of 〈Φ, α〉 are strictly more conservative than 〈Ψ, β〉
(that is, for all undercuts 〈Ψ′, β′〉 of 〈Φ, α〉, if Ψ′ ⊆ Ψ and
β � β′ then Ψ ⊆ Ψ′ and β′ � β).

Definition 5 An argument 〈Ψ,¬(φ1∧. . .∧φn)〉 is a canon-
ical undercut for 〈Φ, α〉 iff it is a maximally conservative
undercut for 〈Φ, α〉 and 〈φ1, . . . , φn〉 is the canonical enu-
meration of Φ.

An argument tree describes the various ways an argument
can be challenged, as well as how the counter-arguments to
the initial argument can themselves be challenged, and so on
recursively.

Definition 6 An argument tree for α is a tree T where the
nodes are arguments such that

1. The root is an argument for α.
2. For no node 〈Φ, β〉 with ancestor nodes

〈Φ1, β1〉, . . . , 〈Φn, βn〉 is Φ a subset of Φ1 ∪ · · · ∪ Φn.
3. The children nodes of a node A are canonical undercuts

for A that obey 2.

A complete argument tree for α is an argument tree for
α such that the children nodes of a node A consist of all
canonical undercuts for A that obey 2.

As a notational convenience, in examples of argument
trees we will use the � symbol to denote the consequent
of an argument when that argument is a canonical undercut.

Definition 7 Let T be an argument tree and let T = (N,E)
where N is a set of nodes and E is a set of edges. The set of
nodes in T is given by Nodes(T ) = N .

Definition 8 Let T1 and T2 be argument trees. T1 is more
or equally pruned than T2 iff Nodes(T1) ⊆ Nodes(T2).
For a complete argument tree T , let Space(T ) = {T ′ |
T ′ is more or equally pruned than T}.

In Space(T ), the least pruned tree is T , and the most
pruned tree is the tree given by the empty argument tree (i.e.
the tree with no nodes or arcs).

Whilst the use of canonical arguments simplifies the com-
plete argument trees enormously, they may still be “too big”
in the sense that too many of the arguments used do not res-
onate with the intended audience. In this paper, we formal-
ize how arguments resonate with the intended audience. By
analysing the resonance of arguments, we can prune argu-
ment trees to raise their impact.

Resonance of arguments
The impact of argumentation depends on what an agent re-
gards as important. Different agents think different things
are important. We adopt a simple way, called a desider-
atabase, of capturing what an agent in the intended audience
thinks is important, and then use this to measure how argu-
ments resonante with the agent.

Definition 9 A desideratabase for an agent is a tuple
(Π, λ) where (1) Π is a set of classical propositional for-
mulae called a set of desiderata and (2) λ is mapping from
Π to [0, 1] called a desiderata weighting. For δi, δj ∈ Π, δi
is a more important desideratum than δj for the agent iff
λ(δj) < λ(δi). A unit desiderata weighting λ is a desider-
ata weighting such that for all δ ∈ Π, λ(δ) = 1. For desider-
ata weighting λ1 and λ2, λ1 is stronger than or equal to λ2

iff for all δ ∈ Π, λ2(δ) ≤ λ1(δ).

Intuitively, a desideratum (a formula in a desiderata) rep-
resents what an agent would like to be true in the world.
There is no constraint that it has to be something that the
agent can actually make true. It may be something unattain-
able such as “there will be no more wars” or “bread and
milk is free for everyone”. There is also no constraint that
the desiderata for an agent are consistent.

We can view a desiderata weighting λ as delineating a
ranking over possible worlds (where the set of worlds is the
set of classical interpretations given by the propositional lan-
guage of Π). We do not provide details in this paper.

Definition 10 Let (Π, λ) be a desideratabase, and let
〈Φ, α〉 be an argument. 〈Φ, α〉 is a resonating argument
iff for some δ ∈ Π, Φ � δ or Φ � ¬δ .

So for an argument to have an impact on an agent, the
support for the argument must imply a desideratum or the
negation of a desideratum.

Definition 11 Let (Π, λ) be a desideratabase, and let
〈Φ, α〉 be a argument. The echo of this argument with re-
spect to the desiderata is defined as follows

Echo(Φ,Π) = {δ ∈ Π | (Φ � δ or Φ � ¬δ)}
Note if (Π1, λ1) and (Π2, λ2) are desideratabases, such

that Th(Π1) ⊆ Th(Π2), and Φ is the support of an argu-
ment, then it is not necessarily the case that Echo(Φ,Π1) ⊆

276    KNOWLEDGE REPRESENTATION & REASONING  



Echo(Φ,Π2) or that Echo(Φ,Π2) ⊆ Echo(Φ,Π1), as illus-
trated in the next example.

Example 4 Let Π1 = {α, β ∧ γ}, Π2 = {α ∧ β, γ},
and let Φ = {α, γ}. So Echo(Φ,Π1) = {α} and
Echo(Φ,Π2) = {γ}. Hence Echo(Φ,Π1) �⊆ Echo(Φ,Π2)
and Echo(Φ,Π2) �⊆ Echo(Φ,Π1).

Obviously if an agent has no desiderata, Π = ∅, then
for any argument 〈Φ, α〉, Echo(Φ,Π) = ∅. At the other
extreme, if every desideratum that an agent has is incon-
sistent with itself, i.e. for all δ ∈ Π, {δ} � ⊥, then
� � ↔ ¬δ, and so for any argument 〈Φ, α〉, Φ � ¬δ, and
hence Echo(Φ,Π) = Π.

Definition 12 Let (Π, λ) be a desideratabase, and let
〈Φ, α〉 be a argument. The resonance of this argument with
respect to the desideratabase is defined as follows

Resonance(Φ,Π, λ) =
∑

δ∈Echo(Φ,Π)

λ(δ)

The resonance function captures the weighted sum of the
echo of the argument. This reflects the importance that the
agent attaches to the argument.

Example 5 Let Π = {β, γ}, λ(β) = 1, and λ(γ) = 0.5.
Let A1 and A2 be arguments as below where A2 is a canon-
ical undercut for A1.

A1 = 〈{β, β → α}, α〉
A2 = 〈{¬(β ∨ γ)},¬(β ∧ (β → α))〉

Hence we get the following resonance values.

Resonance(Support(A1),Π, λ) = 1.0
Resonance(Support(A2),Π, λ) = 1.5

The resonance function is monotonic in the membership
of the support of the argument.

Proposition 1 Let Φ1 and Φ2 be supports for arguments
and let (Π, λ) be a desideratabase. If Φ1 ⊆ Φ2, then
Resonance(Φ1,Π, λ) ≤ Resonance(Φ2,Π, λ).

Similarly, a logically weaker support for an argument has
a lower resonance.

Proposition 2 Let Φ1 and Φ2 be supports for arguments
and let (Π, λ) be a desideratabase. If Th(Φ1) ⊆ Th(Φ2),
then Resonance(Φ1,Π, λ) ≤ Resonance(Φ2,Π, λ).

With unit desiderata weighting, the resonance function is
also monotonic in the membership of the desideratabase.

Proposition 3 Let Φ be a support for an argument and let
(Π1, λ1) and (Π2, λ2) be desideratabases, where λ1 and
λ2 are unit desiderata weightings. If Π1 ⊆ Π2, then
Resonance(Φ,Π1, λ1) ≤ Resonance(Φ,Π2, λ2).

However, if (Π1, λ1) and (Π2, λ2) are desideratabases,
such that Th(Π1) ⊆ Th(Π2) and λ1 and λ2 are unit
desiderata weightings, and 〈Φ, α〉 is an argument, then we
see in the next example that it is not necessarily the case
that Resonance(Φ,Π1, λ1) ≤ Resonance(Φ,Π2, λ2), and
it is not necessarily the case that Resonance(Φ,Π2, λ2) ≤
Resonance(Φ,Π1, λ1).

Example 6 Let (Π1, λ1) and (Π2, λ2) be desideratabases
where Π1 = {α, β} and Π2 = {α ∧ β, γ} and λ1 and
λ2 are unit desiderata weightings. So Th(Π1) ⊆ Th(Π2).
Also let Φ = {β} and Φ′ = {γ}. So Echo(Φ,Π1) = {β},
Echo(Φ,Π2) = ∅, Echo(Φ′,Π1) = ∅, and Echo(Φ′,Π2) =
{γ}. So Resonance(Φ,Π2, λ2) < Resonance(Φ,Π1, λ1)
and Resonance(Φ′,Π1, λ1) < Resonance(Φ′,Π2, λ2)

There are various other ways to define one desideratabase
being logically weaker than another. One way, given in
the following proposition, implies that the logically weaker
desideratabase leads to a higher resonance for an argument.

Proposition 4 Let Φ be a support for an argument and let
(Π1, λ1) and (Π2, λ2) be desideratabases. If there is a bi-
jectionG from Π1 to Π2 such that for all δ ∈ Π1 {δ} � G(δ)
and λ1(δ) ≤ λ2(G(δ)), then Resonance(Φ,Π1, λ1) ≤
Resonance(Φ,Π2, λ2).

Desiderata weighting can also have a net effect on res-
onance. At one extreme, if λ(δ) = 0 for all δ ∈ Π,
then Resonance(Φ,Π, λ) = 0. At the other extreme, if
λ(δ) = 1 for all δ ∈ Π, (i.e. λ is a unit weighting) then
Resonance(Φ,Π, λ) = |Echo(Φ,Π)|. More generally, in-
creasing the strength of the weighting in a desideratabase
also increases resonance as formalised in the next proposi-
tion.

Proposition 5 Let Φ be a support for an argu-
ment and let (Π, λ1) and (Π, λ2) be desider-
atabases. If λ1 is stronger than or equal to λ2, then
Resonance(Φ,Π, λ2) ≤ Resonance(Φ,Π, λ1).

Finally in this section, we need to measure the cost of an
argument. We will use an obvious and simple measure: The
cost of an argument is the number of different propositional
letters used in the support of the argument. So for a support
Φ, and using the definition of Propositions given below, the
cost is the cardinality of Propositions(Φ).

Definition 13 The set of propositional letters used in φ ∈
L is given by Propositions(φ), and the set of propositional
letters used in Φ ⊆ L is given by

Propositions(Φ) =
⋃

φ∈Φ

Propositions(φ)

Example 7 Propositions(α∨(β → (α∨¬δ))) = {α, β, δ}.

For this measure of the cost of an argument, we are as-
suming that an agent in the audience prefers arguments with
fewer propositional letters, since they are simpler to read and
analyse. We draw Definitions 13 and 12 together in the next
section.

Measuring impact of argument trees
Now we want to consider resonance and cost in the context
of an argument tree. For this, we want resonance of a tree
to be sensitive to the depth of the arguments in the tree. We
formalise this with the following notion of a discount func-
tion.
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Definition 14 For any argument tree T , the function Depth
from Nodes(T ) to N is such that for the root Ar ∈
Nodes(T ), Depth(Ar) = 1, and for all nodes Ai ∈
Nodes(T ), if Depth(Ai) = n, then for any child Aj of Ai in
T , Depth(Aj) = n+ 1.

Definition 15 A discount function is a monotonically de-
creasing function from N to [0, 1]. So if µ is a discount func-
tion, then µ(n) ≥ µ(n + 1) for all n ∈ N. For a discount
function µ, the boundary of µ is n ∈ N such that µ(n) > 0
and µ(n + 1) = 0. A unit discount function is a discount
function µ such that for all n ∈ N, µ(n) = 1. A unit-step
discount function is a discount function µ such that for all
n ∈ N, µ(n) = 1 or µ(n) = 0. Let µ1 and µ2 be discount
functions. µ1 is more or equally discounting than µ2 iff for
all n ∈ N, µ1(n) ≤ µ2(n).

Definition 16 A context is a tuple (Π, λ, µ) where (Π, λ)
is a desideratabase, and µ is a discount function. A unit
context is a context (Π, λ′, µ′) where λ′ is a unit desiderata
weighting, and µ′ is a unit discount function.

A unit context is an extreme context where neither the
desiderata weighting nor the discount have any net effect
on the outcome. In other words, with a unit context the
resonance of an argument tree is only based on the actual
desiderata.

We now consider a definition for measuring the resonance
of an argument tree. This definition takes a sum of the res-
onance of the arguments in the tree where the net effect of
each argument is scaled by the discount function. The dis-
counting increases going down the tree. So arguments at a
greater depth have a reduced net effect on the resonance of
the tree.

Definition 17 The resonance of the argument tree
T with respect to the context (Π, λ, µ), denoted
Resonance(T,Π, λ, µ), is defined as follows

∑

A∈Nodes(T )

Resonance(Support(A),Π, λ) × µ(Depth(A))

Definition 18 The propositional cost of an argument tree
T denoted Propositionalcost(T ) is the cardinality of the fol-
lowing set.

⋃

A∈Nodes(T )

Propositions(Support(A))

The above measure of cost is log2 of the number of clas-
sical interpretations for the supports of the arguments in T .

Definition 19 For a context (Π, λ, µ), the impact of an ar-
gument tree T with one or more nodes is given by the fol-
lowing ratio,

Impact(T,Π, λ, µ) =
Resonance(T,Π, λ, µ)
Propositionalcost(T )

and for the empty argument tree T∅ (i.e. the tree with no
nodes), Impact(T∅,Π, λ, µ) = 0.

Pruning an argument tree may decrease the cost, but
this may also decrease the resonance. In a unit context,

Impact(T,Π, λ, µ) gives the ratio of desiderata in the echo
of the arguments in T to the propositional letters used in the
support of the arguments in T .

When measuring impact with a non-unit context, we are
also taking into account the relative interest in the desider-
ata and the relative depth of the arguments in the argument
trees. These orthogonal factors help to better evaluate the
impact for a particular audience. We therefore see selection
of an appropriate context as an important design decision in
developing an argumentation system. In some applications,
we want fewer arguments per argument tree and in other ap-
plications we want more arguments per argument tree.

In the following example, we use the impact function to
compare three argument trees, T1, T2 and T3, where T3 is
a complete argument tree, and T1 and T2 are more pruned
than T3.

Example 8 Let ∆ = {β, β → α, γ, γ → ¬β,¬γ ∧ δ} From
this, we obtain the following (non-exhaustive) list of argu-
ments.

A1 = 〈{β, β → α}, α〉
A2 = 〈{γ, γ → ¬β},¬(β ∧ (β → α))〉
A3 = 〈{¬γ ∧ δ},¬(γ ∧ (γ → ¬β))〉

Let Nodes(T1) = {A1}, Nodes(T2) = {A1, A2}, and
Nodes(T3) = {A1, A2, A3} giving the following argument
trees, where T3 is a complete argument tree, and T2 is more
pruned than T3, and T1 is more pruned than T2.

A1 A1 A1

↑ ↑
A2 A2

↑
A3

Let (Π, λ, µ) be a unit context where Π = {β,¬γ, δ}.
Echo(A1,Π) = {β}, Echo(A2,Π) = {β,¬γ}, and
Echo(A3,Π) = {¬γ, δ}. Hence

Resonance(T1,Π, λ, µ)
= (Resonance(Support(A1),Π, λ) × µ(1))
= (1 × 1) = 1

Resonance(T2,Π, λ, µ)
= (Resonance(Support(A1),Π, λ) × µ(1))

+(Resonance(Support(A2),Π, λ) × µ(2))
= (1 × 1) + (2 × 1) = 3

Resonance(T3,Π, λ, µ)
= Resonance(Support(A1),Π, λ) × µ(1))

+Resonance(Support(A2),Π, λ) × µ(2))
+Resonance(Support(A3),Π, λ) × µ(3))

= (1 × 1) + (2 × 1) + (2 × 1) = 5

Since Propositionalcost(T1) = 2, Propositionalcost(T2) =
3, and Propositionalcost(T3) = 4, we get
Impact(T1,Π, λ, µ) = 1

2 , Impact(T2,Π, λ, µ) = 3
3 , and

Impact(T3,Π, λ, µ) = 5
4 . If we use an alternative discount

function, where µ2(1) = 1, µ2(2) = 0.5, and µ2(3) = 0,
then Impact(T1,Π, λ, µ2) = 1

2 , Impact(T2,Π, λ, µ2) = 2
3 ,

and Impact(T3,Π, λ, µ2) = 2
4 . So with the unit discount
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function µ, the complete argument tree T3 has the highest
impact, whereas with the non-unit discount function µ2, the
pruned argument tree T2 has the highest impact.

When (Π, λ, µ) is not a unit context, the following result
summarizes the conditions for zero impact.

Proposition 6 Let (Π, λ, µ) be a context, and let T be
an argument tree. Impact(T,Π, λ, µ) = 0 iff for all
A ∈ Nodes(T ) (δ ∈ Echo(Support(A),Π) implies
(µ(Depth(A)) = 0 or λ(δ) = 0))).

The following series of propositions are counterparts to
propositions given for the behaviour of resonance.

Proposition 7 Let (Π, λ) be a desideratabase, let T be
an argument tree and let µ1 and µ2 be discount func-
tions. If µ1 is more or equally discounting than µ2 then
Impact(T,Π, λ, µ1) ≤ Impact(T,Π, λ, µ2).

Proposition 8 Let T be an argument tree and let (Π1, λ1)
and (Π2, λ2) be desideratabases, where λ1 and λ2 are unit
desiderata weightings, and µ is a discount function. If Π1 ⊆
Π2, then Impact(T,Π1, λ1, µ) ≤ Impact(T,Π2, λ2, µ).

Proposition 9 Let Φ be a support for an argument and let
(Π1, λ1) and (Π2, λ2) be desideratabases. If there is a bi-
jection G from Π1 to Π2 such that for all δ ∈ Π1 {δ} �
G(δ) and λ1(δ) ≤ λ2(G(δ)), then Impact(T,Φ,Π1, λ1) ≤
Impact(T,Φ,Π2, λ2).

Replacing an argument in an argument tree with a logi-
cally equivalent argument that does not introduce redundant
propositional letters results in the same impact as the origi-
nal argument tree.

Proposition 10 Let (Π, λ, µ) be a context. Let T
and T ′ be two isomorphic arguments trees. So
T = (N,E) and T ′ = (N ′, E′) and there is a bi-
jection F : N �→ N ′ such that (Ai, Aj) ∈ E iff
(F (Ai), F (Aj)) ∈ E′. If the bijection F is such that
for all arguments A ∈ N , Propositions(Support(A)) =
Propositions(Support(F (A))) and Th(Support(A))) =
Th(Support(F (A))), then Impact(T,Π, λ, µ) =
Impact(T ′,Π, λ, µ).

Impact is not a monotonic function (i.e. increasing the
size of the tree, can increase or decrease the impact): If
T1 is more pruned than T2, then it is not necessarily the
case that Impact(T1,Π, λ, µ) ≥ Impact(T2,Π, λ, µ), and
it is not necessarily the case that Impact(T1,Π, λ, µ) ≤
Impact(T2,Π, λ, µ). This is illustrated in the next example.

Example 9 Let (Π, λ, µ) be a unit context where Π = {β}.
LetA1 = 〈{α∧β}, α〉 andA2 = 〈{¬α∧γ∧β},¬(α∧β)〉.
Let T1 be a tree consisting of nodes A1 and A2, let T2 be
a tree consisting of node A1, and let T3 be the empty tree.
Therefore T3 is more pruned than T2 and T2 is more pruned
than T1. Yet Impact(T1,Π, λ, µ) ≤ Impact(T2,Π, λ, µ),
and Impact(T3,Π, λ, µ) ≤ Impact(T1,Π, λ, µ).

By definition, the minimum possible value for impact is
0. At the other extreme, we can set up a knowledgebase and
desideratabase to create a complete argument tree with max-
imum impact. We explore this in the next two propositions.

Proposition 11 For a set of m propositional letters, the
knowledgebase ∆ and a unit context (Π, λ, µ) are defined
as follows: For all φ, ψ ∈ ∆, {φ, ψ} � ⊥, and ∆ = Π and
|∆| = |Π| = 2m. Now let T be a complete argument tree
where the arguments in Nodes(T ) are obtained from ∆. If
A ∈ Nodes(T ), then

Echo(Support(A),Π) = Π
Resonance(Support(A),Π, λ, µ) = |Π| = 2m

|Propositions(Support(A))| = m

In the above proposition, the knowledgebase ∆ has the
maximum number of pairwise conflicts. This fact, together
with ∆ = Π holding, leads to a complete argument tree with
maximum possible impact as follows.

Proposition 12 For a knowledgebase ∆ composed of m
propositional letters, the highest possible impact for an
argument tree T composed of arguments from ∆, where
|Nodes(T )| = k, and (Π, λ, µ) is a unit context, is

Impact(T,Π, λ, µ) =
Resonance(T,Π, λ, µ)
Propositionalcost(T )

=
k × 2m

m

Example 10 For the propositional letters α and β, let ∆ =
{α ∧ β,¬α ∧ β, α ∧ ¬β,¬α ∧ ¬β}. This knowledge-
base can be used to construct a complete argument tree T .
Each of these trees has 16 nodes. For A ∈ Nodes(T ), if
∆ = Π, then Resonance(Support(A),Π, λ, µ) = 4 and
Propositionalcost(T ) = 2. Hence, Impact(T,Π, λ, µ) =
32.

In general, given some knowledgebase ∆, we can design
a context (Π, λ, µ) that allows us to tailor the argumentation
for the intended audience. In general, a non-unit discount
function tends to favour wider and shallower trees rather
than deeper and narrower trees. Dense desiderata (i.e. a
desideratabase (Π, λ) where there are many items in Π) with
unit desiderata weighting can favour wider trees, less dense
desiderata with non-unit desiderata weighting can favour ei-
ther wide and shallow or deep and narrow trees. The ar-
gument trees with higher impact are therefore obtained by
considering the interplay between these dimensions.

Optimizing impact
To optimize the impact of argumentation, given a complete
argument tree, and a context, we need to select a pruned ar-
gument tree that maximizes resonance and minimizes propo-
sitional cost.

Definition 20 Let T be a complete argument tree. An ar-
gument tree Ti ∈ Space(T ) is an optimal tree in a context
(Π, λ, µ) iff for all Tj ∈ Space(T ) Impact(Ti,Π, λ, µ) ≥
Impact(Tj ,Π, λ, µ).

We can view optimization of impact as a decision prob-
lem.

Theorem 1 Let T be a complete argument tree and let k ∈
R. Determining whether there is a Ti ∈ Space(T ) such
that Impact(Ti,Π, λ, µ) ≤ k is an NP-complete decision
problem.
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The proof is based on 3-SAT. Whilst in general the search
for optimal trees can be expensive, there are some results
like the following that can simplify the search space: If an
argument in an optimal tree is not a resonating argument,
and it adds cost to the tree, then it has an offspring argument
in the tree that is a resonating argument. We see this in the
following example, and more generally in Proposition 13.

Example 11 Let (Π, λ, µ) be a unit context where Π =
{β, γ}. Let T be an optimal tree composed of nodes
{A1, A2, A3} where Support(A1) = {α}, Support(A2) =
{¬δ ∧ β ∧ ¬α}, and Support(A3) = {β ∧ γ ∧ ¬α}. Hence
T has the following form.

A1

↗ ↖
A2 A3

So Impact(T,Π, λ, µ) = 1/2. Now consider T ′ which is T
extended with A4 and Support(A4) = {δ ∧ ε}. So A4 is a
canonical undercut for A2. Since Echo(Support(A4),Π) =
∅, and Propositionalcost(T ) < Propositionalcost(T ′), we
see that T ′ is not an optimal tree.

Proposition 13 Let Ti ∈ Space(T ) be an optimal tree in the
context (Π, λ, µ). For all A ∈ Nodes(Ti), if A is a leaf, then
Echo(Support(A),Π) �= ∅, or Propositionalcost(Ti) =
Propositionalcost(T ′

i ), where T ′
i is Ti without A.

The other substantial overhead in high impact argumen-
tation is in constructing the actual arguments. This is the
same for many forms of argumentation (e.g. (Brewka 1989;
Benferhat, Dubois, & Prade 1993)) and it is essentially that
of finding minimally consistent proofs of a formula (Cadoli
1992). One approach to addressing this complexity is to
adopt approximate entailment (Schaerf & Cadoli 1995) for
approximate coherence-based reasoning (Koriche 2001).

Discussion
In the philosophical study of argumentation, the relation-
ship between the person presenting arguments and the au-
dience has been considered, and in particular the need for
arguments to be aposite for an audience has been identi-
fied (see for example (Walton 1989; Cockcroft & Cockcroft
1992)). The proposal in this paper is, as far as we know,
the first attempt to provide a formal logic-based account of
maximising the apositeness of augments for an audience. It
is clear that aspects of individual arguments in natural lan-
gauge can be represented and analysed using classical logic
(see for example (Fisher 1988)). Furthermore, a set of such
arguments can be related using argument trees (Besnard &
Hunter 2001). Now with the framework in the paper, these
arguments can be analysed to select an optimal subset that
would have the maximum impact for the audience. This
analysis could be useful in a variety of professional domains.

An application where wide but shallow argument trees are
desirable is in decision-support for drug prescribing. Cap-
sule is a system for identifying pros and cons for each pos-
sible drug that can be prescribed for a particular condition
for a particular patient (Fox & Das 2000). Arguments are
based on information about known benefits and side-effects

of each drug, relative cost of each drug, other drugs the pa-
tient is using, the patient’s known drug allergies, and any
preferences the patient may have. The doctors who use the
system want the key pros and cons but they do not want a
deep structure to the arguments and counter-arguments. As
a result, the form of argumentation used in the Capsule sys-
tem can be formalized in our framework by using a unit-step
discount function with a boundary of 2, so that the highest
impact trees are of height 2 but with arbitrary width.

An application where deeper argument trees are desirable
is in trial by jury. Here, arguments need to be analysed
from various angles, leading to deeper branches. However,
normally not all argument trees are presented to the jury
since this would lead to too much information being pre-
sented. Rather a selection of branches is made on the basis
of what is likely to resonate with the jury. For some court
trials, lawyers are commissioning research based on focus
groups for shaping the presentation of cases (see for example
www.trialtech.com). This information may be formalisable
with a desideratabase.

Finally, discounting as formalised in this paper, may be
regarded as a formalization of the notion of serial weakening
seen in legal argumentation (Verheij 1996).
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